Package ‘RcppNumerical’

September 6, 2023

Type Package
Title 'Rcpp' Integration for Numerical Computing Libraries
Version 0.6-0
Date 2023-09-06
Maintainer Yixuan Qiu <yixuan.qiu@cos.name>
Description A collection of open source libraries for numerical computing
 (numerical integration, optimization, etc.) and their integration with
 'Rcpp'.
License GPL (>= 2)
Copyright See file COPYRIGHTS
URL https://github.com/yixuan/RcppNumerical
BugReports https://github.com/yixuan/RcppNumerical/issues
Imports Rcpp
LinkingTo Rcpp, RcppEigen
Suggests knitr, rmarkdown, prettydoc, mvtnorm, RcppEigen
VignetteBuilder knitr, rmarkdown
RoxygenNote 7.2.3
NeedsCompilation yes
Author Yixuan Qiu [aut, cre],
 Ralf Stubner [ctb] (Integration on infinite intervals),
 Sreekumar Balan [aut] (Numerical integration library),
 Matt Beall [aut] (Numerical integration library),
 Mark Sauder [aut] (Numerical integration library),
 Naoaki Okazaki [aut] (The libLBFGS library),
 Thomas Hahn [aut] (The Cuba library)
Repository CRAN
Date/Publication 2023-09-06 15:10:03 UTC
Description

`fastLR()` uses the L-BFGS algorithm to efficiently fit logistic regression. It is in fact an application of the C++ function `optim_lbfgs()` provided by `RcppNumerical` to perform L-BFGS optimization.

Usage

```r
fastLR(
  x,  
  y,  
  start = rep(0, ncol(x)),  
  eps_f = 1e-08,  
  eps_g = 1e-05,  
  maxit = 300
)
```

Arguments

- `x`: The model matrix.
- `y`: The response vector.
- `start`: The initial guess of the coefficient vector.
- `eps_f`: Iteration stops if \(|f - f'|/|f| < \epsilon_f \), where \(f \) and \(f' \) are the current and previous value of the objective function (negative log likelihood) respectively.
- `eps_g`: Iteration stops if \(||g|| < \epsilon_g \times \max(1, ||\beta||) \), where \(\beta \) is the current coefficient vector and \(g \) is the gradient.
- `maxit`: Maximum number of iterations.

Value

`fastLR()` returns a list with the following components:

- `coefficients`: Coefficient vector
- `fitted.values`: The fitted probability values
- `linear.predictors`: The fitted values of the linear part, i.e., \(X\hat{\beta} \)
- `loglikelihood`: The maximized log likelihood
- `converged`: Whether the optimization algorithm has converged
fastLR

Author(s)

Yixuan Qiu https://statr.me

See Also

glm.fit()

Examples

```r
set.seed(123)
n = 1000
p = 100
x = matrix(rnorm(n * p), n)
beta = runif(p)
xb = c(x %*% beta)
p = 1 / (1 + exp(-xb))
y = rbinom(n, 1, p)

system.time(res1 <- glm.fit(x, y, family = binomial()))
system.time(res2 <- fastLR(x, y))
max(abs(res1$coefficients - res2$coefficients))
```
Index

* models
 fastLR, 2
* regression
 fastLR, 2

fastLR, 2

glm.fit, 3