Package ‘RcausalEGM’
March 28, 2023

Type Package
Title A General Causal Inference Framework by Encoding Generative Modeling
Version 0.3.3
Date 2023-03-22
Maintainer Qiao Liu <liuqiao@stanford.edu>
Description CausalEGM is a general causal inference framework for estimating causal effects by encoding generative modeling, which can be applied in both discrete and continuous treatment settings. A description of the methods is given in Liu (2022) <arXiv:2212.05925>.
License MIT + file LICENSE
Encoding UTF-8
Imports reticulate
URL https://github.com/SUwonglab/CausalEGM
BugReports https://github.com/SUwonglab/CausalEGM/issues
Repository CRAN
Depends R(>= 3.6.0)
RoxygenNote 7.2.3
Suggests rmarkdown, knitr, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Qiao Liu [aut, cre],
Wing Wong [aut],
Balasubramanian Narasimhan [ctb]
Date/Publication 2023-03-28 12:00:11 UTC

R topics documented:
causalegm ... 2
get_est ... 4
install_causalegm ... 5
Main function for estimating causal effect in either binary or continuous treatment settings.

This function takes observation data (x,y,v) as input, and estimate the ATE/ITE/ADRF.

Usage

causalegm(
 x,
 y,
 v,
 z_dims = c(3, 3, 6, 6),
 output_dir = ".",
 dataset = "myData",
 lr = 2e-04,
 bs = 32,
 alpha = 1,
 beta = 1,
 gamma = 10,
 g_d_freq = 5,
 g_units = c(64, 64, 64, 64, 64),
 e_units = c(64, 64, 64, 64, 64),
 f_units = c(64, 32, 8),
 h_units = c(64, 32, 8),
 dv_units = c(64, 32, 8),
 dz_units = c(64, 32, 8),
 save_model = FALSE,
 save_res = FALSE,
 binary_treatment = TRUE,
 use_z_rec = TRUE,
 use_v_gan = TRUE,
 random_seed = 123,
 n_iter = 30000,
 normalize = FALSE,
 x_min = NULL,
 x_max = NULL
)

Arguments

x is the treatment variable, one-dimensional array with size n.

y is the potential outcome, one-dimensional array with size n.
causalegm

- **v** is the covariates, two-dimensional array with size n by p.
- **z_dims** is the latent dimensions for z_0, z_1, z_2, z_3 respectively. Total dimension should be much smaller than the dimension of covariates v. Default: c(3,3,6,6)
- **output_dir** is the folder to save the results including model hyperparameters and the estimated causal effect. Default is ".".
- **dataset** is the name for the input data. Default: "myData".
- **lr** is the learning rate. Default: 0.0002.
- **bs** is the batch size. Default: 32.
- **alpha** is the coefficient for the reconstruction loss. Default: 1.
- **beta** is the coefficient for the MSE loss of x and y. Default: 1.
- **gamma** is the coefficient for the gradient penalty loss. Default: 10.
- **g_d_freq** is the iteration frequency between training generator and discriminator in the Roundtrip framework. Default: 5.
- **g_units** is the list of hidden nodes in the generator/decoder network. Default: c(64,64,64,64,64).
- **e_units** is the list of hidden nodes in the encoder network. Default: c(64,64,64,64,64).
- **f_units** is the list of hidden nodes in the f network for predicting y. Default: c(64,32,8).
- **h_units** is the list of hidden nodes in the h network for predicting x. Default: c(64,32,8).
- **dv_units** is the list of hidden nodes in the discriminator for distribution match v. Default: c(64,32,8).
- **dz_units** is the list of hidden nodes in the discriminator for distribution match z. Default: c(64,32,8).
- **save_model** whether to save the trained model. Default: FALSE.
- **save_res** whether to save the results during training. Default: FALSE.
- **binary_treatment** whether the treatment is binary or continuous. Default: TRUE.
- **use_z_rec** whether to use the reconstruction loss for z. Default: TRUE.
- **use_v_gan** whether to use the GAN training for v. Default: TRUE.
- **random_seed** is the random seed to fix randomness. Default: 123.
- **n_iter** is the training iterations. Default: 30000.
- **normalize** whether apply normalization to covariates. Default: FALSE.
- **x_min** ADRF start value. Default: NULL
- **x_max** ADRF end value. Default: NULL

Value

- **causalegm** returns an object of class "causalegm".
- An object of class "causalegm" is a list containing the following:
 - **causal_pre** the predicted causal effects, which are individual causal effects (ITEs) in binary treatment settings and dose-response values in continuous treatment settings.
 - **getCATE** the method for getting the conditional average treatment effect (CATE). It takes covariates v as input.
 - **predict** the method for outcome function. It takes treatment x and covariates v as inputs.
get_est

References

Examples

```r
#Generate a simple simulation data.
n <- 1000
p <- 10
v <- matrix(rnorm(n * p), n, p)
x <- rbinom(n, 1, 0.4 + 0.2 * (v[, 1] > 0))
y <- pmax(v[, 1], 0) * x + v[, 2] + pmin(v[, 3], 0) + rnorm(n)
model <- causalegm(x=x, y=y, v=v, n_iter=3000)
paste("The average treatment effect (ATE): ", round(model$ATE, 2))
```

get_est

Make predictions with causalEGM model.

Description

When `x` is `NULL`, the conditional average treatment effect (CATE), namely `tau(v)`, is estimated using a trained causalEGM model. When `x` is provided, estimating the potential outcome `y` given treatment `x` and covariates `v` using a trained causalEGM model.

Usage

```r
get_est(object, v, x = NULL)
```

Arguments

- **object**: An object of class "causalegm".
- **v**: is the covariates, two-dimensional array with size `n` by `p`.
- **x**: is the optional treatment variable, one-dimensional array with size `n`. Defaults to `NULL`.

Value

Vector of predictions.
Examples

Generate a simple simulation data.
n <- 1000
p <- 10
v <- matrix(rnorm(n * p), n, p)
x <- rbinom(n, 1, 0.4 + 0.2 * (v[, 1] > 0))
y <- pmax(v[, 1], 0) * x + v[, 2] + pmin(v[, 3], 0) + rnorm(n)
model <- causalegm(x=x, y=y, v=v, n_iter=3000)
n_test <- 100
v_test <- matrix(rnorm(n_test * p), n_test, p)
x_test <- rbinom(n_test, 1, 0.4 + 0.2 * (v_test[, 1] > 0))
pred_cate <- get_est(model, v = v_test) # CATE estimate
pred_y <- get_est(model, v = v_test, x = x_test) # y given treatment x plus covariates v

install_causalegm

Install the python CausalEGM package

Description

Install the python CausalEGM package

Usage

install_causalegm(method = "auto", pip = TRUE)

Arguments

- method: default "auto"
- pip: boolean flag, default TRUE

Value

No return value
Index

causalegm, 2
class, 3
get_est, 4
install_causalegm, 5