Example session for Weight-based deduplication

Andreas Borg, Murat Sariyar
November 8, 2022

This document shows an example session using the package RecordLinkage. A single data set is deduplicated using an EM algorithm for weight calculation. Conducting linkage of two data sets differs only in the step of generating record pairs.

1 Generating record pairs

The data to be deduplicated is expected to reside in a data frame or matrix, each row containing one record. Example data sets of 500 and 10000 records are included in the package as RLData500 and RLData10000.

```
data(RLdata500)
RLdata500[1:5,]
## fname_c1 fname_c2 lname_c1 lname_c2 by bm bd
## 1 CARSTEN <NA> MEIER <NA> 1949 7 22
## 2 GERD <NA> BAUER <NA> 1968 7 27
## 3 ROBERT <NA> HARTMANN <NA> 1930 4 30
## 4 STEFAN <NA> WOLFF <NA> 1957 9 2
## 5 RALF <NA> KRUEGER <NA> 1966 1 13
```

For deduplication, compare.dedup is to be used. In this example, blocking is set to return only record pairs which agree in at least two components of the subdivided date of birth, resulting in 810 pairs. The argument identity preserves the true matching status for later evaluation.

```
pairs=compare.dedup(RLdata500,identity=identity.RLdata500,
blockfld=list(c(5,6),c(6,7),c(5,7)))
summary(pairs)
```

```
## Deduplication Data Set
## 500 records
## 571 record pairs
## 49 matches
## 522 non-matches
## 0 pairs with unknown status
```
2 Weight calculation

Weights are calculated by means of an EM algorithm. This step is computationally intensive and might take a while. The histogram shows the resulting weight distribution.

```r
pairs = emWeights(pairs)
```

```r
hist(pairs$Wdata, plot=FALSE)
```

```
## $breaks
## [1] -15  -10   -5    0   5  10   15   20   25   30   35   40   45
##
## $counts
## [1] 352  13    0    0   5  26  42 123   9    0    0    1
##
## $density
## [1] 0.1232924694 0.0045534151 0.0000000000 0.0000000000
## [5] 0.0017513135 0.0091068301 0.0147110333 0.0430823117
## [9] 0.0031523643 0.0000000000 0.0000000000 0.0003502627
##
## $mids
## [1] -12.5  -7.5  -2.5   2.5   7.5  12.5  17.5  22.5  27.5
## [10] 32.5  37.5  42.5
##
## $xname
## [1] "pairs$Wdata"
##
## $equidist
## [1] TRUE
##
## attr("class", "histogram")
```

3 Classification

For determining thresholds, record pairs within a given range of weights can be printed using `getPairs`. In this case, 24 is set as upper and −7 as lower threshold, dividing links, possible links and non-links. The summary shows the resulting contingency table and error measures.

```r
getPairs(pairs, 30, 20)
```

```
## id  fname_c1  fname_c2  lname_c1  lname_c2  by  bm  bd
## 23  457      URSULA     BIRGIT     MUELLER <NA> 1940 6  15
```

1. The output of `getPairs` is shortened in this document.
pairs = emClassify(pairs, threshold.upper = 24, threshold.lower = -7)
summary(pairs)

Deduplication Data Set
500 records
571 record pairs
49 matches
522 non-matches
0 pairs with unknown status

Weight distribution:
352 13 0 0 5 26 42 123 9 0 0 1
Review of the record pairs denoted as possible links is facilitated by getPairs, which can be forced to show only possible links via argument show. A list with the ids of linked pairs can be extracted from the output of getPairs with argument single.rows set to TRUE.

possibles <- getPairs(pairs, show="possible")
possibles[1:6,]

id fname_c1 lname_c1 by bm bd
1 17 ALEXANDER MUELLER 1974 9 9
2 193 CHRISTIAN MUELLER 1974 8 9
3 61 ANDRE FISCHER 1943 6 25
4 254 STEFANIE FISCHER 1943 11 25
5 286 id1 id2
290 290 466
50 50 234
87 87 117
145 145 240
286 286 383