Package ‘Rchoice’

May 27, 2020

Title Discrete Choice (Binary, Poisson and Ordered) Models with Random Parameters

Version 0.3-2

Author Mauricio Sarrias <msarrias86@gmail.com>

Maintainer Mauricio Sarrias <msarrias86@gmail.com>

Description An implementation of simulated maximum likelihood method for the estimation of Binary (Probit and Logit), Ordered (Probit and Logit) and Poisson models with random parameters for cross-sectional and longitudinal data.

Depends R (>= 3.1.0), Formula, maxLik

Imports msm, plm, plotrix, stats, graphics

Suggests car, lmtest, memisc, pglm, sandwich

License GPL (>= 2)

URL http://msarrias.com/rchoice-package-in-r.html

LazyData no

RoxygenNote 7.1.0

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2020-05-27 15:30:07 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC.Rchoice</td>
<td>2</td>
</tr>
<tr>
<td>Articles</td>
<td>3</td>
</tr>
<tr>
<td>Attitudes</td>
<td>4</td>
</tr>
<tr>
<td>bread.Rchoice</td>
<td>5</td>
</tr>
<tr>
<td>effect.Rchoice</td>
<td>6</td>
</tr>
<tr>
<td>estfun.Rchoice</td>
<td>7</td>
</tr>
<tr>
<td>getSummary.Rchoice</td>
<td>8</td>
</tr>
</tbody>
</table>
AIC.Rchoice

Description

Calculate Akaike’s information Criterion (AIC) or the Bayesian information Criterion (BIC) for a model of class Rchoice.

Usage

S3 method for class 'Rchoice'
AIC(object, ..., k = 2)

S3 method for class 'Rchoice'
BIC(object, ...)

Arguments

object a fitted model of class Rchoice,
... additional arguments to be passed to or from other functions,
k a numeric value, use as penalty coefficient for number of parameters in the fitted model,

Value

a numeric value with the corresponding AIC or BIC value.

See Also

Rchoice

Examples

Probit model

data("Workmroz")
probit <- Rchoice(lfp ~ k5 + k618 + age + wc + hc + lwg + inc,
 data = Workmroz, family = binomial('probit'))
summary(probit)

AIC(probit)
BIC(probit)
Description

Data from research by Long (1990) that analyzes the scientist's level of publications.

Usage

data(Articles)

Format

A data frame with 915 observations on the following 6 variables.

- art: Articles during last 3 years of Ph.D.
- fem: 1 if female scientist; else 0
- mar: 1 if married; else 0
- kid5: Number of children 5 or younger
- phd: Prestige of Ph.D. department
- ment: Articles by mentor during last 3 years

Source

Examples

data(Articles)
Attitudes

Attitudes toward working mothers

Description

In 1997 and 1989, the General Social Survey asked respondents to evaluate the following statement: "A working mother can establish just as warm and secure a relationship with her children as a mother who does not work".

Usage

data(Attitudes)

Format

A data frame with 2293 observations on the following 10 variables.

- **warm**: 1 = Strongly disagree, 2 = disagree, 3 = agree, 4 = strongly agree
- **yr89**: survey year: 1 = 1989; 0 = 1977
- **male**: 1 = male; 0 = female
- **white**: 1 = white; 0 = nonwhite
- **age**: age in years
- **ed**: years of education
- **prst**: occupational prestige

Source

Examples

data(Attitudes)
bread.Rchoice

bread.Rchoice
Description

Computes the “bread” of the sandwich covariance matrix for a model of class *Rchoice*

Usage

```r
## S3 method for class 'Rchoice'
bread(x, ...)
```

Arguments

- **x** a fitted model of class *Rchoice*,
- **...** Other arguments when *bread* is applied to another class object.

Details

For more information see *bread* from the package *sandwich*.

Value

the covariance matrix times observations

References

Examples

```r
## Probit model
data("Workmroz")
probit <- Rchoice(lfp ~ k5 + k618 + age + wc + hc + lwg + inc,
data = Workmroz, family = binomial('probit'))
summary(probit)

library("sandwich")
bread(probit)
```
Get the conditional individual coefficients

Description

This a helper function to obtain the individuals’ conditional estimate of the random parameters or compensating variations.

Usage

effect.Rchoice(x, par = NULL, effect = c("cv", "ce"), wrt = NULL, ...)

Arguments

x a object of class Rchoice,
par a string giving the name of the variable with random parameter,
effect a string indicating what should be computed: the conditional expectation of the individual coefficients "ce", or the conditional expectation of the individual compensating variations "cv",
wrt a string indicating respect to which variable the compensating variation should be computed,
... further arguments. Ignored.

Value

A named list where “mean” contains the individuals’ conditional mean for the random parameter or compensating variation, and where ‘sd.est’ contains their standard errors.

References

See Also

Rchoice for the estimation of different discrete choice models with individual parameters.

Examples

Not run:
Probit Model with Random Effects and Random Parameters
data('Unions', package = 'pglm')
Unions$lwage <- log(Unions$wage)
union.ran <- Rchoice(union ~ age + exper + rural + lwage,
data = Unions[1:2000,],
family = binomial('probit'),
rangep = c(constant = "n", lwage = "t"),

Not run:
estfun.Rchoice

R = 10,
panel = TRUE,
index = "id",
print.init = TRUE)

Get the individuals' conditional mean and their standard errors for lwage
bi.wage <- effect.Rchoice(union.run, par = "lwage", effect = 'ce')
summary(bi.wage$mean)
summary(bi.wage$sd.est)

End(Not run)

estfun.Rchoice Gradient for observations

Description

It extracts the gradient for each observation evaluated at the estimated parameters for a model of class Rchoice.

Usage

S3 method for class 'Rchoice'
estfun(x, ...)

Arguments

x a fitted model of class Rchoice,
...
Other arguments when estfun is applied to another class object

Details

For more information see estfun from package sandwich.

Value

the gradient matrix of dimension n times k.

References

getSummary.Rchoice
Get Model Summaries for Use with "mtable"

Description

A generic function to collect coefficients and summary statistics from a Rchoice object. It is used in `mtable`.

Usage

```r
getSummary.Rchoice(obj, alpha = 0.05, ...)
```

Arguments

- `obj`: a `Rchoice` object,
- `alpha`: level of the confidence intervals,
- `...`: further arguments.

Details

For more details see package `memisc`.

Health
German Health Care Data

Description

German Health Care Data, unbalanced panel.

Usage

```r
data(Health)
```

Format

A data frame with 27326 observations on the following 27 variables:

- `id`: person identification number
- `female`: female =1, male =0
- `year`: calendar year of the observation
- `age`: age in years
- `hsat`: health satisfaction, 0 (low),...,10 (high)
- `handdum`: handicapped = 1, 0 otherwise
- `handper`: degree of handicap in percent; 0,100
hhinc household nominal monthly net income in German marks
hhkids children under age 16 in the household = 1; otherwise = 0
educ years of schooling
married married =1, otherwise = 0
haupts highest schooling degree is Hauptschul degree = 1; otherwise = 0
reals highest schooling degree is Realschul degree = 1, otherwise = 0
fachhs highest schooling degree is Polytechnical degree = 1; otherwise = 0
abitur highest schooling degree is Abitur = 1; otherwise = 0
univ highest schooling degree is university degree =1; otherwise = 0
working employed =1; otherwise = 0
bluec blue-collar employee = 1; otherwise = 0
whitc white-collar employee =1; otherwise = 0
self self-employed = 1; otherwise = 0
beamt civil servant = 1; otherwise = 0
docvis number of doctor visits in last three months
hospvis number of hospital visits in last calendar year
public insured in public health =1; otherwise = 0
addon insured by add-on insurance =1; otherwise = 0
hsat2 40 observations on hsat recorded between 6 and 7 were changed to 7
newhsat recording of hsat, (0-2) = 0, (3-5)=1, (6-8)=2, (9)=3 (10)=4

Source

References

Examples

data(Health)
plot.Rchoice

Plot of the distribution of conditional expectation of random parameters.

Description

Plot the distribution of the conditional expectation of the random parameters or compensating variations for objects of class Rchoice.

Usage

```r
## S3 method for class 'Rchoice'
plot(
  x,
  par = NULL,
  effect = c("ce", "cv"),
  wrt = NULL,
  type = c("density", "histogram"),
  adjust = 1,
  main = NULL,
  col = "indianred1",
  breaks = 10,
  ylab = NULL,
  xlab = NULL,
  ind = FALSE,
  id = NULL,
  ...
)
```

Arguments

- `x`: a object of class Rchoice.
- `par`: a string giving the name of the variable with random parameter,
- `effect`: a string indicating what should be plotted: the conditional expectation of the individual coefficients "ce", or the conditional expectation of the individual compensating variations "cv",
- `wrt`: a string indicating repect to which variable should be computed the compensating variation,
- `type`: a string indicating the type of distribution: it can be a histogram or a density of the conditional expectation,
- `adjust`: bandwidth for the kernel density,
- `main`: an overall title for the plot,
- `col`: color for the graph,
- `breaks`: number of breaks for the histogram if type = "histogram".
plot.Rchoice

ylab
a title for the y axis,

xlab
a title for the x axis,

ind
a boolean. If TRUE, a 95 As default, the conditional expectation of par for the first 10 individual is plotted,

id
only relevant if ind is not NULL. This is a vector indicating the individuals for which the confidence intervals are plotted,

...
further arguments. Ignored.

Author(s)

Mauricio Sarrias

References

See Also

Rchoice for the estimation of different discrete choice models with individual parameters.

Examples

```r
## Not run:
## Probit Model with Random Effects and Random Parameters
data('Unions', package = 'pglm')
Unions$lwage <- log(Unions$wage)
union.ran <- Rchoice(union ~ age + exper + rural + lwage,  
data = Unions[1:2000, ],
family = binomial('probit'),
ranp = c(constant = "n", lwage = "t"),
R = 10,
panel = TRUE,
index = "id",
print.init = TRUE)

## Plot the distribution of the conditional mean for lwage
plot(union.ran, par = "lwage", type = "density")

## Plot the conditional mean for the first 20 individuals
plot(union.ran, par = "lwage", ind = TRUE, id = 1:20, col = "blue")

## Plot the compensating variation
plot(union.ran, par = "lwage", effect = "cv", wrt = "rural", type = "histogram")
```

End(Not run)
Rchoice

Estimate discrete choice model with random parameters

Description

Estimation of discrete choice models such as Binary (logit and probit), Poisson and Ordered (logit and probit) model with random coefficients for cross-sectional and panel data using simulated maximum likelihood.

Usage

Rchoice(
 formula,
 data,
 subset,
 weights,
 na.action,
 family,
 start = NULL,
 ranp = NULL,
 R = 40,
 haltons = NA,
 seed = 10,
 correlation = FALSE,
 panel = FALSE,
 index = NULL,
 mvar = NULL,
 print.init = FALSE,
 init.ran = 0.1,
 gradient = TRUE,
 ...
)

S3 method for class 'Rchoice'

terms(x, ...)

S3 method for class 'Rchoice'

model.matrix(object, ...)

S3 method for class 'Rchoice'

coef(object, ...)

S3 method for class 'Rchoice'

nObs(x, ...)

S3 method for class 'Rchoice'

fitted(object, ...)
S3 method for class 'Rchoice'
residuals(object, ...)

S3 method for class 'Rchoice'
df.residual(object, ...)

S3 method for class 'Rchoice'
update(object, new, ...)

S3 method for class 'Rchoice'
logLik(object, ...)

S3 method for class 'Rchoice'
print(
 x,
 digits = max(3, getOption("digits") - 3),
 width = getOption("width"),
 ...
)

S3 method for class 'Rchoice'
summary(object, ...)

S3 method for class 'summary.Rchoice'
print(
 x,
 digits = max(3, getOption("digits") - 3),
 width = getOption("width"),
 ...
)

Arguments

- **formula**: a symbolic description of the model to be estimated. The formula consists in two parts. The first one is reserved for standard variables with fixed and random parameters. The second one is reserved for variables that enter in the mean of the random parameters. See for example \texttt{rFormula},
- **data**: the data. It may be a \texttt{pdata.frame} object or an ordinary \texttt{data.frame},
- **subset**: an optional vector specifying a subset of observations,
- **weights**: an optional vector of weights,
- **na.action**: a function which indicated what should happen when the data contains NA’s,
- **family**: the distribution to be used. It might be family = binomial("probit") for a Probit Model, family = binomial("logit") for a Logit model, family = ordinal("probit") for an Ordered Probit Model, family = ordinal("logit") for an Ordered Logit Model for an Ordered Logit Model, and family = “poisson” for a Poisson Model,
The models are estimated using the \texttt{maxLik} function from \texttt{maxLik} package.

If \texttt{ranp} is not \texttt{NULL}, the random parameter model is estimated. A random parameter model or random coefficient models permits regression parameter to vary across individuals according to some distribution. A fully parametric random parameter model specifies the latent variable y^* conditional on regressors x and given parameters β_i to have conditional density $f(y|x, \beta_i)$ where β_i are iid with density $g(\beta_i|\theta_i)$. The density is assumed a priori by the user by the argument \texttt{ranp}.

If the parameters are assumed to be normally distributed $\beta_i \sim N(\beta, \Sigma)$, then the random parameter are constructed as:

$$\beta_{ir} = \beta + L\omega_{ir}$$

where $L \Sigma'$ and ω_{ir} is the r-th draw from standard normal distribution for individual i.

Once the model is specified by the argument \texttt{family}, the model is estimated using Simulated Maximum Likelihood (SML). The probabilities, given by $f(y|x, \beta_i)$, are simulated using R pseudo-draws if halton=\texttt{NULL} or R halton draws if halton = \texttt{NA}. The user can also specified the primes and the
number of dropped elements for the halton draws. For example, if the model consists of two random parameters, the user can specify `haltons = list("prime" = c(2,3),"drop" = c(11,11)).` A random parameter hierarchical model can be estimated by including heterogeneity in the mean of the random parameters:

\[\beta_{ir} = \beta + \pi's_i + L\omega_{ir} \]

`Rchoice` manages the variables in the hierarchical model by the formula object: all the hierarchical variables \((s_i)\) are included after the \(|\) symbol. The argument `mvar` indicate which variables enter in each random parameter. See examples below

Value

An object of class “Rchoice”, a list elements:

- `coefficients` the named vector of coefficients,
- `family` type of model,
- `link` distribution of the errors,
- `logLik` a set of values of the maximum likelihood procedure,
- `mf` the model framed used,
- `formula` the formula (a Formula object),
- `time` proc.time() minus the start time,
- `freq` frequency of dependent variable,
- `draws` type of draws used,
- `R.model` TRUE if a random parameter model is fitted,
- `R` number of draws used,
- `bi` an array of dimension \(N \times R \times K\) with the individual parameters,
- `Qir` matrix of dimension \(N \times R\) representing \(P_{ir}/\sum_r P_{ir}\),
- `ranp` vector indicating the variables with random parameters and their distribution,
- `probabilities` the fitted probabilities for each individuals,
- `residuals` the residuals,
- `call` the matched call.

Author(s)

Mauricio Sarrias <msarrias86@gmail.com>

References

See Also

`plot.Rchoice`, `effect.Rchoice`
Examples

```r
## Probit model
data("Workmroz")
probit <- Rchoice(lfp ~ k5 + k618 + age + wc + hc + lwg + inc,
    data = Workmroz, family = binomial("probit"))
summary(probit)

## Poisson model
data("Articles")
poisson <- Rchoice(art ~ fem + mar + kid5 + phd + ment, data = Articles, family = poisson)
summary(poisson)

## Ordered probit model
data("Health")
oprob <- Rchoice(newhsat ~ age + educ + hhinc + married + hhkids,
    data = Health, family = ordinal("probit"), subset = year == 1988)
summary(oprob)

## Poisson Model with Random Parameters
## Not run:
poisson.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment,
    data = Articles, family = poisson,
    ranp = c(kid5 = "n", phd = "n", ment = "n"))
summary(poisson.ran)

## Poisson Model with Correlated Random Parameters
poissonc.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment,
    data = Articles,
    ranp = c(kid5 = "n", phd = "n", ment = "n"),
    family = poisson,
    correlation = TRUE)
summary(poissonc.ran)

## Hierarchical Poisson Model
poissonH.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment | fem + phd,
    data = Articles,
    ranp = c(kid5 = "n", phd = "n", ment = "n"),
    mvar = list(phd = c("fem"), ment = c("fem", "phd")),
    family = poisson,
    R = 10)
summary(poissonH.ran)

## Probit Model with Random Effects and Random Parameters
data("Unions", package = "pglm")
Unions$lwage <- log(Unions$wage)
union.ran <- Rchoice(union ~ age + exper + rural + lwage,
    data = Unions[1:2000, ],
    family = binomial("probit"),
    ranp = c(constant = "n", lwage = "t"),
    R = 10,
    panel = TRUE,
    index = "id")
```
rFormula

Model formula for Rchoice models

Description

Two kinds of variables are used in models with individual heterogeneity: the typical variables that enter in the latent process and those variables that enter in the random parameter (Hierarchical Model). `rFormula` deals with this type of models using suitable methods to extract the elements of the model.

Usage

```r
rFormula(object)
```

`is.rFormula(object)`

```r
## S3 method for class 'rFormula'
model.frame(formula, data, ..., lhs = NULL, rhs = NULL)
```

```r
## S3 method for class 'rFormula'
model.matrix(object, data, rhs = NULL, ...)
```

Arguments

- **object**
 - a formula form the `rFormula` function, for the `model.matrix` method, a `rFormula` object.
- **formula**
 - a `rFormula` object.
- **data**
 - a `data.frame`.
- **...**
 - further arguments.
vcov.Rchoice vcov method for Rchoice objects

Description

The \texttt{vcov} method for \texttt{Rchoice} objects extracts the covariance matrix of the coefficients or the random parameters. It also allows to get the standard errors for the variance-covariance matrix of the random parameters.

Usage

S3 method for class 'Rchoice'
vcov(
 object,
 what = c("coefficient", "ranp"),
 type = c("cov", "cor", "sd"),
 se = FALSE,
 digits = max(3,getOption("digits") - 2),
 ...
)
cov.Rchoice(x)
cor.Rchoice(x)
se.cov.Rchoice(x, sd = FALSE, digits = max(3,getOption("digits") - 2))

Arguments

\begin{itemize}
 \item \texttt{object} a fitted model of class \texttt{Rchoice},
 \item \texttt{what} indicates which covariance matrix has to be extracted. The default is \texttt{coefficient}, in this case the \texttt{vcov} behaves as usual. If \texttt{what = "ranp"} the covariance matrix of the random parameters is returned as default,
 \item \texttt{type} if the model is estimated with random parameters, then this argument indicates what matrix should be returned. If \texttt{type = "cov"}, then the covariance matrix of the random parameters is returned; if \texttt{type = "cor"} then the correlation matrix of the random parameters is returned; if \texttt{type = "sd"} then the standard deviation of the random parameters is returned,
 \item \texttt{se} if TRUE \texttt{type = "cov"} then the standard error of the covariance matrix of the random parameters is returned; if TRUE \texttt{type = "sd"} the standard error of the standard deviation of the random parameter is returned. This argument if valid only if the model is estimated using correlated random parameters,
 \item \texttt{digits} number of digits,
\end{itemize}
... further arguments
x a fitted model of class Rchoice,
 sd if TRUE, then the standard deviation of the random parameters are returned.

Details
This new interface replaces the cor.Rchoice, cov.Rchoice and se.cov.Rchoice functions which are deprecated.

See Also
Rchoice for the estimation of discrete choice models with random parameters.

Workmroz Labor Force Participation

Description
Data extracted by Mroz(1987) from the 197 Panel Study of Income Dynamics. The sample consists of 753 white, married women between the ages of 30 and 60.

Usage
data(Workmroz)

Format
A data frame with 753 observations on the following 9 variables.

1fp 1 if wife is in the paid labor force; else 0
k5 Number of children ages 5 and younger
k618 Number of children ages 6 to 18
age Wife's age in years
wc 1 if wife attended college; else 0
hc 1 if husband attended college; else 0
lwg Log of wife's estimated wage rate
inc Family income excluding wife's wage
linc Log of Family income excluding wife's wage

Source

Examples
data(Workmroz)
Index

+Topic **datasets**
 - Articles, 3
 - Attitudes, 4
 - Health, 8
 - Workmroz, 19

AIC.Rchoice, 2
Articles, 3
Attitudes, 4

BIC.Rchoice (AIC.Rchoice), 2
bread, 5
bread.Rchoice, 5

coeRchoice (Rchoice), 12
Cor.Rchoice (vcov.Rchoice), 18
cov.Rchoice (vcov.Rchoice), 18

df.residual.Rchoice (Rchoice), 12

effect.Rchoice, 6, 15
estfun, 7
estfun.Rchoice, 7

fitted.Rchoice (Rchoice), 12
Formula, 18

getsSummary.Rchoice, 8
Health, 8

is.rFormula (rFormula), 17

logLik.Rchoice (Rchoice), 12

maxLik, 14
model.frame.rFormula (rFormula), 17
model.matrix.Rchoice (Rchoice), 12
model.matrix.rFormula (rFormula), 17

nObs.Rchoice (Rchoice), 12

ordinal (Rchoice), 12
plot.Rchoice, 10, 15
print.Rchoice (Rchoice), 12
print.summary.Rchoice (Rchoice), 12

Rchoice, 2, 6, 11, 12, 19
residuals.Rchoice (Rchoice), 12
rFormula, 13, 17

se.cov.Rchoice (vcov.Rchoice), 18
summary.Rchoice (Rchoice), 12

terms.Rchoice (Rchoice), 12
update.Rchoice (Rchoice), 12

vcov.Rchoice, 18

Workmroz, 19

20