Package ‘RcmdrPlugin.FuzzyClust’

September 4, 2016

Type Package

Title R Commander Plug-in for Fuzzy Clustering Methods (Fuzzy C-Means and Gustafson Kessel)

Version 1.1

Date 2016-09-03

Author Achmad Fauzi Bagus F <uzi.fauz@gmail.com>, Setia Pramana

Maintainer Achmad Fauzi Bagus F <uzi.fauz@gmail.com>

Description The R Commander Plug-in for Fuzzy Clustering Methods. This Plug-in provide Graphical User Interface of 2 methods of Fuzzy Clustering (Fuzzy C-Means/FCM and Gustafson Kessel-Babuska). For validation of clustering, this plug-in use Xie Beni Index, MPC index, and CE index. For statistical test (test of significant differences of grouping/clustering), this plug-in use MANOVA analysis with Pillai trace statistics. For stabilize the result, this package provide soft voting cluster ensemble function. Visualization of result are provided via plugin that must be load in Rcmdr file.

Depends R (>= 3.2.5)

Imports Rcmdr, doParallel, tcltk2, foreach, clue, ggplot2, MASS, reshape2, tkrplot, iterators, parallel

Suggests knitr, rmarkdown

License GPL-2

LazyData TRUE

RoxygenNote 5.0.1

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2016-09-04 09:36:21

R topics documented:

biploting ... 2
Biploting Cluster Result

Description

Biploting Cluster Result

Usage

bploting(cluster)

Arguments

cluster a cluster object

Details

Make Visualization Biplot from cluster analysis result

Value

bplot a biplot

Examples

library(RcmdrPlugin.FuzzyClust)
fuzzy.CM(X=iris[,1:4],K = 3,m = 2,RandomNumber = 1234)->cl
bploting(cl)
checkManova

checkManova

MANOVA analysis of cluster

Description

MANOVA analysis based on Pillai Statistic

Usage

`checkManova(clust)`

Arguments

- **clust**: cluster object

Value

statistic of MANOVA

Examples

```r
library(RcmdrPlugin.FuzzyClust)
fuzzy.CM(X=iris[,1:4],K = 3,m = 2,RandomNumber = 1234)->cl
checkManova(cl)
```

data.gen1

Data Generate 1

Description

A dataset containing generated data for simulation

Usage

`data.gen1`

Format

A data frame with 120 rows and 4 variables:

- **V1**: Variable 1
- **V2**: Variable 2
- **V3**: Variable 3
- **LABEL**: Labeling factor

Source

generated randomly
data.gen2

Data Generate 2

Description
A dataset containing generated data for simulation

Usage
data.gen2

Format
A data frame with 40 rows and 4 variables:

v1 Variable 1
V2 Variable 2
V3 Variable 3
LABEL Labeling factor

Source
generated multivariate random

data.gen3

Data Generate 3

Description
A dataset containing generated data for simulation

Usage
data.gen3

Format
A data frame with 30 rows and 3 variables:

v1 Variable 1
V2 Variable 2
LABEL Labeling factor

Source
generated randomly
data.gen4

Data Generate 4

Description
A dataset containing generated data for simulation

Usage
data.gen4

Format
A data frame with 120 rows and 3 variables:
- **V1** Variable 1
- **V2** Variable 2
- **LABEL** Labeling factor

Source
generated randomly

EastJava

Data of Education Variables on East Java Indonesia 2014

Description
A dataset containing the scaled data of Education Variables in East Java, Indonesia 2014

Usage
EastJava

Format
A data frame with 38 rows and 12 variables:
- **V1** Proportion of human that illiterate among 100 people, in proportion per 100 people
- **V2** Expected School Years, in years
- **V3** Average Years of Schooling, in years
- **V4** Net Enrollment Rate for Primary School, in proportion per 100 people
- **V5** Net Enrollment Rate for Secondary School, in proportion per 100 people
- **V6** Ratio Student per Teacher on Primary School, in proportion
V7 Ratio Student per School on Primary School, in proportion
V8 Ratio Student per Teacher on Secondary School, in proportion
V9 Ratio Student per School on Secondary School, in proportion
V10 Realization of Goverment Budget on Education. in percent
V11 Drop out rate on Primary School, in proportion per 100 people
V12 Drop out rate on Secondary School, in proportion per 100 people

Source

http://bps.go.id/

fuzzy.CM

Fuzzy C-Means

Description

This function used to perform Fuzzy C-Means of X dataset.

Usage

fuzzy.CM(X, K = 2, m = 2, max.iteration = 100, threshold = 10^-5,
 RandomNumber = 0)

Arguments

x data frame n x p
K specific number of cluster (must be >1)
m fuzzifier / degree of fuzziness
max.iteration maximum iteration to convergence
threshold threshold of convergence
RandomNumber specific seed

Details

This function perform Fuzzy C-Means algorithm by Bezdek (1981). Fuzzy C-Means is one of fuzzy clustering methods to clustering dataset become K cluster. Number of cluster (K) must be greater than 1. To control the overlapping or fuzziness of clustering, parameter m must be specified. Maximum iteration and threshold is specific number for convergencing the cluster. Random Number is number that will be used for seeding to firstly generate fuzzy membership matrix.

Clustering will produce fuzzy membership matrix (U) and fuzzy cluster centroid (V). The greatest value of membership on data point will determine cluster label. Centroid or cluster center can be use to interpret the cluster. Both membership and centroid produced by calculating mathematical distance. Fuzzy C-Means calculate distance with Euclidean norm. So it can be said that cluster will have sperichal shape of geometry.
fuzzy.GK

Value

func.obj objective function that calculated.

- U matrix n x K consist fuzzy membership matrix
- V matrix K x p consist fuzzy centroid
- D matrix n x K consist distance of data to centroid that calculated
- Clust.desc cluster description (dataset with additional column of cluster label)

References

Examples

```r
library(RcmdrPlugin.FuzzyClust)
data(iris)
fuzzy.GK(x=iris[,1:4],k = 3,m = 2,RandomNumber = 1234)->cl
```

Description

This function used to perform Gustafson Kessel Clustering of X dataset.

Usage

```
fuzzy.GK(X, K = 2, m = 1.5, max.iteration = 100, threshold = 10^-5, RandomNumber = 0, rho = rep(1, K), gamma = 0)
```

Arguments

- **X** data frame n x p
- **K** specific number of cluster (must be >1)
- **m** fuzzifier / degree of fuzziness
- **max.iteration** maximum iteration to convergence
- **threshold** threshold of convergence
- **RandomNumber** specific seed
- **rho** cluster volume
- **gamma** tuning parameter of covariance
Details

This function perform Fuzzy C-Means algorithm by Gustafson Kessel (1968) that improved by Babuska et al (2002). Gustafson Kessel (GK) is one of fuzzy clustering methods to clustering dataset become K cluster. Number of cluster (K) must be greater than 1. To control the overlapping or fuzziness of clustering, parameter m must be specified. Maximum iteration and threshold is specific number for convergencing the cluster. Random Number is number that will be used for seeding to firstly generate fuzzy membership matrix.

Clustering will produce fuzzy membership matrix (U) and fuzzy cluster centroid (V). The greatest value of membership on data point will determine cluster label. Centroid or cluster center can be use to interpret the cluster. Both membership and centroid produced by calculating mathematical distance. Fuzzy C-Means calculate distance with Covariance Cluster norm distance. So it can be said that cluster will have both sperichal and elipsodial shape of geometry.

Babuska improve the covariance estimation via tuning covariance cluster with covariance of data. Tuning parameter determine proportion of covariance data and covariance cluster that will be used to estimate new covariance cluster. Beside improving via tuning, Basbuka improve the algorithm with decomposition of covariance so it will become non singular matrix.

Value

func.obj objective function that calculated.

U matrix $n \times K$ consist fuzzy membership matrix

V matrix $K \times p$ consist fuzzy centroid

D matrix $n \times K$ consist distance of data to centroid that calculated

Clust.desc cluster description (dataset with additional column of cluster label)

References

Examples

library(RcmdrPlugin.FuzzyClust)
data(iris)
fuzzy.GK(X=iris[,1:4],K = 3,m = 2,RandomNumber = 1234,gamma=0, max.iteration=20)->cl
Hello function

Description
Hello

Usage
hello()

Managedata

Preparing data for clustering.

Description
This function used to construct data for clustering from dataset with chosen variables.

Usage
managedata(var.choice)

Arguments
var.choice Chosen Variables of Dataset

Details
Don’t use it from user.

Value
data.cluster Dataset with chosen variables

PluginInput

Input Plugin of Fuzzy Clustering on Rcmdr

Description
Graphical User Interface on Rcmdr Plugin. This Plugin provide Interface to select variables of dataset that will be used for Fuzzy Clustering, methods selection, and parameter specification

Never use it before open Rcmdr. Its preferable to use plugin menu on Rcmdr

Usage
pluginInput()
radar.plotting

Radar Ploting Cluster Result

Description
Radar Ploting Cluster Result

Usage
radar.plotting(cluster)

Arguments
cluster a cluster object

Details
Make Visualization Radar Ploting from

Value
radarplot a radarplot

Examples
library(RcmdrPlugin.FuzzyClust)
fuzzy.CM(x=iris[,1:4],K = 3,m = 2,RandomNumber = 1234)->cl
checkManova(cl)

result.GUI

Result GUI

Description
Result GUI

Usage
result.GUI(parent, cluster, valid, manov, method)

Arguments
parent parent window
cluster cluster object
valid validation index object
manov manova object
method method of clustering
soft.vote.ensemble

Details

Not run by users

soft.vote.ensemble
Soft Voting Cluster Ensemble

Description

This function used to perform Soft Voting Cluster Ensemble.

Usage

```r
soft.vote.ensemble(data, seed, method = "FCM", K = 2, m = 2, gamma = 0,
                   rho = rep(1, K), threshold = 10^-5, max.iteration = 100, core)
```

Arguments

- `data`: data frame nxp
- `seed`: number of ensemble
- `method`: fuzzy clustering method that will be used ("FCM" or "GK")
- `K`: specific number of cluster (must be >1)
- `m`: fuzzifier / degree of fuzziness
- `gamma`: parameter of Gustafson Kessel Clustering
- `rho`: parameter of volume clustering in Gustafson Kessel Clustering
- `threshold`: threshold of convergence
- `max.iteration`: maximum iteration to convergence
- `core`: number of core that used for parallelization

Details

Soft vote cluster ensemble used to stabilize the result of cluster analysis. It can be define combine several result of clustering to be one robust result.

The simple method of ensemble is voting method, vote label that resulted and use maximum number of voting as partition. For fuzzy clustering, voting method use membership matrix. This function implemented voting method with sum rule approach. For standarize the label, this function use hungary algorithm for optimal labelization.
value

func.obj objective function that calculated.
U matrix n x K consist fuzzy membership matrix
V matrix K x p consist fuzzy centroid
D matrix n x K consist distance of data to centroid that calculated
Clust.desc cluster description (dataset with additional column of cluster label)
seeding list of random number that used as seeding
Call call argument

References

Examples

#library(RcmdrPlugin.FuzzyClust)
#soft.vote.ensemble(iris[1:50,1:4],seed=2,method="FCM",core=1,max.iteration=20,threshold=10^-3)->Cl

validation.index Validation Index of Fuzzy Clustering

Description

Validation Index of Fuzzy Clustering

Usage

validation.index(cluster)

Arguments

cluster Cluster Result from Fuzzy Clustering

Details

This function provide validation index that calculated from fuzzy clustering result. There are 3 index that calculated, Xie Beni, MPC, and CE index. Both three indexes calculated from fuzzy membership and data point.
Xie Beni index calculated compactness and separation of clustering.
The best cluster result can be decided with minimum value of index.
Value

- XB.index Xie Beni index
- MPC.index Modified Partition Coefficient
- CE.index Classification Entropy

References

Examples

```r
library(RcmdrPlugin.FuzzyClust)
fuzzy.CM(X=iris[,1:4],K = 3,m = 2,RandomNumber = 1234)->cl
validation.index(cl)
```
Index

*Topic datasets
 data.gen1, 3
 data.gen2, 4
 data.gen3, 4
 data.gen4, 5
 EastJava, 5

biploting, 2
checkManova, 3
data.gen1, 3
data.gen2, 4
data.gen3, 4
data.gen4, 5
EastJava, 5
fuzzy.CM, 6
fuzzy.GK, 7
hello, 9
managedata, 9
pluginInput, 9
radar.plotting, 10
result.GUI, 10
soft.vote.ensemble, 11
validation.index, 12