Package ‘RcmdrPlugin.RiskDemo’

October 12, 2022

Type Package
Title R Commander Plug-in for Risk Demonstration
Version 3.0
Date 2021-04-02
Author Arto Luoma
Maintainer Arto Luoma <arto.luoma@wippies.com>
Description
R Commander plug-in to demonstrate various actuarial and financial risks. It includes valuation of bonds and stocks, portfolio optimization, classical ruin theory, demography and epidemic.
Depends R (>= 3.5.0)
Imports stats, Rcmdr, demography, forecast, ftsa, ggplot2, dplyr, scales, zoo, data.table
Suggests rtkplot, rgl
License GPL-2
LazyData no
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-06 11:30:02 UTC

R topics documented:

 RcmdrPlugin.RiskDemo-package .. 2
 bondCurve ... 3
 bondFigure .. 4
 bondPrice .. 5
 computeRuin ... 6
 computeRuinFinite .. 7
 countries.mort ... 8
 covidSmooth ... 9
 dataCovid ... 10
RcmdrPlugin.RiskDemo-package

R Commander Plug-in for Risk Demonstration

Description

R Commander plug-in to demonstrate various actuarial and financial risks. It includes valuation of bonds and stocks, portfolio optimization, classical ruin theory, demography and epidemic.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>RcmdrPlugin.RiskDemo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>3.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2021-04-03</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>
bondCurve

Author(s)
Arto Luoma
Maintainer: Arto Luoma <arto.luoma@wippies.com>

Description
This function draws forward and yields curves, for AAA-rated central government bonds and/or all central government bonds.

Usage
bondCurve(date1, date2 = NULL, yield = TRUE, forward = TRUE, AAA = TRUE, all = TRUE, params)

Arguments
date1 The date for which the curves are drawn
date2 Optional second date for which the curves are drawn
yield Is the yield curve shown (TRUE/FALSE)?
forward Is the forward curve shown (TRUE/FALSE)?
AAA Are the curves drawn for the AAA-rated bonds (TRUE/FALSE)?
all Are the curves drawn for the bonds with all ratings (TRUE/FALSE)?
params The data frame of curve parameters

Value
No value. Only a figure is produced.

Author(s)
Arto Luoma

References
https://bit.ly/2zfs0G8

Examples
data(params)
bondCurve(as.Date("2004-09-06"),params=params)
bondFigure

Bond price as a function of interest rate.

Description

This function plots the bond price as a function of interest rate. It also shows, using dotted lines, the yield to maturity rate corresponding to the face value, and the flat price corresponding to the yield to maturity.

Usage

```
bondFigure(buyDate, matDate, rateCoupon, yieldToMat = NULL, 
            bondPr = NULL, nPay)
```

Arguments

- `buyDate`: the date when the coupon is bought (settlement date)
- `matDate`: maturity date
- `rateCoupon`: coupon rate (in decimals)
- `yieldToMat`: yield to maturity (in decimals)
- `bondPr`: the flat price of the bond
- `nPay`: number of coupon payments per year

Details

either `yieldToMat` or `bondPr` should be given as input.

Value

This function only plots a figure.

Author(s)

Arto Luoma <arto.luoma@wippies.com>

References

See Also

- `bondPrice`
- `solveYield`
Examples

bondFigure("2012-7-31","2018-7-31",rateCoupon=0.0225,yieldToMat=0.0079,nPay=2)
bondFigure("2012-7-31","2018-7-31",rateCoupon=0.0225,bondPr=90,nPay=2)

bondPrice

Computing bond prices

Description
This function computes the bond price, given the yield to maturity.

Usage
bondPrice(buyDate, matDate, rateCoupon, yieldToMat, nPay)

Arguments
buyDate the date at which the bond is bought (settlement date).
matDate maturity date
rateCoupon annual coupon date
yieldToMat yield to maturity
nPay number of coupon payments per day

Details
All the rates are given in decimals.

Value
A list with the following components:
yieldToMaturity yield to maturity
flatPrice flat price
daysSinceLastCoupon days since previous coupon payment
daysInCouponPeriod days in a coupon period
accruedInterest accrued interest since last coupon payment
invoicePrice invoice price (= flat price + accrued interest)

Note
With Excel functions PRICE, DATE, COUPDAYBS and COUPDAYS you can do the same.
computeRuin

Description
This function uses classical ruin theory to compute either ruin probability, safety loading or initial capital, given two of them. The time horizon is infinite. Gamma distribution is used to model claim sizes.

Usage
computeRuin(U0 = NULL, theta = NULL, eps = NULL, alpha, beta)

Arguments
U0 initial capital
theta safety loading
eps ruin probability
alpha shape parameter of gamma distribution
beta rate parameter of gamma distribution

Value
The value is a list with the following components:
LundbergExp Lundberg’s exponent R
initialCapital initial capital
safetyLoading safety loading
ruinProb ruin probability

Examples
bondPrice("2012-7-31","2018-7-31",0.0225,0.0079,2)
bondPrice("2012-7-31","2018-7-31",0.0225,0.0079,4)
bondPrice("2012-7-31","2030-5-15",0.0625,0.02117,2)
computeRuinFinite

Author(s)

Arto Luoma <arto.luoma@wippies.com>

References

See Also

computeRuinFinite, solveLund

Examples

computeRuin(U0=1000,theta=0.01,alpha=1,beta=0.1)
computeRuin(eps=0.005,theta=0.01,alpha=1,beta=0.1)
computeRuin(U0=5399.24,eps=0.005,alpha=1,beta=0.1)

computeRuinFinite

Ruin probability computation with finite time horizon

Description

This function uses classical ruin theory to compute either ruin probability, safety loading or initial capital, given two of them. The time horizon is finite. Gamma distribution is used to model claim sizes.

Usage

computeRuinFinite(T0, U0 = NULL, theta = NULL, eps = NULL, lambda, alpha, beta)

Arguments

- **T0**: time horizon (in years)
- **U0**: initial capital
- **theta**: safety loading
- **eps**: ruin probability
- **lambda**: claim intensity (mean number of claims per year)
- **alpha**: shape parameter of gamma distribution
- **beta**: rate parameter of gamma distribution
Value

The value is a list with the following components:

- LundbergExp: Lundberg’s exponent R
- initialCapital: initial capital
- safetyLoading: safety loading
- ruinProb: ruin probability

Author(s)

Arto Luoma <arto.luoma@wippies.com>

See Also

computeRuin, solveLund

Examples

computeRuinFinite(T0=100,U0=1000,theta=0.01,lambda=100,alpha=1,beta=0.1)
computeRuinFinite(T0=1,eps=0.005,theta=0.001,lambda=100,alpha=1,beta=0.1)
computeRuinFinite(T0=500,U0=5347,eps=0.005,lambda=100,alpha=1,beta=0.1)

Mortality data

Description

Mortality data for 10 countries (period death rates and exposures) retrieved from Human Mortality Database. The data are rounded to three significant digits and include the Nordic countries, China, U.S., Russia, Japan and Germany.

Usage

data("countries.mort")

Format

List of objects of class demogdata.

Source

Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data downloaded March 22, 2021).

Examples

data(countries.mort)
plot(countries.mort[[1]])
covidSmooth

Kalman smoothing of the covid model

Description

This function does Kalman smoothing for the simple model that is used to predict new COVID-19 cases.

Usage

covidSmooth(par, y)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>par</td>
<td>Logarithms of the variance parameters of drift, seasonal component, and error term</td>
</tr>
<tr>
<td>y</td>
<td>Univariate numeric time series of new COVID-19 cases</td>
</tr>
</tbody>
</table>

Details

See loglikCovid.

Value

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xif</td>
<td>Matrix of filtered values, where the state vectors are given as rows</td>
</tr>
<tr>
<td>Xis</td>
<td>Matrix of smoothed values, where the state vectors are given as rows</td>
</tr>
<tr>
<td>Pmat</td>
<td>Array of state uncertainty matrices, evaluated at time (t-1). The first array index is for time.</td>
</tr>
<tr>
<td>Pfmat</td>
<td>Array of state uncertainty matrices, evaluated at time (t). The first array index is for time.</td>
</tr>
<tr>
<td>Psmat</td>
<td>Array of state uncertainty matrices, evaluated at time (n), where (n) is the number of observations. The first array index is for time.</td>
</tr>
</tbody>
</table>

Author(s)

Arto Luoma

See Also

loglikCovid
Examples

```r
# Preparing a time series
library(zoo)
data(dataCovidFin)
timeindex <- dataCovidFin[dataCovidFin$Alue=="Kaikki Alueet","Aika"]
series <- dataCovidFin[dataCovidFin$Alue=="Kaikki Alueet","val"]
series <- window(zoo(series,order.by=timeindex),start="2020-03-01",
end="2021-03-01")

# Fitting a state space model and smoothing the components
p0 <- c(-9,-7,-3.3)
fit <- nlm(loglikCovid,p=p0,y=series)
out <- covidSmooth(fit$estimate,y=series)

# Plotting the filtered and smoothed components
smoothed <- zoo(out$Xis[,1:3],order.by=time(series))
filtered <- zoo(out$Xif[,1:3],order.by=time(series))
colnames(smoothed) <- colnames(filtered) <- c("Level","Drift","Seasonal")
plot(filtered,xlab="Time",main="Filtered components of the time series")
plot(smoothed,xlab="Time",main="Smoothed components of the time series")

# Plotting the original time series, and the filtered and smoothed local level
# series after transforming them to original scale
plot(series,xlab="Time",ylab="Time series")
lines(exp(filtered[,1])-2,col=3)
lines(exp(smoothed[,1])-2,col=2)
legend("topleft",c("original","filtered","smoothed"),col=c(1,3,2),lty=1)
```

dataCovid

COVID-19 statistics

Description

This data set consists of several statistics about the COVID-19 pandemic in 45 countries.

Usage

```r
data("dataCovid")
```

Format

A data frame with 18400 observations on the following 27 variables.

- `location` a character vector
- `date` a Date
- `new_cases` a numeric vector
- `new_cases_per_million` a numeric vector
- `new_cases_smoothed_per_million` a numeric vector
- `new_cases_smoothed` a numeric vector
dataCovid

new_deaths_per_million a numeric vector
new_deaths a numeric vector
new_deaths_smoothed_per_million a numeric vector
new_deaths_smoothed a numeric vector
total_deaths_per_million a numeric vector
total_deaths a numeric vector
total_cases a numeric vector
total_cases_per_million a numeric vector
hosp_patients a numeric vector
hosp_patients_per_million a numeric vector
icu_patients_per_million a numeric vector
icu_patients a numeric vector
reproduction_rate a numeric vector
new_tests a numeric vector
new_tests_per_thousand a numeric vector
tests_per_case a numeric vector
positive_rate a numeric vector
new_tests_smoothed a numeric vector
new_tests_smoothed_per_thousand a numeric vector
total_tests a numeric vector
total_tests_per_thousand a numeric vector

Details

This is a subset of the complete data set available online, downloaded on March 31, 2021.

Source

https://covid.ourworldindata.org/data/owid-covid-data.csv

Examples

library(zoo)
data(dataCovid)
casesFin <- subset(dataCovid, subset=location=="Finland", select=c(date,new_cases))
plot(zoo(casesFin$new_cases,order.by=casesFin$date),ylab="New COVID-19 cases in Finland", xlab="")
dataCovidFin

Confirmed COVID-19 cases in Finland

Description

This data set provides the confirmed COVID-19 cases in 21 Finnish hospital districts, in addition to the total number.

Usage

data("dataCovidFin")

Format

A data frame with 16082 observations on the following 3 variables.

- Aika: Date
- Alue: character vector: hospital district
- val: numeric vector: number of new confirmed cases

Details

The data were downloaded on March 31, 2021, via THL's open data API.

Source

https://bit.ly/2PO1DnS

References

Examples

library(zoo)
data(dataCovidFin)
casesFin <- subset(dataCovidFin, subset = Alue=="Kaikki Alueet")
plot(zoo(casesFin$val,order.by=casesFin$Aika),ylab="New COVID-19 cases in Finland",xlab="")
drawBars

Plotting epidemic statistics

Description

This function plots several epidemic statistics for selected countries.

Usage

```r
drawBars(data, countries, start = "2020-06-01", end = "last", measure = "new_cases", atop = TRUE, perMillion = FALSE, drawMean = TRUE, bars = TRUE)
```

Arguments

- `data`: data frame similar to (or including the same columns as) `dataCovid`
- `countries`: vector of character strings indicating the countries for which the selected statistic is plotted
- `start`: beginning date of the time window for which the statistic is plotted
- `end`: ending date of the time window for which the statistic is plotted
- `measure`: statistic to be plotted
- `atop`: logical indicating if the bars of different countries are plotted on top of one another
- `perMillion`: logical indicating if the statistic is proportioned to a population of million
- `drawMean`: logical indicating if a smoothed curve is drawn
- `bars`: logical indicating if bars are plotted

Value

No value.

Author(s)

Arto Luoma <arto.luoma@wippies.com>

See Also

`drawBarsFin`, `dataCovid`

Examples

```r
data(dataCovid)
drawBars(data=dataCovid, countries=c("Finland","France"), start='2020-6-1', measure='new_cases', perMillion=TRUE)
```
drawBarsFin

Plotting epidemic statistics with Finnish data

Description
This function plots the new cases or total cases of an epidemic for selected regions in Finland.

Usage
drawBarsFin(data, pop, regions, start = "2020-06-01", end = "last", measure = "new_cases", atop = TRUE, perMillion = FALSE, drawMean = TRUE, bars = TRUE)

Arguments
- data: data frame including columns Aika (character string indicating the date), Alue (character string indicating the region) and val (numeric indicating the number of new cases)
- pop: data frame including columns Alue (character string indicating the region) and val (integer indicating the population)
- regions: vector of characters strings indicating the regions for which the selected statistic is plotted
- start: beginning date of the time window for which the curve is plotted
- end: ending date of the time window for which the curve is plotted
- measure: statistic to be plotted
- atop: logical indicating if the bars of different regions are plotted on top of one another
- perMillion: logical indicating if the statistic is proportioned to a population of million
- drawMean: logical indicating if a smoothed curve (rolling mean of 7 observations) is plotted
- bars: logical indicating if bars are plotted

Value
No value.

Author(s)
Arto Luoma <arto.luoma@wippies.com>

See Also
drawBars, dataCovidFin

Examples
data(dataCovidFin)
data(popRegionsFin)
drawBarsFin(dataCovidFin, popRegionsFin, regions=popRegionsFin$Alue[1:7])
drawFigure

Efficient frontier and return distribution figures

Description

Plots the efficient frontiers of risky investments and all investments. The optimum points corresponding to the risk aversion coefficient are indicated by dots. Further, the function plots a predictive return distribution figure.

Usage

drawFigure(symbol, yield, vol, beta, r = 1,
 total = 1, indexVol = 20, nStocks = 7, balanceInt = 12, A = 10,
 riskfree = FALSE, bor = FALSE)

Arguments

- **symbol**: character vector of the symbols of the risky investments
- **yield**: vector of yields (%)
- **vol**: vector of volatilities (%)
- **beta**: vector of betas (%)
- **r**: risk-free interest rate (%)
- **total**: total investment (for example in euros)
- **indexVol**: volatility of market portfolio (%)
- **nStocks**: number of risky investments in the portfolio
- **balanceInt**: balancing interval of the portfolio in months
- **A**: risk aversion coefficient (see details)
- **riskfree**: is risk-free investment included in the portfolio (logical)
- **bor**: is borrowing (negative risk-free investment) allowed (logical)

Details

The function uses the single-index model and Markovitz portfolio optimization model to find the optimum risky portfolio. The returns are assumed to be log-normally distributed. The maximized function is \(\mu - 0.5 A \sigma \) where \(\mu \) is expected return, \(A \) is risk aversion coefficient, and \(\sigma \) is return variance.

Value

- **portfolio**: allocation of the total investment (in euros)
- **returnExpectation**: expected portfolio return
- **returnDeviation**: standard deviation of the portfolio
Author(s)
Arto Luoma <arto.luoma@wippies.com>

References

See Also
portfOptim

Examples
```
data(stockData, package="RcmdrPlugin.RiskDemo")
with(stockData,drawFigure(symbol=rownames(stockData),yield=divYield,
vol=vol,beta=beta,r=1,total=100,indexVol=10,
nStocks=5,balanceInt=12,A=10,riskfree=TRUE,bor=FALSE))
```

drawIncidence Plotting incidence curves of an epidemic

Description
This function plots incidence curves of an epidemic for selected countries. The incidences are new cases per 100 000 inhabitants within one or two weeks.

Usage
drawIncidence(data, countries, start = "2020-06-01", end = "last", weeks = 2, log = TRUE)

Arguments
data data frame including columns location (character string indicating the country), date (character string) and new_cases_per_million (numeric)
countries vector of characters srings indicating the countries for which the curves are plotted
start beginning date of the time window for which the curve is plotted
end ending date of the time window for which the curve is plotted
weeks Integer telling how many weeks’ observations are used to calculate the incidence. Usually 1 or 2.
log logical indicating if a log scale is used in the plot

Value
No value
drawIncidenceFin

Plotting incidence curves of an epidemic with Finnish data

Description

This function plots incidence curves of an epidemic for selected regions of Finland. The incidences are new cases per 100 000 inhabitants within one or two weeks.

Usage

```r
drawIncidenceFin(data, pop, regions, start = "2020-06-01", end = "last", weeks = 2, includeAllRegions = TRUE, log = TRUE)
```

Arguments

- `data` (data frame including columns `Aika` (character string indicating the date), `Alue` (character string indicating the region) and `val` (numeric indicating the number of new cases))
- `pop` (data frame including columns `Alue` (character string indicating the region) and `val` (integer indicating the population))
- `regions` (vector of characters strings indicating the regions for which the curves are plotted)
- `start` (beginning date of the time window for which the curve is plotted)
- `end` (ending date of the time window for which the curve is plotted)
- `weeks` (Integer telling how many weeks’ observations are used to calculate the incidence. Usually 1 or 2.)
- `includeAllRegions` (logical indicating if a curve for total incidence is included)
- `log` (logical indicating if a log scale is used in the plot)

Value

No value
drawPositiveRate

Author(s)
Arto Luoma <arto.luoma@wippies.com>

See Also
drawIncidence, dataCovidFin

Examples
data(dataCovidFin)
data(popRegionsFin)
drawIncidenceFin(data = dataCovidFin, pop = popRegionsFin,
regions = popRegionsFin$Alue[1:5], start = "2020-06-01", end="last", weeks=2,
includeAllRegions = TRUE)

Description
This function plots a time series of either the positive rate of COVID-19 tests or the number of tests per case.

Usage
drawPositiveRate(data, countries, start = "2020-06-01", end = "last",
measure = "positive_rate", curve = TRUE, bars = FALSE, log = FALSE)

Arguments
data data frame including columns location (character string indicating the country), date (character string) and tests_per_case, positive_rate (numeric)
countries vector of characters strings indicating the countries for which the selected statistic is plotted
start beginning date of the time window for which the time series are plotted
end ending date of the time window for which the time series are plotted
measure statistic for which the time series are plotted
curve logical indicating if smoothed curves are drawn
bars logical indicating if bars are plotted
log logical indicating if a log scale is used in the plot

Value
No value.
drawRuin

Author(s)
Arto Luoma <arto.luoma@wippies.com>

See Also
dataCovid, drawTests

Examples
data(dataCovid)
drawPositiveRate(dataCovid,countries=c("Finland","France"))

drawRuin
Plotting simulations of a surplus process

Description

This function plots simulation paths of a surplus process. The claims are assumed to arrive according to a Poisson process and the claim sizes are assumed to be gamma distributed.

Usage

drawRuin(nsim = 10, Tup = 10, U0 = 1000, theta = 0.01,
lambda = 100, alpha = 1, beta = 0.1)

Arguments

- **nsim**: number of simulations
- **Tup**: maximum value in the time axis
- **U0**: initial capital
- **theta**: risk loading
- **lambda**: intensity of claim process (mean number of claims per year)
- **alpha**: shape parameter of gamma distribution
- **beta**: rate parameter of gamma distribution

Value

No value; only a figure is plotted.

Author(s)
Arto Luoma <arto.luoma@wippies.com>

References

See Also

computeRuinFinite.

Examples

computeRuinFinite(T0=10,U0=1000,eps=0.05,lambda=100,alpha=1,beta=0.1)
drawRuin(nsim=10,Tup=10,U0=1000,theta=0.0125,lambda=100,alpha=1,beta=0.1)

drawTests

Plotting time series related to COVID-19 testing

Description

This function plots time series of new and total COVID-19 tests, possibly in proportion to population.

Usage

drawTests(data, countries, start = "2020-06-01", end = "last", measure = "new_tests", atop = TRUE, perThousand = FALSE, drawMean = TRUE, bars = TRUE, log = FALSE)

Arguments

data data frame similar to (or including the same columns as) dataCovid
countries vector of characters strings indicating the countries for which the time series are plotted
start beginning date of the time window for which the time series are plotted
end ending date of the time window for which the time series are plotted
measure statistic for which the time series are plotted
atop logical indicating if the bars of different countries are plotted on top of one another
perThousand logical indicating if the statistic is proportioned to a population of thousand
drawMean logical indicating if a smoothed curve is drawn
bars logical indicating if bars are plotted
log logical indicating if a log scale is used in the plot

Value

No value.

Author(s)

Arto Luoma <arto.luoma@wippies.com>
See Also
dataCovid, drawPositiveRate

Examples
data(dataCovid)
drawTests(dataCovid, countries=c("Finland","France"), perThousand=TRUE)

\begin{verbatim}
fin
\end{verbatim}

\textit{Mortality data for Finland}

Description

Mortality data for Finland Series: female male total Years: 1878 - 2015 Ages: 0 - 110

Usage

\begin{verbatim}
data("fin")
\end{verbatim}

Format

object of class demogdata

Details

This is part of the countries.mort data (countries.mort[[11]]).

Source

Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data downloaded May 3, 2017).

Examples

\begin{verbatim}
data(fin)
print(fin)
plot(fin)
\end{verbatim}
Description

Finnish mortality forecast 50 years ahead (2016-2065) for 0 - 100 years old. The forecast is based on an estimated Lee-Carter model. The \(k_t \) coefficients were forecast using a random walk with drift. Fitted rates were used as the starting value.

Usage

data("fin.fcast")

Format

An object of class "fmforecast"; for details, see documentation of package "demography".

Details

The forecast was produced using function "forecast.lca" of package "demography".

Examples

data(fin.fcast)
print(fin.fcast)
plot(fin.fcast)

Description

Lee-Carter model fit obtained by function "lca" of package "demography". The fit is based on Finnish mortality data for ages from 0 to 100 and years from 1950 to 2015.

Usage

data("fin.lca")

Format

object of class "lca"

Details

Both sexes were included in the input mortality data.
Description
This function computes -2 times the log-likelihood of the simple model that is used to predict new COVID-19 cases and to estimate the effective reproduction number.

Usage
loglikCovid(y, par, it = TRUE)

Arguments
y Univariate numeric time series of new COVID-19 cases
par Logarithms of the variance parameters of drift, seasonal component, and error term
it A logical value indicating if only the log-likelihood is returned.

Details
Some multiplicative and additive constants are omitted when the negative log-likelihood is computed. Before computing the log-likelihood, the transformation $y = \log(x + a)$, where $a = 2$, is applied to the time series. The model is a simple local linear model with local level, drift and seasonal component. The variance parameters of the level and seasonal component are estimated while the variance of the level component is computed as $\max(\exp(x[i][1]) - a, 0.1)/\exp(x[i][1])^2$, where $x[i][1]$ is the current estimate of the level. This is based on the assumption that the number of new cases is approximately Poisson distributed, so that the variance equals the level. The max operation is taken in order to prevent the expression from being negative. In order to facilitate estimation, a penalty term is added which corresponds to a prior of $N(-9,1)$ for the logarithm of the drift variance.

Value
loglik -2 times the penalized log likelihood apart from some additive constants
ll Vector of the increments of the log-likelihood corresponding to individual observations
Xi Matrix of one-step predictions of the state vector. The vectors at different time points are given as rows.
Xif Matrix of filtered values, where the state vectors are given as rows
Pfmat Array of state uncertainty matrices, evaluated at time t. The first array index is for time.
Q Covariance matrix of the error vector of the state equation
Author(s)
Arto Luoma <arto.luoma@wippies.com>

References

See Also
covidSmooth

Examples
#See examples for covidSmooth.

<table>
<thead>
<tr>
<th>params</th>
<th>Yield curve parameter data</th>
</tr>
</thead>
</table>

Description
Yield curve parameters from the European Central Bank (ECB), downloaded on March 24, 2021

Usage
data("params")

Format
A data frame with 4229 observations on the following 13 variables.
date a Date
b0 a numeric vector
b1 a numeric vector
b2 a numeric vector
b3 a numeric vector
t1 a numeric vector
t2 a numeric vector
c0 a numeric vector
c1 a numeric vector
c2 a numeric vector
c3 a numeric vector
d1 a numeric vector
d2 a numeric vector
Details

The parameters b0 to b3 are the beta-parameters, and t1 and t2 the tau-parameters for AAA-rated government bonds. The parameters c0 to c3 are the beta-parameters, and d1 and d2 the tau-parameters for all government bonds.

Source

https://bit.ly/2zfs0G8

Examples

data(params)
bondCurve(as.Date("2004-09-06"), params=params)

plotForecast Forecasting new covid cases

Description

This function forecasts the numbers of new covid cases using a simple linear state space model.

Usage

plotForecast(data, region, start = NULL, end = NULL, np = 30, predInt = 0.95, log = TRUE)

Arguments

data data frame including columns Aika (character string indicating the date), Alue (character string indicating the region) and val (numeric indicating the number of new cases)
region characters string indicating the region for which the forecast is made
start beginning date of the observations used in the estimation of the forecasting model
end ending date of the observations used in the estimation of the forecasting model
np integer indicating the forecasting horizon in days
predInt decimal indicating the probability of the forecasting interval
log logical indicating if a log scale is used in the plot

Value

No value.

Author(s)

Arto Luoma <arto.luoma@wippies.com>
See Also

plotR, dataCovidFin

Examples

data(dataCovidFin)
plotForecast(data=dataCovidFin, region='All regions', start="2020-09-01")

plotR

Plotting the effective reproduction number (R)

Description

This function plots a time series of the effective reproduction number R and its confidence interval.

Usage

plotR(data, region, start = NULL, end = NULL, confInt = 0.95)

Arguments

data data frame including columns Aika (character string indicating the date), Alue (character string indicating the region) and val (numeric indicating the number of new cases)
region characters string indicating the region for which the R series is computed
start beginning date of the time window for which the R is computed
end ending date of the time window for which the R is computed
confInt decimal between 0 and 1, indicating the level of the confidence interval of R

Value

No value

Author(s)

Arto Luoma <arto.luoma@wippies.com>

See Also

plotForecast, dataCovidFin

Examples

data(dataCovidFin)
plotR(data=dataCovidFin, region='All regions')
Description

Population forecasting using mortality forecast and simple time series forecast for age 0 population

Usage

pop.pred(mort, mort.fcast)

Arguments

mort mortality data of class 'demogdata'
mort.fcast mortality forecast of class 'fmforecast'

Details

ARIMA(0,2,2)-model is used to forecast age 0 population.

Value

population forecast of class 'demogdata'

Author(s)

Arto Luoma <arto.luoma@wippies.com>

Examples

data(fin)
data(fin.fcast)
fin.pcast <- pop.pred(fin, fin.fcast)
plot(fin, plot.type="functions", series="total", transform=FALSE,
datatype="pop", ages=c(0:100), years=c(1990+0:5*10), xlab="Age")
lines(fin.pcast, plot.type="functions", series="total", transform=FALSE,
datatype="pop", ages=c(0:100), years=c(1990+0:5*10), lty=2)
popRegionsFin | Population data on Finnish hospital districts

Description

This data set provides the populations of the 21 hospital districts, in addition to the total Finnish population.

Usage

```r
data("popRegionsFin")
```

Format

A data frame with 22 observations on the following 2 variables.

- **A1ue**: character vector: hospital district
- **val**: numeric vector: population

Details

The data were downloaded on March 31, 2021, via THL’s open data API.

Source

References

Examples

```r
data(popRegionsFin)
print(popRegionsFin)
```
Description

Finds an optimal portfolio for long-term investments and plots a return distribution.

Usage

```
portfOptim(i, symbol, yield, vol, beta,
    indexVol = 0.2, nStocks = 7, total = 1, balanceInt = 1,
    C = 0.05, riskProportion = 1, riskfreeRate = 0, sim = FALSE)
```

Arguments

- `i`: vector of the indices of the included risky investments
- `symbol`: character vector of the symbols of the risky investments
- `yield`: vector of expected yields (in euros)
- `vol`: vector of volatilities
- `beta`: vector of betas
- `indexVol`: portfolio index volatility
- `nStocks`: number of stocks in the portfolio
- `total`: total sum invested (in euros)
- `balanceInt`: balancing interval of the portfolio (in years)
- `C`: expected portfolio return (in euros)
- `riskProportion`: proportion of risky investments
- `riskfreeRate`: risk-free interest rate
- `sim`: is the return distribution simulated and plotted (logical value)?

Details

The arguments `vol`, `beta`, `indexVol`, `riskProportion` and `riskfreeRate` are given in decimals. The portfolio is optimized by minimizing the variance of the portfolio yield for a given expected yield. The returns are assumed to be log-normally distributed. The covariance matrix is computed using the single index model and the properties of the log-normal distribution.

Value

- `portfolio`: numeric vector of allocations to each stock (in euros)
- `returnExpectation`: expected value of the return distribution (in euros)
- `returnDeviation`: standard deviation of the return distribution (in euros)
- `VaR`: 0.5%, 1%, 5%, 10% and 50% percentiles of the return distribution (in euros)
Note

This function is usually called by drawFigure.

Author(s)

Arto Luoma <arto.luoma@wippies.com>

References

See Also

drawFigure

Examples

data(stockData, package="RcmdrPlugin.RiskDemo")
with(stockData,portfOptim(i=1:5,symbol=rownames(stockData),
yield=divYield/100,vol=vol/100,beta=beta/100,total=100, sim=TRUE))

returns Computing expected returns and their covariance matrix

Description

Computing expected returns and their covariance matrix when the returns are lognormal.

Usage

returns(volvec, indexvol, beta)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>volvec</td>
<td>vector of volatilities</td>
</tr>
<tr>
<td>indexvol</td>
<td>volatility of the portfolio index</td>
</tr>
<tr>
<td>beta</td>
<td>vector of betas</td>
</tr>
</tbody>
</table>

Details

The arguments are given in decimals. The single index model is used to compute the covariance matrix of a multivariate normal distribution. The mean vector is assumed to be zero. The properties of the log-normal distribution are then used to compute the mean vector and covariance matrix of the corresponding multivariate log-normal distribution.
This function solves Lund's exponent or adjustment coefficient. The claim sizes are assumed to be gamma distributed.

Usage

solveLund(alpha, beta, theta)

Arguments

alpha shape parameter of gamma distribution
beta rate parameter of gamma distribution
theta safety loading

Value

Lundberg's exponent (or adjustment coefficient)

Author(s)

Arto Luoma <arto.luoma@wippies.com>

References

solveYield

Description

This function computes the yield to maturity, given the (flat) bond price.

Usage

solveYield(buyDate, matDate, rateCoupon, bondPr, nPay)

Arguments

- buyDate: settlement date (the date when the bond is bought)
- matDate: maturity date
- rateCoupon: annual coupon rate
- bondPr: bond price. The flat price without accrued interest.
- nPay: number of payments per year

Details

- All the rates are given in decimals

Value

A list with the following components:

- yieldToMaturity: yield to maturity
- flatPrice: flat price
- daysSinceLastCoupon: days since previous coupon payment
- daysInCouponPeriod: days in a coupon period
- accruedInterest: accrued interest since last coupon payment
- invoicePrice: invoice price (= flat price + accrued interest)

See Also

computeRuin, computeRuinFinite

Examples

solveLund(1,1,0.1)
Note

With Excel function YIELD you can do the same.

Author(s)

Arto Luoma <arto.luoma@wippies.com>

References

See Also

bondPrice

Examples

solveYield("2012-7-31","2018-7-31",0.0225,100,2)

stock.price Computing stock prices

Description

This function computes the intrinsic stock price using the constant growth dividend discount model.

Usage

stock.price(dividend, k = NULL, g = NULL, ROE = NULL, b = NULL,
riskFree = NULL, marketPremium = NULL, beta = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dividend</td>
<td>expected dividend(s) for the next year(s) (in euros), separated by commas</td>
</tr>
<tr>
<td>k</td>
<td>required rate of return</td>
</tr>
<tr>
<td>g</td>
<td>growth rate of dividends</td>
</tr>
<tr>
<td>ROE</td>
<td>return on investment</td>
</tr>
<tr>
<td>b</td>
<td>plowback ratio</td>
</tr>
<tr>
<td>riskFree</td>
<td>riskfree rate</td>
</tr>
<tr>
<td>marketPremium</td>
<td>market risk premium</td>
</tr>
<tr>
<td>beta</td>
<td>beta</td>
</tr>
</tbody>
</table>
Details

All the above rates are given in percentages (except the dividends). One should provide either \(k\) or the following three: riskFree, marketPremium, beta. Further, one should provide either \(g\) or the following two: ROE and \(b\). In the output, \(k\) and \(g\) are given in decimals.

Value

- **dividend**: expected dividend(s) for the next year(s) (in euros)
- **\(k\)**: required rate of return
- **\(g\)**: growth rate of dividends
- **PVGO**: present value of growths opportunities
- **stockPrice**: intrinsic stock price

Author(s)

Arto Luoma <arto.luoma@wippies.com>

References

Examples

```r
stock.price(dividend=c(1),k=12,g=10)
stock.price(dividend=c(1),ROE=50,b=20,riskFree=5,marketPremium=8,
            beta=90)
```

Description

Stock data on large companies in Helsinki Stock Exchange, downloaded from Kauppalehti web page (www.kauppalehti.fi), on May 13, 2017

Usage

```r
data("stockData")
```
stockData

Format

A data frame with 35 observations on the following 7 variables.

names name of the firm
abbrs abbreviation of the firm
quote closing quote
vol volatility (%)
beta beta (%)
div dividend (eur/stock)
divYield dividend yield (%)

Source

www.kauppalehti.fi

Examples

data(stockData)
plot(stockData[, -(1:2)])
Index

* datasets
 fin, 21
 params, 24

* package
 RcmdrPlugin.RiskDemo-package, 2

bondCurve, 3
bondFigure, 4
bondPrice, 4, 5, 33
computeRuin, 6, 8, 32
countries.mort, 8
covidSmooth, 9, 24
dataCovid, 10, 13, 17, 19, 21
dataCovidFin, 12, 14, 18, 26
drawBars, 13, 14
drawBarsFin, 13, 14
drawFigure, 15, 30
drawIncidence, 16, 18
drawIncidenceFin, 17, 17
drawPositiveRate, 18, 21
drawRuin, 19
drawTests, 19, 20
fin, 21
fin.fcast, 22
fin.lca, 22
loglikCovid, 9, 23
params, 24
plotForecast, 25, 26
plotR, 26, 26
pop.pred, 27
popRegionsFin, 28
portfOptim, 16, 29

RcmdrPlugin.RiskDemo
 (RcmdrPlugin.RiskDemo-package), 2

returns, 30
solveLund, 7, 8, 31
solveYield, 4, 6, 32
stock.price, 33
stockData, 34