Package ‘RepertoiR’

October 12, 2022

Title Repertoire Graphical Visualization

Version 0.0.1

Description Visualization platform for T cell receptor repertoire analysis output results. It includes comparison of sequence frequency among samples, network of similar sequences and convergent recombination source between species. Currently repertoire analysis is in early stage of development and requires new approaches for repertoire data examination and assessment as we intend to develop. No publication is available yet (will be available in the near future), Efroni (2021) <https:>.

License MIT + file LICENSE

URL https://github.com/systemsbiomed/RepertoiR

BugReports https://github.com/systemsbiomed/RepertoiR/issues

Imports circlize, grDevices, igraph, reshape2, stringdist, stringi, stringr

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author Ido Hasson [aut, cre] (<https://orcid.org/0000-0001-8382-5638>), Sol Efroni [aut], Hagit Philip [aut], Alona Zilberberg [aut]

Maintainer Ido Hasson <idoh@systemsbiomed.org>

Repository CRAN

Date/Publication 2021-10-25 07:00:21 UTC
Visualized for CR Sources

Description

Visualization of Two clones for their convergent recombination (CR) sources. Each sequence (NT) is represented as a colored bar (red for A, yellow for G, blue for T and green for C) linked to its translated amino acid sequence by a colored line, red for the first clone and blue for the second.

Usage

```r
cr_source(clone1, clone2, ...)
```

Arguments

- `clone1` First vector of sequences, string-length is the same for each nucleotide sequence (`'A', 'G', 'T', 'C'`).
- `clone2` Second vector of sequences, same string-length as for the first vector.
- `...` Any other arguments.

Value

No return value.

Examples

```r
nt <- c("A", "G", "C", "T")
seq_len <- 15
seq_n <- c(12, 7)

# Create data
c1 <- replicate(seq_n[1],
    paste(sample(nt, seq_len, replace = TRUE), collapse = ' '))
c2 <- replicate(seq_n[2],
    paste(sample(nt, seq_len, replace = TRUE), collapse = ' '))

cr_source(c1, c2)
```
Description

Visualization of Two clones for their convergent recombination (CR) sources. Each sequence (NT) is represented as a colored bar (red for A, yellow for G, blue for T and green for C) linked to its translated amino acid sequence by a colored line, red for the first clone and blue for the second.

Usage

```r
## Default S3 method:
cr_source(clone1, clone2, ...)
```

Arguments

- `clone1`:
 - First vector of sequences, string-length is the same for each nucleotide sequence ('A', 'G', 'T', 'C').

- `clone2`:
 - Second vector of sequences, same string-length as for the first vector.

- `...`:
 - Any other arguments.

Value

No return value.

Examples

```r
nt <- c("A", "G", "C", "T")
seq_len <- 15
seq_n <- c(12, 7)

# Create data
c1 <- replicate(seq_n[1],
  paste(sample(nt, seq_len, replace = TRUE), collapse = ' '))
c2 <- replicate(seq_n[2],
  paste(sample(nt, seq_len, replace = TRUE), collapse = ' '))

cr_source(c1, c2)
```
Description

Computes pairwise string distances among repertoire’s sequences and visualize similar pairs as connected nodes, each sized by its frequency.

Usage

network(dataset, by, nrow, method, ...)

Arguments

dataset A matrix or a data frame includes row names which are used as the compared sequences. Data set’s numeric values determine node-size.

by Index of column to set its values as node-size. first column is default (1).

nrow Number of nodes to display. Default is 1000 nodes.

... Any additional arguments needed by the specialized methods.

Value

No return value.

Examples

```r
aa <- c(  
)
data <- matrix(rexp(1 / 2, n = 1000), ncol = 4)
cons <- sample(aa, 10)
aavec <- c()

while (length(aavec) < nrow(data)) {
  aaseq <- cons
  index <- sample(length(aaseq), sample(length(aaseq) / 3, 1))
  aaseq[index] <- sample(aa, length(index), replace = TRUE)
  aaseq <- paste0(aaseq, collapse = "")
  aavec <- unique(append(aavec, aaseq))
}

rownames(data) <- aavec
colnames(data) <- LETTERS[1:ncol(data)]
```
network.default

network(data, by = 3, nrow = 100)

network.default Sequences distance network

Description
Computes pairwise string distances among repertoire's sequences and visualize similar pairs as connected nodes, each sized by its frequency.

Usage
Default S3 method:
network(dataset, by = 1, nrow = 1000, method = "lv", ...)

Arguments
dataset A matrix or a data frame includes row names which are used as the compared sequences. Data set's numeric values determine node-size.
by Index of column to set its values as node-size. Default is first column (1).
nrow Number of nodes to display. Default is 1000 nodes.
method stringdist method to perform for distance dissimilarity calculation: "osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw", "soundex". Default is Levenshtein distance ("lv").
... Any additional arguments needed by the specialized methods.

Value
No return value.

Examples
data <- matrix(rexp(1/2, n = 1000), ncol = 4)
cons <- sample(aa, 10)
aavec <- c()
while (length(aavec) < nrow(data)) {
aaseq <- cons
index <- sample(length(aaseq), sample(length(aaseq) / 3, 1))
aaseq[index] <- sample(aa, length(index), replace = TRUE)
aaseq <- paste0(aaseq, collapse = "")
aavec <- unique(append(aavec, aaseq))
}

Default S3 method:
network(dataset, by = 1, nrow = 1000, method = "lv", ...)

Arguments
dataset A matrix or a data frame includes row names which are used as the compared sequences. Data set's numeric values determine node-size.
by Index of column to set its values as node-size. Default is first column (1).
nrow Number of nodes to display. Default is 1000 nodes.
method stringdist method to perform for distance dissimilarity calculation: "osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw", "soundex". Default is Levenshtein distance ("lv").
... Any additional arguments needed by the specialized methods.

Value
No return value.

Examples
data <- matrix(rexp(1/2, n = 1000), ncol = 4)
cons <- sample(aa, 10)
aavec <- c()
while (length(aavec) < nrow(data)) {
 aaseq <- cons
 index <- sample(length(aaseq), sample(length(aaseq) / 3, 1))
 aaseq[index] <- sample(aa, length(index), replace = TRUE)
 aaseq <- paste0(aaseq, collapse = "")
 aavec <- unique(append(aavec, aaseq))
}
```r
rownames(data) <- aavec
colnames(data) <- LETTERS[1:ncol(data)]

network(data)
```

sunflower

Sunflower repertoire graph

Description

Sequence frequency visualization among samples, displayed as rings of nodes inside each other.

Usage

```r
sunflower(dataset, ...)
```

Arguments

- `dataset`: Input object: a matrix or a data frame.
 - First column is located as the outer ring, the second is right after and so on to the last column as the inmost ring. Cell’s numeric value determines node size.
- `...`: Any other arguments.

Value

No return value.

Examples

```r
data <- matrix(rexp(400,1/4), ncol = 4)
sunflower(data)
```

sunflower.default

Default graph

Description

Default visualization of sequence frequencies among samples as rings inside each other.

Usage

```r
## Default S3 method:
sunflower(dataset, ...)
```

Arguments

dataset
Input object: a matrix or a data frame. First column is located as the outer ring, the second is right after and so on to the last column as the innermost ring. Cell's numeric value determines node size.

... Any other arguments.

Value

No return value.

Examples

data <- matrix(rexp(400, 1/4), ncol = 4)
sunflower(data)
Index

cr_source, 2
 cr_source.default, 3

network, 4
 network.default, 5

sunflower, 6
 sunflower.default, 6