Example session for Weight-based deduplication

Andreas Borg, Murat Sariyar

May 28, 2019

This document shows an example session using the package RecordLinkage. A single data set is deduplicated using an EM algorithm for weight calculation. Conducting linkage of two data sets differs only in the step of generating record pairs.

1 Generating record pairs

The data to be deduplicated is expected to reside in a data frame or matrix, each row containing one record. Example data sets of 500 and 10000 records are included in the package as RLData500 and RLData10000.

```r
> data(RLdata500)
> RLdata500[1:5,]

   fname_c1 fname_c2 lname_c1 lname_c2 by bm bd
1   CARSTEN <NA>    MEIER <NA> 1949  7 22
2    GERD  <NA>    BAUER <NA> 1968  7 27
3  ROBERT  <NA>  HARTMANN <NA> 1930  4 30
4  STEFAN  <NA>   WOLFF <NA> 1957  9  2
5    RALF  <NA>   KRUEGER <NA> 1966  1 13
```

For deduplication, compare.dedup is to be used. In this example, blocking is set to return only record pairs which agree in at least two components of the subdivided date of birth, resulting in 810 pairs. The argument identity preserves the true matching status for later evaluation.

```r
> pairs=compare.dedup(RLdata500,identity=identity.RLdata500,blockfld=list(c(5,6),c(6,7),c(5,7))
> summary(pairs)

Deduplication Data Set

500 records
571 record pairs
49 matches
522 non-matches
0 pairs with unknown status
2 Weight calculation

Weights are calculated by means of an EM algorithm. This step is computationally intensive and might take a while. The histogram shows the resulting weight distribution.

\[
\text{pairs} = \text{emWeights(pairs)}
\]

\[
\text{hist(pairs$Wdata, plot=FALSE)}
\]

$breaks
[12] 40 45

$counts
[1] 352 13 0 0 5 26 42 123 9 0 0
[12] 1

$density
[1] 0.1232924694 0.0045534151 0.0000000000 0.0017513135 0.0091068301
[7] 0.0147110333 0.0430823117 0.0031523643
[10] 0.0000000000 0.0000000000 0.0003502627

$mids
[1] -12.5 -7.5 -2.5 2.5 7.5 12.5 17.5
[8] 22.5 27.5 32.5 37.5 42.5

$xname
[1] "pairs$Wdata"

$equidist
[1] TRUE

attr("class")
[1] "histogram"

3 Classification

For determining thresholds, record pairs within a given range of weights can be printed using \texttt{getPairs} \textsuperscript{1}. In this case, 24 is set as upper and \(-7\) as lower threshold, dividing links, possible links and non-links. The summary shows the resulting contingency table and error measures.

\[
\text{getPairs(pairs,30,20)}
\]

\begin{verbatim}
 id fname_c1 fname_c2 lname_c1 lname_c2 by
23 457 URSULA BIRGIT MUELLER <NA> 1940
\end{verbatim}

\textsuperscript{1}The output of \texttt{getPairs} is shortened in this document.
Deduplication Data Set

500 records
571 record pairs
49 matches
522 non-matches
0 pairs with unknown status

Weight distribution:

   352  13   0   0   5  26  42  123   9   0  0  1
15 links detected
198 possible links detected
358 non-links detected

alpha error: 0.000000
beta error: 0.002786
accuracy: 0.997319

Classification table:

<table>
<thead>
<tr>
<th>classification</th>
<th>true status</th>
<th>N</th>
<th>P</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td></td>
<td>358</td>
<td>163</td>
<td>1</td>
</tr>
<tr>
<td>TRUE</td>
<td></td>
<td>0</td>
<td>35</td>
<td>14</td>
</tr>
</tbody>
</table>

Review of the record pairs denoted as possible links is facilitated by `getPairs`, which can be forced to show only possible links via argument `show`. A list with the ids of linked pairs can be extracted from the output of `getPairs` with argument `single.rows` set to TRUE.

```r
> possibles <- getPairs(pairs, show="possible")
> possibles[1:6,]

 id fname_c1 fname_c2 lname_c1 lname_c2 by
1 17 ALEXANDER <NA> MUELLER <NA> 1974
2 193 CHRISTIAN <NA> MUELLER <NA> 1974
3 61 ANDRE <NA> FISCHER <NA> 1943
4 254 STEFANIE <NA> FISCHER <NA> 1943
5 87 117
6 145 240

> links=getPairs(pairs,show="links", single.rows=TRUE)
> link_ids <- links[, c("id1", "id2")]
> link_ids

 id1 id2
290 290 466
50 50 234
87 87 117
145 145 240
286 286 383
289 289 399
```