Package ‘Rdta’

January 24, 2020

Version 1.0.0
Date 2020-1-7
Title Data Transforming Augmentation for Linear Mixed Models
Author Hyungsuk Tak, Kisung You, Sujit K. Ghosh, and Bingyue Su
Maintainer Hyungsuk Tak <hyungsuk.tak@gmail.com>
Depends R (>= 2.2.0)
Imports MCMCpack(>= 1.4-4), mvtnorm(>= 1.0-11), Rdpack, stats
Description We provide a toolbox to fit univariate and multivariate linear mixed models via data transforming augmentation. Users can also fit these models via typical data augmentation for a comparison. It returns either maximum likelihood estimates of unknown model parameters (hyper-parameters) via an EM algorithm or posterior samples of those parameters via a Markov chain Monte Carlo method. Also see Tak, You, Ghosh, Su, and Kelly (2019+) <doi:10.1080/10618600.2019.1704295> <arXiv:1911.02748>.
License GPL-2
Encoding UTF-8
RdMacros Rdpack
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-01-24 16:50:03 UTC

R topics documented:

lmm ... 2
Rdta ... 5

Index 8
Fitting univariate and multivariate linear mixed models via data transforming augmentation

Description

The function `lmm` fits univariate and multivariate linear mixed models (also called two-level Gaussian hierarchical models) whose first-level hierarchy is about a distribution of observed data and second-level hierarchy is about a prior distribution of random effects.

Usage

```r
lmm(y, v, x = 1, n.burn, n.sample, tol = 1e-10,
   method = "em", dta = TRUE, print.time = FALSE)
```

Arguments

- `y`: Response variable. In a univariate case, it is a vector of length `k` for the observed data. In a multivariate case, it is a `(k by p)` matrix, where `k` is the number of observations and `p` denotes the dimensionality.
- `v`: Known measurement error variance. In a univariate case, it is a vector of length `k`. In a multivariate case, it is a `(p, p, k)` array of known measurement error covariance matrices, i.e., each of the `k` array components is a `(p by p)` covariance matrix.
- `x`: (Optional) Covariate information. If there is one covariate for each object, e.g., weight, it is a vector of length `k` for the weight. If there are two covariates for each object, e.g., weight and height, it is a `(k by 2)` matrix, where each column contains a covariate variable. Default is no covariate (`x = 1`).
- `n.burn`: Number of warming-up iterations for a Markov chain Monte Carlo method. It must be specified for `method = "mcmc"`
- `n.sample`: Number of iterations (size of a posterior sample for each parameter) for a Markov chain Monte Carlo method. It must be specified for `method = "mcmc"`
- `tol`: Tolerance that determines the stopping rule of the EM algorithm. The EM algorithm iterates until the change of log-likelihood function is within the tolerance. Default is `1e-10`.
- `method`: "em" will return maximum likelihood estimates of the unknown hyper-parameters and "mcmc" returns posterior samples of those parameters.
- `dta`: A logical; Data transforming augmentation is used if `dta = TRUE`, and typical data augmentation is used if `dta = FALSE`.
- `print.time`: A logical; TRUE to display two time stamps for initiation and termination, FALSE otherwise.
Details

For each group \(i \), let \(y_i \) be an unbiased estimate of random effect \(\theta_i \), and \(V_i \) be a known measurement error variance. The linear mixed model of interest is specified as follows:

\[
[y_i \mid \theta_i] \sim N(\theta_i, V_i)
\]

\[
[\theta_i \mid \mu_{0i}, A] \sim N(\mu_{0i}, A)
\]

\[\mu_{0i} = x_i' \beta\]

independently for \(i = 1, \ldots, k \), where \(k \) is the number of groups (units) and dimension of each element is appropriately adjusted in a multivariate case.

The function \texttt{lmm} produces maximum likelihood estimates of hyper-parameters, \(A \) and \(\beta \), their update histories of EM iterations, and the number of EM iterations if \texttt{method} is "em".

For a Bayesian implementation, we put a jointly uniform prior distribution on \(A \) and \(\beta \), i.e.,

\[f(A, \beta) \propto 1,\]

which is known to have good frequency properties. This joint prior distribution is improper, but their resulting posterior distribution is proper if \(k \geq m + p + 2 \), where \(k \) is the number of groups, \(m \) is the number of regression coefficients, and \(p \) is the dimension of \(y_i \). We note that an R package \texttt{Rgbp} also fits this model in a univariate case \((p = 1)\) via ADM (approximation for density maximization).

\texttt{lmm} produces the posterior samples through a Gibbs sampler if \texttt{method} is "bayes".

Value

The outcome of \texttt{lmm} is composed of:

\textbf{A} If \texttt{method} is "mcmc". It contains the posterior sample of \(A \).

\textbf{beta} If \texttt{method} is "mcmc". It contains the posterior sample of \(\beta \).

\textbf{A.mle} If \texttt{method} is "em". It contains the maximum likelihood estimate of \(A \).

\textbf{beta.mle} If \texttt{method} is "em". It contains the maximum likelihood estimate of \textit{beta}.

\textbf{A.trace} If \texttt{method} is "em". It contains the update history of \(A \) at each iteration.

\textbf{beta.trace} If \texttt{method} is "em". It contains the update history of \textit{beta} at each iteration.

\textbf{n.iter} If \texttt{method} is "em". It contains the number of EM iterations.

Author(s)

Hyungsuk Tak (maintainer), Kisung You, Sujit K. Ghosh, and Bingyue Su

References

Examples

Univariate linear mixed model

```
# response variable for 10 objects
y <- c(5.42, -1.91, 2.82, -0.14, -1.83, 3.44, 6.18, -1.20, 2.68, 1.12)
# corresponding measurement error standard deviations
se <- c(1.05, 1.15, 1.22, 1.45, 1.30, 1.29, 1.31, 1.10, 1.23, 1.11)
# one covariate information for 10 objects
x <- c(2, 3, 0, 2, 3, 0, 1, 1, 0, 0)
```

```
## Fitting without covariate information
# (DTA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, method = "em", dta = TRUE)
# (DTA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = se^2, n.burn = 1e1, n.sample = 1e1,
          method = "mcmc", dta = TRUE)
# (DA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, method = "em", dta = FALSE)
# (DA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = se^2, n.burn = 1e1, n.sample = 1e1,
          method = "mcmc", dta = FALSE)
```

```
## Fitting with the covariate information
# (DTA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, x = x, method = "em", dta = TRUE)
# (DTA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = se^2, x = x, n.burn = 1e1, n.sample = 1e1,
          method = "mcmc", dta = TRUE)
# (DA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = se^2, x = x, method = "em", dta = FALSE)
# (DA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = se^2, x = x, n.burn = 1e1, n.sample = 1e1,
          method = "mcmc", dta = FALSE)
```

Multivariate linear mixed model

```
# (arbitrary) 10 hospital profiling data (two response variables)
y1 <- c(10.19, 11.53, 16.28, 12.32, 12.84, 11.85, 14.81, 13.24, 14.43, 9.35)
y2 <- c(12.06, 14.97, 11.50, 17.88, 19.21, 14.69, 13.96, 11.07, 12.71, 9.63)
y <- cbind(y1, y2)
```

```
# making measurement error covariance matrices for 10 hospitals
n <- c(24, 34, 38, 42, 49, 50, 79, 84, 96, 102) # number of patients
v0 <- matrix(c(186.87, 120.43, 120.43, 250.60), nrow = 2) # common cov matrix
nrow = 2) # common cov matrix
temp <- sapply(1 : length(n), function(j) { v0 / n[j] })
v <- array(temp, dim = c(2, 2, length(n)))
```

```
# covariate information (severity measure)
severity <- c(0.45, 0.67, 0.46, 0.56, 0.86, 0.24, 0.34, 0.58, 0.35, 0.17)
```

```
## Fitting without covariate information
```
(DTA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = v, method = "em", dta = TRUE)

(DTA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = v, n.burn = 1e1, n.sample = 1e1,
 method = "mcmc", dta = TRUE)

(DA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = v, method = "em", dta = FALSE)

(DA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = v, n.burn = 1e1, n.sample = 1e1,
 method = "mcmc", dta = FALSE)

Fitting with the covariate information
(DTA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = v, x = severity, method = "em", dta = TRUE)

(DTA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = v, x = severity, n.burn = 1e1, n.sample = 1e1,
 method = "mcmc", dta = TRUE)

(DA) maximum likelihood estimates of A and beta via an EM algorithm
res <- lmm(y = y, v = v, x = severity, method = "em", dta = FALSE)

(DA) posterior samples of A and beta via an MCMC method
res <- lmm(y = y, v = v, x = severity, n.burn = 1e1, n.sample = 1e1,
 method = "mcmc", dta = FALSE)

Rdta
Data Transforming Augmentation for Linear Mixed Models

Description

The R package **Rdta** provides a toolbox to fit univariate and multivariate linear mixed models via data transforming augmentation. Users can also fit these models via typical data augmentation for a comparison. It returns either maximum likelihood estimates of unknown model parameters (hyper-parameters) via an EM algorithm or posterior samples of those parameters via a Markov chain Monte Carlo method.
Details
Author(s)

Hyungsuk Tak (maintainer), Kisung You, Sujit K. Ghosh, and Bingyue Su

References

Index

lmm, 2, 7

Rdta, 5
Rdta-package (Rdta), 5