Package ‘Rcgmin’

October 12, 2022

Type Package
Title Conjugate Gradient Minimization of Nonlinear Functions with Box Constraints
Version 2022-4.30
Date 2022-04-30
Maintainer John C. Nash <nashjc@uottawa.ca>
Description Conjugate gradient minimization of nonlinear functions with box constraints using Dai/Yuan update.
Depends optextras
Suggests numDeriv
License GPL (>= 2)
NeedsCompilation no
Author John C. Nash [aut, cre]
Repository CRAN
Date/Publication 2022-05-11 17:20:06 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcgmin</td>
<td>1</td>
</tr>
<tr>
<td>Rcgminb</td>
<td>7</td>
</tr>
<tr>
<td>Rcgminu</td>
<td>9</td>
</tr>
</tbody>
</table>

Index 12

Rcgmin

An R implementation of a nonlinear conjugate gradient algorithm with the Dai/Yuan update and restart. Based on Nash (1979) Algorithm 22 for its main structure.
Description

The purpose of `Rcgmin` is to minimize an unconstrained or bounds (box) and mask constrained function of many parameters by a nonlinear conjugate gradients method. This code is entirely in R to allow users to explore and understand the method. It also allows bounds (or box) constraints and masks (equality constraints) to be imposed on parameters.

`Rcgmin` is a wrapper that calls `Rcgminu` for unconstrained problems, else `Rcgminb`.

Usage

```r
Rcgmin(par, fn, gr, lower, upper, bdmsk, control = list(), ...)
```

Arguments

- **par**: A numeric vector of starting estimates.
- **fn**: A function that returns the value of the objective at the supplied set of parameters `par` using auxiliary data in `. . . .`. The first argument of `fn` must be `par`.
- **gr**: A function that returns the gradient of the objective at the supplied set of parameters `par` using auxiliary data in `. . . .`. The first argument of `fn` must be `par`. This function returns the gradient as a numeric vector.
 - If `gr` is not provided or is NULL, then the simple forward gradient code `grfwd` from package `optextras` is used. However, we recommend carefully coded and checked analytic derivatives for `Rcgmin`.
 - The use of numerical gradients for `Rcgmin` is discouraged. First, the termination test uses a size measure on the gradient, and numerical gradient approximations can sometimes give results that are too large. Second, if there are bounds constraints, the step(s) taken to calculate the approximation to the derivative are NOT checked to see if they are out of bounds, and the function may be undefined at the evaluation point.
 - There is also the option of using the routines `grfwd`, `grback`, `grcentral` or `grnd` from package `optextras`. The last of these calls the `grad()` function from package `numDeriv`. These are called by putting the name of the (numerical) gradient function in quotation marks, e.g.,
    ```r
gr="grfwd"
```
 - to use the standard forward difference numerical approximation.
 - Note that all but the `grnd` routine use a stepsize parameter that can be redefined in a special scratchpad storage variable `deps`. See package `optextras`. The default is `deps = 1e-07`. However, redefining this is discouraged unless you understand what you are doing.
- **lower**: A vector of lower bounds on the parameters.
- **upper**: A vector of upper bounds on the parameters.
- **bdmsk**: An indicator vector, having 1 for each parameter that is "free" or unconstrained, and 0 for any parameter that is fixed or MASKED for the duration of the optimization.
- **control**: An optional list of control settings.
- **...**: Further arguments to be passed to `fn`.

Details

Functions `fn` must return a numeric value.
The `control` argument is a list.

maxit A limit on the number of iterations (default 500). Note that this is used to compute a quantity `maxfeval` defined as `round(sqrt(n+1)*maxit)` where `n` is the number of parameters to be minimized.

trace Set 0 (default) for no output, >0 for trace output (larger values imply more output).

eps Tolerance used to calculate numerical gradients. Default is 1.0E-7. See source code for `Rcgmin` for details of application.

dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.

tol Tolerance used in testing the size of the square of the gradient. Default is 0 on input, which uses a value of `tolgr = npar*npar*.Machine$double.eps` in testing if `crossprod(g) <= tolgr * (abs(fmin) + offset)`. If the user supplies a value for `tol` that is non-zero, then that value is used for `tolgr`.

`offset=100` is only alterable by changing the code. `fmin` is the current best value found for the function minimum value.

Note that the scale of the gradient means that tests for a small gradient can easily be mismatched to a given problem. The defaults in Rcgmin are a "best guess".

checkgrad = TRUE if we want gradient function checked against numerical approximations. Default is FALSE.

checkbounds = TRUE if we want bounds verified. Default is TRUE.

The source code `Rcgmin` for R is likely to remain a work in progress for some time, so users should watch the console output.

As of 2011-11-21 the following controls have been REMOVED

usenumDeriv There is now a choice of numerical gradient routines. See argument `gr`.

maximize To maximize `user_function`, supply a function that computes `-1*user_function`. An alternative is to call Rcgmin via the package optimx, where the MAXIMIZE field of the OPCON structure in package `optfntools` is used.

Value

A list with components:

- **par** The best set of parameters found.
- **value** The value of the objective at the best set of parameters found.
- **counts** A two-element integer vector giving the number of calls to `fn` and `gr` respectively. This excludes those calls needed to compute the Hessian, if requested, and any calls to `fn` to compute a finite-difference approximation to the gradient.
- **convergence** An integer code. '0' indicates successful convergence. '1' indicates that the function evaluation count 'maxfeval' was reached. '2' indicates initial point is infeasible.
- **message** A character string giving any additional information returned by the optimizer, or 'NULL'.

bdmsk

Returned index describing the status of bounds and masks at the proposed solution. Parameters for which bdmsk are 1 are unconstrained or "free", those with bdmsk 0 are masked i.e., fixed. For historical reasons, we indicate a parameter is at a lower bound using -3 or upper bound using -1.

References

See Also

optim

Examples

Rosenbrock Banana function
fr <- function(x) {
 x1 <- x[1]
 x2 <- x[2]
 100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
grr <- function(x) { # Gradient of 'fr'
 x1 <- x[1]
 x2 <- x[2]
 c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
 200 * (x2 - x1 * x1))
}
grn <- function(x) {
 gg <- grad(fr, x)
}
ansrosenbrock0 <- Rcgmin(fn=fr, gr=grr, par=c(1,2))
print(ansrosenbrock0) # use print to allow copy to separate file that
can be called using source()

Simple bounds and masks test
bt.f <- function(x) {
 sum(x*x)
}
bt.g <- function(x) {
 gg <- 2.0 * x
}
n <- 10
xx<-rep(0,n)
lower<-rep(0,n)
upper<-lower # to get arrays set
bdmsk<-rep(1,n)
bdmsk[(trunc(n/2)+1)]<-0
for (i in 1:n) {
 lower[i]<-1.0*(i-1)*(n-1)/n
 upper[i]<-1.0*i*(n+1)/n
}
xx<-0.5*(lower+upper)
ansbt<-Rcgmin(xx, bt.f, bt.g, lower, upper, bdmsk, control=list(trace=1))
print(ansbt)

analytic gradient test
xx<-rep(pi,10)
lower<-NULL
upper<-NULL
bdmsk<-NULL
genrosea<-Rcgmin(xx,genrose.f, genrose.g, gs=10)
genrosenn<-Rcgmin(xx,genrose.f, gs=10) # use local numerical gradient
print(genrosea)
print(genrosenn)
cat("timings B vs U\n")
loc<-rep(-100,10)
upc<-rep(100,10)
bdmsk<-rep(1,10)
tb<-system.time(ab<-Rcgminb(xx,genrose.f, genrose.g, lower=lo, upper=up, bdmsk=bdmsk))[1]
tu<-system.time(auc<-Rcgminu(xx,genrose.f, genrose.g))[1]
cat("times U=",tu," B="tb,"\n")
cat("solution Rcgminu\n")
print(au)
cat("solution Rcgminb\n")
print(ab)
cat("diff fu-fb=", au$value - ab$value, ",\n")
cat("max abs parameter diff = ", max(abs(au$par - ab$par)), ",\n")
maxfn<-function(x) {
 n <- length(x)
 ss <- seq(1, n)
 f <- 10 - (crossprod(x - ss))^2
 f <- as.numeric(f)
 return(f)
}
gmaxfn<-function(x) {
 gg <- grad(maxfn, x)
}
egmaxfn<-function(x) {
 f <- (-1) * maxfn(x)
 return(f)
}
cat("test that maximize=TRUE works correctly\n")
n <- 6
xx <- rep(1, n)
anymax <- Rcgmin(xx, maxfn, control=list(maximize=TRUE, trace=1))
print(ansmax)
cat("using the negmax function should give same parameters\n")
anynegmax <- Rcgmin(xx, negmaxfn, control=list(trace=1))
print(ansnegmax)

From Rvmmin.Rd

cat("test bounds and masks\n")
n <- 4
startx <- rep(pi, nn)
lo <- rep(2, nn)
up <- rep(10, nn)
grbds1 <- Rcgmin(startx, genrose.f, gr=genrose.g, lower=lo, upper=up)
print(grbds1)
cat("test lower bound only\n")
n <- 4
startx <- rep(pi, nn)
lo <- rep(2, nn)
grbds2 <- Rcgmin(startx, genrose.f, gr=genrose.g, lower=lo)
print(grbds2)
cat("test lower bound single value only\n")
n <- 4
startx <- rep(pi, nn)
lo <- 2
up <- rep(10, nn)
grbds3 <- Rcgmin(startx, genrose.f, gr=genrose.g, lower=lo)
print(grbds3)
cat("test upper bound only\n")
n <- 4
startx <- rep(pi, nn)
Rcgminb

An R implementation of a bounded nonlinear conjugate gradient algorithm with the Dai / Yuan update and restart. Based on Nash (1979) Algorithm 22 for its main structure. CALL THIS VIA Rcgmin AND DO NOT USE DIRECTLY.
Description

The purpose of Rcgminb is to minimize a bounds (box) and mask constrained function of many parameters by a nonlinear conjugate gradients method. This code is entirely in R to allow users to explore and understand the method. It allows bounds (or box) constraints and masks (equality constraints) to be imposed on parameters.

This code should be called through Rcgmin which selects Rcgminb or Rcgminu according to the presence of bounds and masks.

Usage

Rcgminb(par, fn, gr, lower, upper, bdmsk, control = list(), ...)

Arguments

par A numeric vector of starting estimates.
fn A function that returns the value of the objective at the supplied set of parameters par using auxiliary data in The first argument of fn must be par.
gr A function that returns the gradient of the objective at the supplied set of parameters par using auxiliary data in The first argument of fn must be par. This function returns the gradient as a numeric vector. The use of numerical gradients for Rcgminb is STRONGLY discouraged.
lower A vector of lower bounds on the parameters.
upper A vector of upper bounds on the parameters.
bdmsk An indicator vector, having 1 for each parameter that is "free" or unconstrained, and 0 for any parameter that is fixed or MASKED for the duration of the optimization.
control An optional list of control settings.
... Further arguments to be passed to fn.

Details

Functions fn must return a numeric value.
The control argument is a list.

maxit A limit on the number of iterations (default 500). Note that this is used to compute a quantity maxfeval<-round(sqrt(n+1)*maxit) where n is the number of parameters to be minimized.
trace Set 0 (default) for no output, >0 for trace output (larger values imply more output).
eps Tolerance used to calculate numerical gradients. Default is 1.0E-7. See source code for Rcgminb for details of application.
dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.

The source code Rcgminb for R is likely to remain a work in progress for some time, so users should watch the console output.

As of 2011-11-21 the following controls have been REMOVED
usenumDeriv There is now a choice of numerical gradient routines. See argument gr.

maximize To maximize user_function, supply a function that computes (-1)*user_function. An alternative is to call Rcgmin via the package optimx.

Value

A list with components:

- **par** The best set of parameters found.
- **value** The value of the objective at the best set of parameters found.
- **counts** A two-element integer vector giving the number of calls to 'fn' and 'gr' respectively. This excludes those calls needed to compute the Hessian, if requested, and any calls to 'fn' to compute a finite-difference approximation to the gradient.
- **convergence** An integer code. '0' indicates successful convergence, '1' indicates that the function evaluation count 'maxfeval' was reached. '2' indicates initial point is infeasible.
- **message** A character string giving any additional information returned by the optimizer, or 'NULL'.
- **bdmsk** Returned index describing the status of bounds and masks at the proposed solution. Parameters for which bdmsk are 1 are unconstrained or "free", those with bdmsk 0 are masked i.e., fixed. For historical reasons, we indicate a parameter is at a lower bound using -3 or upper bound using -1.

References

See Rcgmin documentation. Note that bounds and masks were adapted from the work by Nash and Walker-Smith(1987).

See Also

- optim

Rcgminu An R implementation of an unconstrained nonlinear conjugate gradient algorithm with the Dai / Yuan update and restart. Based on Nash (1979) Algorithm 22 for its main structure. CALL THIS VIA Rcgmin AND DO NOT USE DIRECTLY.

Description

The purpose of Rcgminu is to minimize an unconstrained function of many parameters by a nonlinear conjugate gradients method. This code is entirely in R to allow users to explore and understand the method.

This code should be called through Rcgmin which selects Rcgminb or Rcgminu according to the presence of bounds and masks.
Usage

Rcgminu(par, fn, gr, control = list(), ...)

Arguments

par A numeric vector of starting estimates.
fn A function that returns the value of the objective at the supplied set of parameters par using auxiliary data in ... The first argument of fn must be par.
gr A function that returns the gradient of the objective at the supplied set of parameters par using auxiliary data in ... The first argument of fn must be par. This function returns the gradient as a numeric vector. The use of numerical gradients for Rcgminu is STRONGLY discouraged.
control An optional list of control settings.
... Further arguments to be passed to fn.

details

Functions fn must return a numeric value.
The control argument is a list.

maxit A limit on the number of iterations (default 500). Note that this is used to compute a quantity maxfeval<round(sqrt(n+1)*maxit) where n is the number of parameters to be minimized.
trace Set 0 (default) for no output, >0 for trace output (larger values imply more output).
eps Tolerance used to calculate numerical gradients. Default is 1.0E-7. See source code for Rcgminu for details of application.
dowarn = TRUE if we want warnings generated by optimx. Default is TRUE.

The source code Rcgminu for R is likely to remain a work in progress for some time, so users should watch the console output.
As of 2011-11-21 the following controls have been REMOVED

useNumDeriv There is now a choice of numerical gradient routines. See argument gr.
maximize To maximize user_function, supply a function that computes (-1)*user_function. An alternative is to call Rcgmin via the package optimx.

Value

A list with components:

par The best set of parameters found.
value The value of the objective at the best set of parameters found.
counts A two-element integer vector giving the number of calls to ‘fn’ and ‘gr’ respectively. This excludes those calls needed to compute the Hessian, if requested, and any calls to ‘fn’ to compute a finite-difference approximation to the gradient.
convergence An integer code. '0' indicates successful convergence. '1' indicates that the function evaluation count 'maxfeval' was reached. '2' indicates initial point is infeasible.

message A character string giving any additional information returned by the optimizer, or 'NULL'.

bdmsk Returned index describing the status of bounds and masks at the proposed solution. Parameters for which bdmsk are 1 are unconstrained or "free", those with bdmsk 0 are masked i.e., fixed. For historical reasons, we indicate a parameter is at a lower bound using -3 or upper bound using -1.

References
See Rcgmin documentation.

See Also
optim
Index

* nonlinear
 Rcgmmin, 1
 Rcgmminb, 7
 Rcgmminu, 9

* optimize
 Rcgmmin, 1
 Rcgmminb, 7
 Rcgmminu, 9

optim, 4, 9, 11

Rcgmmin, 1
Rcgmminb, 7
Rcgmminu, 9