Package ‘Rediscover’

April 14, 2023

Type Package
Title Identify Mutually Exclusive Mutations
Version 0.3.2
Author Juan A. Ferrer-Bonsoms, Laura Jareno, and Angel Rubio
Maintainer Juan A. Ferrer-Bonsoms <jafhernandez@tecnun.es>
Description An optimized method for identifying mutually exclusive genomic events. Its main contribution is a statistical analysis based on the Poisson-Binomial distribution that takes into account that some samples are more mutated than others. See [Canisius, Sander, John WM Martens, and Lodewyk FA Wessels. (2016) ‘A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence.’ Genome biology 17.1 : 1-17. <doi:10.1186/s13059-016-1114-x>]. The mutations matrices are sparse matrices. The method developed takes advantage of the advantages of this type of matrix to save time and computing resources.
Depends R (>= 4.0), Matrix, PoissonBinomial, ShiftConvolvePoibin, utils, matrixStats
Imports maffools, data.table, parallel, RColorBrewer, methods
Suggests knitr, rmarkdown, RUnit, BiocStyle, BiocGenerics, dplyr, kableExtra, magick, stats, qvalue
License Artistic-2.0
LazyData true
RoxygenNote 7.2.3
Encoding UTF-8
biocViews mutex
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2023-04-14 12:10:06 UTC
AMP_COAD data

Description

A binary matrix, with information about amplifications in Colon Adenocarcinoma, created by applying GDCquery and used as real example in getMutexAB.

Usage

data("AMP_COAD")

Format

The format is:

num [1:1000, 1:391] 0 0 0 0 0 0 0 0 0 0 ...
 - attr(*, "dimnames")=List of 2
 ..$: chr [1:1000] "ENSG00000212993.4" "ENSG00000212993.5" "ENSG00000212993.6" "ENSG00000212993.7" ...
 ..$: chr [1:391] "TCGA-CA-6718" "TCGA-D5-6931" "TCGA-AZ-6601" "TCGA-G4-6320" ...

Examples

data(AMP_COAD)
maybe str(AMP_COAD)
A_example

A_example data

Description

A binary matrix of class matrix used as toy example in getPM and getMutex and getMutexAB and getMutexGroup.

Usage

data("A_example")

Format

The format is: num [1:1000, 1:500] 0 0 0 0 1 0 0 0 1 ...

Examples

data(A_example)

A_Matrix

A_Matrix data

Description

A binary dgCMatrix matrix used as toy example in getPM and getMutex and getMutexAB and getMutexGroup

Usage

data("A_Matrix")

Format

The format is:

Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:249838] 5 9 10 11 13 14 18 20 23 24 ...
..@ p : int [1:501] 0 503 1010 1506 1995 2497 2981 3488 4002 4474 ...
..@ Dim : int [1:2] 1000 500
..@ Dimnames:List of 2
... ..$: NULL
... ..$: NULL
..@ x : num [1:249838] 1 1 1 1 1 1 1 1 ...
..@ factors : list()
Examples

```r
data(A_Matrix)
```

<table>
<thead>
<tr>
<th>B_example</th>
<th>B_example data</th>
</tr>
</thead>
</table>

Description

A binary matrix of class `matrix` used as toy example in `getPM` and `getMutex` and `getMutexAB` and `getMutexGroup`.

Usage

```r
data("B_example")
```

Format

The format is:

```r
int [1:1000, 1:500] 0 1 1 0 1 0 0 0 1 1 ...
```

Examples

```r
data(B_example)
```

<table>
<thead>
<tr>
<th>B_Matrix</th>
<th>B_Matrix data</th>
</tr>
</thead>
</table>

Description

A binary `dgCMatrix` matrix used as toy example in `getPM` and `getMutex` and `getMutexAB` and `getMutexGroup`.

Usage

```r
data("B_Matrix")
```
Format

The format is:

Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

..@ i : int [1:249526] 1 2 4 8 9 11 13 15 18 20 ...

..@ p : int [1:501] 0 498 1014 1527 2048 2558 3036 3511 4035 4537 ...

..@ Dim : int [1:2] 1000 500

..@ Dimnames:List of 2

...$: NULL

...$: NULL

..@ x : num [1:249526] 1 1 1 1 1 1 1 1 1 1 ...

..@ factors : list()

Examples

data(B_Matrix)

discoversomaticInteractions

discoversomaticInteractions

discoversomaticInteractions

Description

Function adapted to maftools where given a .maf file, it graphs the somatic interactions between a group of genes, i.e., the combination of gene expression and mutation data to detect mutually exclusive or co-occurring events.

Usage

discoversomaticInteractions(
 maf,
 top = 25,
 genes = NULL,
 pvalue = c(0.05, 0.01),
 getMutexMethod = "ShiftedBinomial",
 getMutexMixed = TRUE,
 returnAll = TRUE,
 geneOrder = NULL,
 fontSize = 0.8,
 showSigSymbols = TRUE,
 showCounts = FALSE,
 countStats = "all",
 countType = "all",
 countsFontSize = 0.8,
 countsFontColor = "black",
)
colPal = "BrBG",
showSum = TRUE,
co1NC = 9,
nShiftSymbols = 5,
sigSymbolsSize = 2,
sigSymbolsFontSize = 0.9,
pvSymbols = c(46, 42),
limitColorBreaks = TRUE
)

Arguments

maf maf object generated by read.maf

check for interactions among top 'n' number of genes. Defaults to top 25. genes

genes List of genes among which interactions should be tested. If not provided, test will be performed between top 25 genes.

pvalue Default c(0.05, 0.01) p-value threshold. You can provide two values for upper and lower threshold.

getMutexMethod Method for the 'getMutex' function (by default "ShiftedBinomial")

get MutexMixed Mixed parameter for the 'getMutex' function (by default TRUE)

returnAll If TRUE returns test statistics for all pair of tested genes. Default FALSE, returns for only genes below pvalue threshold.

geneOrder Plot the results in given order. Default NULL.

fontSize cex for gene names. Default 0.8

showSigSymbols Default TRUE. Highlight significant pairs

showCounts Default FALSE. Include number of events in the plot

countStats Default 'all'. Can be 'all' or 'sig'

countType Default 'all'. Can be 'all', 'cooccur', 'mutexcl'

countsFontSize Default 0.8

countsFontColor Default 'black'

colPal colPalBrewer palettes. Default 'BrBG'. See RColorBrewer::display.brewer.all() for details

showSum show [sum] with gene names in plot, Default TRUE

colNC Number of different colors in the palette, minimum 3, default 9

nShiftSymbols shift if positive shift SigSymbols by n to the left, default 5

size of symbols in the matrix and in legend. Default 2

size of font in legends. Default 0.9

pvSymbols vector of pch numbers for symbols of p-value for upper and lower thresholds c(upper, lower). Default c(46, 42)

limitColorBreaks limit color to extreme values. Default TRUE
getMutex

Details

Internally, this function runs the `getMutex` function. With the `getMutexMethod` parameter, users may select the `method` parameter of the `getMutex` function. For more details, run `?getMutex`.

@return A list of data.tables and it will print a heatmap with the results.

References

Examples

Not run:

An example of how to perform the function, using data from TCGA, Colon Adenocarcinoma in this case.

coad.maf <- GDCquery_Maf("COAD", pipelines = "muse") %>% read.maf
coad.maf <- read.maf(GDCquery_Maf("COAD", pipelines = "muse"))
discoversomaticInteractions(maf = coad.maf, top = 35, pvalue = c(1e-2, 2e-3))

End(Not run)

getMutex

getMutex function

Description

Given a binary matrix and its corresponding probability matrix pij, compute the Poisson Binomial method to estimate mutual exclusive events.

Usage

```r
getMutex(
  A = NULL,
  PM = getPM(A),
  lower.tail = TRUE,
  method = "ShiftedBinomial",
  mixed = TRUE,
  th = 0.05,
  verbose = FALSE,
  parallel = FALSE,
  no_cores = NULL
)
```
Arguments

- **A**
 - The binary matrix

- **PM**
 - The corresponding probability matrix of A. It can be computed using function getPM. By default equal to getPM(A)

- **lower.tail**
 - True if mutually exclusive test. False for co-occurrence. By default is TRUE.

- **method**
 - one of the following: "ShiftedBinomial" (default), "Exact", "Binomial", and "RefinedNormal".

- **mixed**
 - option to compute lower p-values with an exact method. By default TRUE

- **th**
 - upper threshold of p.value to apply the exact method.

- **verbose**
 - The verbosity of the output

- **parallel**
 - If the exact method is executed with a parallel process.

- **no_cores**
 - number of cores. If not stated number of cores of the CPU - 1

Details

we implemented three different approximations of the Poison-Binomial distribution function:

- "ShiftedBinomial" (by default) that correspond to a shifted Binomial with three parameters (Peköz, Shwartz, Christiansen, & Berlowitz, 2010).
- "Exact" that use the exact formula using the ‘PoissonBinomial’ Rpackage based on the work from (Biscarri, Zhao, & Brunner, 2018).
- "Binomial" with two parameters (Cam, 1960).
- "RefinedNormal" that is based on the work from (Volkova, 1996).

If ‘mixed’ option is selected (by default is FALSE), the "Exact" method is computed for p-values lower than a threshold (‘th’ parameter, that by default is 0.05). When the exact method is computed, it is possible to parallelize the process by selecting the option 'parallel' (by default FALSE) and setting the number of cores (‘no_cores’ parameter).

Value

A symmetric matrix with the p-values of the corresponding test.

Examples

```r
#This first example is a basic example of how to perform getMutex.

data("A_example")
PMA <- getPM(A_example)
mismutex <- getMutex(A=A_example,PM=PMA)
```

```r
#The next example, is the same as the first one but, using a matrix of class Matrix.
```
getMutexAB function

Description

Given two binary matrices and its corresponding probability matrices PAij and PBij, compute the Poisson Binomial method to estimate mutual exclusive events between A and B

Usage

getMutexAB(A, PMA = getPM(A), B, PMB = getPM(B), lower.tail = TRUE, method = "ShiftedBinomial", mixed = TRUE, th = 0.05, verbose = FALSE, parallel = FALSE, no_cores = NULL)

Arguments

A
The binary matrix of events A
getMutexAB

PMA The corresponding probability matrix of A. It can be computed using function `getPM`. By default equal to `getPM(A)`

B The binary matrix of events B

PMB The corresponding probability matrix of B. It can be computed using function `getPM`. By default equal to `getPM(B)`

lower.tail True if mutually exclusive test. False for co-occurrence. By default is TRUE.

method one of the following: "ShiftedBinomial" (default), "Exact", "RefinedNormal", and "Binomial".

mixed option to compute lower p-values with an exact method. By default TRUE

th upper threshold of p-value to apply the exact method.

verbose The verbosity of the output

parallel If the exact method is executed with a parallel process.

no_cores number of cores. If not stated number of cores of the CPU - 1

Details

we implemented three different approximations of the Poison-Binomial distribution function:

- "ShiftedBinomial" (by default) that correspond to a shifted Binomial with three parameters (Peköz, Shwartz, Christiansen, & Berlowitz, 2010).
- "Exact" that use the exact formula using the ‘PoissonBinomial’ Rpackage based on the work from (Biscarri, Zhao, & Brunner, 2018).
- "Binomial" with two parameters (Cam, 1960).
- "RefinedNormal" that is based on the work from (Volkova, 1996).

If 'mixed' option is selected (by default is FALSE), the "Exact" method is computed for p-values lower than a threshold ('th' parameter, that by default is 0.05). When the exact method is computed, it is possible to parallelize the process by selecting the option 'parallel' (by default FALSE) and setting the number of cores ('no_cores' parameter)

Value

A matrix with the p-values of the corresponding test.

Examples

```r
#The next example, is the same as the first
# one but, using a matrix of class Matrix.

data("A_Matrix")
data("B_Matrix")
PMA <- getPM(A_Matrix)
PMB <- getPM(B_Matrix)
mismutex <- getMutexAB(A=A_Matrix, PM=PMA, B=B_Matrix, PMB = PMB)
```
Finally, the last example, shows a real example of how to perform this function when using data from TCGA, Colon Adenocarcinoma in this case.

```r
## Not run:
data("TCGA_COAD_AMP")
data("AMP_COAD")
data("PM_TCGA_COAD_AMP")
data("PM_AMP_COAD")

mismutex <- get MutexAB(A=TCGA_COAD_AMP,
PMA=PM_TCGA_COAD_AMP,
B=AMP_COAD,
PMB = PM_AMP_COAD)

## End(Not run)
```

getMutexGroup

getMutexGroup function

Description

Given a binary matrix and its corresponding probability matrix \(p_{ij} \), compute the Poisson Binomial method to estimate mutual exclusive events.

Usage

```r
getMutexGroup(A = NULL, PM = NULL, type = "Impurity", lower.tail = TRUE)
```

Arguments

- **A**
 - The binary matrix
- **PM**
 - The corresponding probability matrix of \(A \). It can be computed using function `getPM`. By default equal to `getPM(A)`
- **type**
 - one of Coverage, Exclusivity or Impurity. By default is Impurity
- **lower.tail**
 - True if mutually exclusive test. False for co-occurrence. By default is TRUE.

Value

A symmetric matrix with the p.value of the corresponding test.
Examples

#This first example is a basic example of how to perform getMutexGroup

data("A_example")
A2 <- A_example[,1:30]
A2[1,1:10] <- 1
A2[2,1:10] <- 0
A2[3,1:10] <- 0
A2[1,11:20] <- 0
A2[2,11:20] <- 1
A2[3,11:20] <- 0
A2[1,21:30] <- 0
A2[2,21:30] <- 0
A2[3,21:30] <- 1
PM2 <- getPM(A2)
A <- A2[1:3,]
PM <- PM2[1:3,]

getMutexGroup(A, PM, "Impurity")
getMutexGroup(A, PM, "Coverage")
getMutexGroup(A, PM, "Exclusivity")

getPM

getPM function

Description

Given a binary matrix estimates the corresponding probability matrix pij.

Usage

getPM(A)

Arguments

A The binary matrix

Value

A ‘PMatrix’ object with the corresponding probability estimations. This ‘PMatrix’ object stores the corresponding coefficients of the logistic regression computed. With this coefficients it is possible to build the complete matrix of probabilities.
Examples

This first example is a basic example of how to perform getPM:

data("A_example")
PMA <- getPM(A_example)

The next example, is the same as the first one but, using a matrix of class Matrix:

data("A_Matrix")
PMA_M <- getPM(A_Matrix)

Not run:
Finally, the last example, shows a real example of how to perform this function when using data from TCGA, Colon Adenocarcinoma in this case:

data("TCGA_COAD")
PM_COAD <- getPM(TCGA_COAD)

End(Not run)

PMatrix-class

An S4 class to store the probabilities

Description

An S4 class to store the probabilities of gene i being mutated in sample j

Slots

rowExps Sample depending estimated coefficients obtained from the logistic regression
colExps gene depending estimated coefficients obtained from the logistic regression

PM_AMP_COAD

PM_AMP_COAD data

Description

Probability matrix, with information of genes being amplified in samples in Colon Adenocarcinoma, created by AMP_COAD.rda applying getPM and used as real example and getMutexAB.
Usage

data("PM_AMP_COAD")

Format

The format is:

num [1:1000, 1:391] 0.118 0.118 0.118 0.118 0.114 ...

Examples

data(PM_AMP_COAD)

PM_COAD

Description

Probability matrix, with information of genes being mutated in samples in Colon Adenocarcinoma, created by TCGA_COAD.rda applying getPM and used as real example in getMutex and getMutexAB and getMutexGroup.

Usage

data("PM_COAD")

Format

The format is:

Formal class 'PMatrix' [package "Rediscover"] with 2 slots

..@ rowExps: num [1:399] 13.1 1.02 7.43 3.26 0.4 ...

..@ colExps: num [1:17616] 2.54 1.78 1.76 1.35 0.6 ...

Examples

data(PM_COAD)
Description

A binary matrix, with information about genes mutations in Colon Adenocarcinoma, created by applying maftools to .maf file and used as real example in getPM and getMutex and getMutexAB and getMutexGroup.

Usage

```r
data("TCGA_COAD")
```

Format

The format is:

```r
num [1:399, 1:17616] 1 1 1 1 1 1 1 1 1 1 ... 
- attr(*, "dimnames")=List of 2 
  ..$ : chr [1:399] "TCGA-CA-6718" "TCGA-D5-6931" "TCGA-AZ-6601" ...
  ..$ : chr [1:17616] "APC" "TP53" "TTN" "KRAS" ...
```

Examples

```r
data(TCGA_COAD)
```
Index

* datasets
 A_example, 3
 A_Matrix, 3
 AMP_COAD, 2
 B_example, 4
 B_Matrix, 4
 PM_AMP_COAD, 13
 PM_COAD, 14
 TCGA_COAD, 15

[,PMatrix,missing,ANY-method (PMatrix-class), 13
[,PMatrix,numeric,missing,ANY-method (PMatrix-class), 13
[,]PM,numeric,numeric,ANY-method (PMatrix-class), 13
[,]PM,numeric,numeric,ANY-method (PMatrix-class), 13

A_example, 3
A_Matrix, 3
AMP_COAD, 2

B_example, 4
B_Matrix, 4

dim,PMatrix-method (PMatrix-class), 13
discoversomaticInteractions, 5
getMutex, 7
getMutexAB, 9
getMutexGroup, 11
getPM, 12

PM_AMP_COAD, 13
PM_COAD, 14
PMMatrix (PMatrix-class), 13
PMatrix-class, 13

TCGA_COAD, 15