Package ‘RestoreNet’

February 15, 2024

Title Random-Effects Stochastic Reaction Networks

Version 1.0.1

Description A random-effects stochastic model that allows quick detection of
clonal dominance events from clonal tracking data collected in gene therapy studies. Start-
ing from the Ito-type equation describing the dynamics of cells duplication, death and differenti-
ation at clonal level, we first considered its local linear approximation as the base model.
The parameters of the base model, which are inferred using a maximum likelihood approach,
are assumed to be shared across the clones. Although this assumption makes inference easier,
in some cases it can be too restrictive and does not take into account possible scenar-
ios of clonal dominance.
Therefore we extended the base model by introducing random effects for the clones.
In this extended formulation the dynamic parameters are estimated using a tailor-made
expectation maximization algorithm. Further details on the meth-
ods can be found in L. Del Core et al., (2022) <doi:10.1101/2022.05.31.494100>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3.9000

Imports Matrix, xtable, scales, stringr, ggplot2, scatterpie,
 RColorBrewer

Depends R (>= 2.10)

LazyData true

Suggests R.rsp

VignetteBuilder R.rsp

NeedsCompilation no

Author Luca Del Core [aut, cre, cph] (<https://orcid.org/0000-0002-1672-6995>),
 Marco Grzegorczyk [aut, ths] (<https://orcid.org/0000-0002-2604-9270>),
 Ernst Wit [aut, ths] (<https://orcid.org/0000-0002-3671-9610>)

Maintainer Luca Del Core <l.del.core@rug.nl>

Repository CRAN

Date/Publication 2024-02-15 11:00:02 UTC
R topics documented:

fit.null ... 2
fit.re ... 4
get.boxplots 7
get.rescaled 9
get.scatterpie 10
get.sim.tl .. 11
Y_RM .. 13

Index 14

fit.null Fit the base (null) model

Description

This function builds the design matrix of the null model and returns the fitted values and the corresponding statistics.

Usage

fit.null(
 Y,
 rct.lst,
 maxit = 10000,
 factr = 1e+07,
 pgtol = 1e-08,
 lmm = 100,
 trace = TRUE,
 verbose = TRUE
)

Arguments

Y A 3-dimensional array whose dimensions are the time, the cell type and the clone respectively.

rct.lst list of biochemical reactions. A differentiation move from cell type "A" to cell type "B" must be coded as "A->B" Duplication of cell "A" must be coded as "A->1" Death of cell "A" must be coded as "A->0"

maxit maximum number of iterations for the optimization step. This argument is passed to optim() function. Details on "maxit" can be found in "optim()" documentation page.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the reduction in the objective is within this factor of the machine tolerance. Default is 1e7, that is a tolerance of about 1e-8. This argument is passed to optim() function.
pgtol helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the projected gradient in the current search direction. This defaults to zero, when the check is suppressed. This argument is passed to optim() function.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method. It defaults to 5. This argument is passed to optim() function.

trace Non-negative integer. If positive, tracing information on the progress of the optimization is produced. This parameter is also passed to the optim() function. Higher values may produce more tracing information: for method "L-BFGS-B" there are six levels of tracing. (To understand exactly what these do see the source code: higher levels give more detail.)

verbose (defaults to TRUE) Logical value. If TRUE, then information messages on the progress of the algorithm are printed to the console.

Value
A 3-length list. First element is the output returned by "optim()" function (see "optim()" documentation for details). Second element is a vector of statistics associated to the fitted null model:

- **nPar**: number of parameters of the base(null) model
- **c11**: value of the conditional log-likelihood, in this case just the log-likelihood
- **m11**: value of the marginal log-likelihood, in this case just the log-likelihood
- **cAIC**: conditional Akaike Information Criterion (cAIC), in this case simply the AIC.
- **mAIC**: marginal Akaike Information Criterion (mAIC), in this case simply the AIC.
- **Chi2**: value of the χ^2 statistic $(y - M\theta)'S^{-1}(y - M\theta)$.
- **p-value**: p-value of the χ^2 test for the null hypothesis that Chi2 follows a χ^2 distribution with n - nPar degrees of freedom.

The third element, called "design", is a list including:

- M A $n \times K$ dimensional (design) matrix.
- V A $p \times K$ dimensional net-effect matrix.

Examples
```r
ctps <- head(LETTERS,4)## set of reactions
nC <- 3 ## number of clones
S <- 10 ## trajectory length
```
tau <- 1 ## for tau-leaping algorithm
u_1 <- c(.2, .15, .17, .09*5, .001, .007, .004, .002, .13, .15, .08)
u_2 <- c(.2, .15, .17, .09, .001, .007, .004, .002, .13, .15, .08)
u_3 <- c(.2, .15, .17*3, .09, .001, .007, .004, .002, .13, .15, .08)
theta_allcls <- cbind(u_1, u_2, u_3) ## clone-specific parameters
rownames(theta_allcls) <- rcts
s20 <- 1 ## additional noise
Y <- array(data = NA,
 dim = c(S + 1, length(ctps), nC),
 dimnames = list(seq(from = 0, to = S*tau, by = tau),
 ctps, 1:nC)) ## empty array to store simulations
Y0 <- c(100,0,0,0) ## initial state
names(Y0) <- ctps
for (cl in 1:nC) { ## loop over clones
 Y[,,cl] <- get.sim.tl(Yt = Y0,
 theta = theta_allcls[,cl],
 S = S,
 s2 = s20,
 tau = tau,
 rct.lst = rcts,
 verbose = TRUE)
}
null.res <- fit.null(Y = Y,
 rct.lst = rcts,
 maxit = 0, ## needs to be increased (>=100) for real applications
 lmm = 0, ## needs to be increased (>=5) for real applications
) ## null model fitting

fit.re

Fit the random-effects model

Description

This function builds the design matrix of the random-effects model and returns the fitted values and the corresponding statistics.

Usage

```r
fit.re(
  theta_0,
  Y,
  rct.lst,
  maxit = 100000,
)```

Arguments

theta_0  A p-dimensional vector parameter as the initial guess for the inference.

Y       A 3-dimensional array whose dimensions are the time, the cell type and the clone respectively.

rct.lst  list of biochemical reactions. A differentiation move from cell type "A" to cell type "B" must be coded as "A->B" Duplication of cell "A" must be coded as "A->1" Death of cell "A" must be coded as "A->0"

maxit    maximum number of iterations for the optimization step. This argument is passed to optim() function. Details on "maxit" can be found in "optim()" documentation page.

factr    controls the convergence of the "L-BFGS-B" method. Convergence occurs when the reduction in the objective is within this factor of the machine tolerance. Default is 1e7, that is a tolerance of about 1e-8. This argument is passed to optim() function.

pgtol    helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the projected gradient in the current search direction. This defaults to zero, when the check is suppressed. This argument is passed to optim() function.

lmm      is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method. It defaults to 5. This argument is passed to optim() function.

maxemit  maximum number of iterations for the expectation-maximization algorithm.

eps      relative error for the value x and the objective function f(x) that has to be optimized in the expectation-maximization algorithm.

trace    Non-negative integer. If positive, tracing information on the progress of the optimization is produced. This parameter is also passed to the optim() function. Higher values may produce more tracing information: for method "L-BFGS-B" there are six levels of tracing. (To understand exactly what these do see the source code: higher levels give more detail.)

verbose  (defaults to TRUE) Logical value. If TRUE, then information messages on the progress of the algorithm are printed to the console.

Value

A 3-length list. First element is the output returned by "optim()" function (see "optim()" documentation for details) along with the conditional expectation $E[u|y]$ and variance $V[u|y]$ of the latent states $u$ given the observed states $y$ from the last step of the expectation-maximization algorithm. Second element is a vector of statistics associated to the fitted random-effects model:
nPar  number of parameters of the base(null) model
cll  value of the conditional log-likelihood, in this case just the log-likelihood
mll  value of the marginal log-likelihood, in this case just the log-likelihood
cAIC  conditional Akaike Information Criterion (cAIC), in this case simply the AIC.
mAIC  marginal Akaike Information Criterion (mAIC), in this case simply the AIC.
Chi2  value of the $\chi^2$ statistic $\left(y - M\theta\right)'S^{-1}\left(y - M\theta\right)$.
p-value  p-value of the $\chi^2$ test for the null hypothesis that Chi2 follows a $\chi^2$ distribution with n - nPar degrees of freedom.
KLdiv  Kullback-Leibler divergence of the random-effects model from the null model.
KLdiv/N  Rescaled Kullback-Leibler divergence of the random-effects model from the null model.
BhattDist_nullCond  Bhattacharyya distance between the random-effects model and the null model.
BhattDist_nullCond/N  Rescaled Bhattacharyya distance between the random-effects model and the null model.

The third element, called "design", is a list including:

- $M$  A $n \times K$ dimensional (design) matrix.
- $M_{bd}$  A $n \times Jp$ dimensional block-diagonal design matrix.
- $V$  A $p \times K$ dimensional net-effect matrix.

Examples

rcts <- c("A->1", "B->1", "C->1", "D->1",
          "A->0", "B->0", "C->0", "D->0",
          "A->B", "A->C", "C->D")  ## set of reactions
ctps <- head(LETTERS,4)
nC <- 3  ## number of clones
S <- 10  ## trajectory length
tau <- 1  ## for tau-leaping algorithm
u_1 <- c(.2, .15, .17, .09*5,
          .001, .007, .004, .002,
          .13, .15, .08)
u_2 <- c(.2, .15, .17, .09,
          .001, .007, .004, .002,
          .13, .15, .08)
u_3 <- c(.2, .15, .17*3, .09,
          .001, .007, .004, .002,
          .13, .15, .08)
theta_allcls <- cbind(u_1, u_2, u_3)  ## clone-specific parameters
rownames(theta_allcls) <- rcts
s20 <- 1  ## additional noise
Y <- array(data = NA,
  dim = c(S + 1, length(ctps), nC),
  dimnames = list(seq(from = 0, to = S*tau, by = tau),
  ctps, 1:nC))  ## empty array to store simulations
Y0 <- c(100,0,0,0)  ## initial state
names(Y0) <- ctps
for (cl in 1:nC)  ## loop over clones
  Y[,,cl] <- get.sim.tl(Yt = Y0,  
    theta = theta_allcls[,cl],  
    S = S,  
    s2 = s20,  
    tau = tau,  
    rct.lst = rcts,  
    verbose = TRUE)

null.res <- fit.null(Y = Y,  
  rct.lst = rcts,  
  maxit = 0,  ## needs to be increased (>=100) for real applications  
  lmm = 0,  ## needs to be increased (>=5) for real applications
)

re.res <- fit.re(theta_0 = null.res$fit$par,  
  Y = Y,  
  rct.lst = rcts,  
  maxit = 0,  ## needs to be increased (>=100) for real applications  
  lmm = 0,  ## needs to be increased (>=5) for real applications  
  maxemit = 1  ## needs to be increased (>= 100) for real applications
)

---

get.boxplots

**Clonal boxplots**

**Description**

Draw clonal boxplots of a random-effects reaction network.

**Usage**

get.boxplots(re.res)

**Arguments**

- re.res: output list returned by fit.re().
get.boxplots

Details

This function generates the boxplots of the conditional expectations

\[ w_k = E_{u|\Delta Y; \hat{\psi}[u^k_{\alpha}]} - E_{u|\Delta Y; \hat{\psi}[u^k_{\delta}]} \]

, computed from the estimated parameters \( \hat{\psi} \) for the clone-specific net-duplication in each cell lineage \( l \) (different colors). The whiskers extend to the data extremes.

Value

No return value.

Examples

```r
rcts <- c("A->1", "B->1", "C->1", "D->1",
"A->0", "B->0", "C->0", "D->0",
"A->B", "A->C", "C->D") ## set of reactions
ctps <- head(LETTERS,4) ## set of reactions
nC <- 3 ## number of clones
S <- 10 ## trajectory length
tau <- 1 ## for tau-leaping algorithm
u_1 <- c(.2, .15, .17, .09*5,
.001, .007, .004, .002,
.13, .15, .08)
u_2 <- c(.2, .15, .17, .09,
.001, .007, .004, .002,
.13, .15, .08)
u_3 <- c(.2, .15, .17*3, .09,
.001, .007, .004, .002,
.13, .15, .08)
theta_allcls <- cbind(u_1, u_2, u_3) ## clone-specific parameters
rownames(theta_allcls) <- rcts
s20 <- 1 ## additional noise
Y <- array(data = NA,
 dim = c(S + 1, length(ctps), nC),
 dimnames = list(seq(from = 0, to = S*tau, by = tau),
 ctps,
 1:nC)) ## empty array to store simulations
Y0 <- c(100,0,0,0) ## initial state
names(Y0) <- ctps
for (cl in 1:nC) { ## loop over clones
 Y[,,cl] <- get.sim.tl(Yt = Y0,
 theta = theta_allcls[,cl],
 S = S,
 s2 = s20,
 tau = tau,
 rct.lst = rcts,
 verbose = TRUE)
}
null.res <- fit.null(Y = Y,
 rct.lst = rcts,
 maxit = 0, ## needs to be increased (>=100) for real applications
```
### get.rescaled

Rescaling a clonal tracking dataset

**Description**

Rescales a clonal tracking dataset based on the sequencing depth.

**Usage**

```r
get.rescaled(Y)
```

**Arguments**

- `Y` A 3-dimensional array whose dimensions are the time, the cell type and the clone respectively.

**Details**

This function rescales a clonal tracking dataset `Y` according to the formula

$$ Y_{ijk} \leftarrow Y_{ijk} \cdot \frac{\min_{ij} \sum_c Y_{ijc}}{\sum_c Y_{ijc}} $$

**Value**

A rescaled clonal tracking dataset.

**Examples**

```r
get.rescaled(Y_RM[["ZH33"]])
```
**get.scatterpie**

### Description

Draw a clonal pie-chart of a random-effects reaction network.

### Usage

```r
get.scatterpie(re.res, txt = FALSE, legend = FALSE)
```

### Arguments

- `re.res`: output list returned by `fit.re()`.
- `txt`: logical (defaults to FALSE). If TRUE, barcode names will be printed on the pies.
- `legend`: logical (defaults to FALSE). If TRUE, the legend of the pie-chart will be printed.

### Details

This function generates a clonal pie-chart given a previously fitted random-effects model. In this representation each clone \( k \) is identified with a pie whose slices are lineage-specific and weighted with \( w_k \), defined as the difference between the conditional expectations of the random-effects on duplication and death parameters, that is

\[
w_k = E_{u|\Delta Y; \hat{\psi}}[u^k_{\text{lin}}] - E_{u|\Delta Y; \hat{\psi}}[u^k_{\bar{\text{lin}}}]\]

where \( \text{lin} \) is a cell lineage. The diameter of the \( k \)-th pie is proportional to the euclidean 2-norm of \( w_k \). Therefore, the larger the diameter, the more the corresponding clone is expanding into the lineage associated to the largest slice.

### Value

No return value.

### Examples

```r
rcts <- c("A->1", "B->1", "C->1", "D->1",
 "A->0", "B->0", "C->0", "D->0",
 "A->B", "A->C", "C->D") ## set of reactions
ctps <- head(LETTERS,4)
nC <- 3 ## number of clones
S <- 10 ## trajectory length
tau <- 1 ## for tau-leaping algorithm
u_1 <- c(.2, .15, .17, .09*5,
 .001, .007, .004, .002,
 .13, .15, .08)
u_2 <- c(.2, .15, .17, .09,
 .001, .007, .004, .002,
 .13, .15, .08)
```
.13, .15, .08)
    u_3 <- c(.2, .15, .17*3, .09, 
          .001, .007, .004, .002, 
          .13, .15, .08)
theta_allcls <- cbind(u_1, u_2, u_3) ## clone-specific parameters
rownames(theta_allcls) <- rcts
s20 <- 1 ## additional noise
Y <- array(data = NA,
            dim = c(S + 1, length(ctps), nC),
            dimnames = list(seq(from = 0, to = S*tau, by = tau),
                            ctps,
                            1:nC)) ## empty array to store simulations
Y0 <- c(100,0,0,0) ## initial state
names(Y0) <- ctps
for (cl in 1:nC) { ## loop over clones
    Y[,,cl] <- get.sim.tl(Yt = Y0,
                          theta = theta_allcls[,cl],
                          S = S,
                          s2 = s20,
                          tau = tau,
                          rct.lst = rcts,
                          verbose = TRUE)
}
null.res <- fit.null(Y = Y,
                     rct.lst = rcts,
                     maxit = 0, ## needs to be increased (>=100) for real applications
                     lmm = 0, ## needs to be increased (>=5) for real applications
) ## null model fitting
re.res <- fit.re(theta_0 = null.res$fit$par,
                 Y = Y,
                 rct.lst = rcts,
                 maxit = 0, ## needs to be increased (>=100) for real applications
                 lmm = 0, ## needs to be increased (>=5) for real applications
                 maxemit = 1 ## needs to be increased (>= 100) for real applications
) ## random-effects model fitting
get.scatterpie(re.res, txt = TRUE)

---

### get.sim.tl

**τ-leaping simulation algorithm**

**Description**

Simulate a trajectory of length S for a stochastic reaction network.

**Usage**

get.sim.tl(Yt, theta, S, s2 = 0, tau = 1, rct.lst, verbose = TRUE)
Arguments

Yt  starting point of the trajectory
theta  vector parameter for the reactions.
S  length of the simulated trajectory.
s2  noise variance (defaults to 0).
tau  time interval length (defaults to 1).
rct.lst  list of biochemical reactions.
verbose  (defaults to TRUE) Logical value. If TRUE, then information messages on the
simulation progress are printed to the console.

Details

This function allows to simulate a trajectory of a single clone given an initial conditions $Y_t$ for the
cell counts, and obeying to a particular cell differentiation network defined by a net-effect (stoichio-
metric) matrix $V$ and an hazard function $h()$. The function allows to consider only three cellular
events, such as cell duplication ($Y_{it} \rightarrow 1$), cell death ($Y_{it} \rightarrow 0$) and cell differentiation ($Y_{it} \rightarrow Y_{jt}^k$)
for a clone-specific time counting process

$$ Y_t = (Y_{1t}, \ldots, Y_{Nt}) $$

observed in $N$ distinct cell lineages. In particular, the cellular events of duplication, death and
differentiation are respectively coded with the character labels "A->1", "A->0", and "A->B", where
A and B are two distinct cell types. The output is a 3-dimensional array $Y$ whose $ijk$-entry $Y_{ijk}$ is
the number of cells of clone $k$ for cell type $j$ collected at time $i$. More mathematical details can be
found in the vignette of this package.

Value

A $S \times p$ dimensional matrix of the simulated trajectory.

Examples

```r
ccts <- c("A->1", "B->1", "C->1", "D->1",
"A->0", "B->0", "C->0", "D->0",
"A->B", "A->C", "C->D") # set of reactions
ctps <- head(LETTERS,4)
nC <- 3 # number of clones
S <- 10 # trajectory length
tau <- 1 # for tau-leaping algorithm
u_1 <- c(.2, .15, .17, .09*5,
 .001, .007, .004, .002,
 .13, .15, .08)
u_2 <- c(.2, .15, .17, .09,
 .001, .007, .004, .002,
 .13, .15, .08)
u_3 <- c(.2, .15, .17*3, .09,
 .001, .007, .004, .002,
 .13, .15, .08)
theta_allcls <- cbind(u_1, u_2, u_3) # clone-specific parameters
get.sim.tl
```
rownames(theta_allcls) <- rcts
s20 <- 1  ## additional noise
Y <- array(data = NA,
            dim = c(S + 1, length(ctps), nC),
            dimnames = list(seq(from = 0, to = S*tau, by = tau), ctps,1:nC))  ## empty array to store simulations
Y0 <- c(100,0,0,0)  ## initial state
names(Y0) <- ctps
for (cl in 1:nC) {  ## loop over clones
    Y[,,cl] <- get.sim.tl(Yt = Y0,
        theta = theta_allcls[,cl],
        S = S,
        s2 = s20,
        tau = tau,
        rct.lst = rcts,
        verbose = TRUE)
}
Y

Y_RM

Rhesus Macaque clonal tracking dataset

Description
A dataset containing clonal tracking cell counts from a Rhesus Macaque study.

Usage
Y_RM

Format
A list containing clonal tracking data for each animal (ZH33, ZH17, ZG66). Each clonal tracking dataset is a 3-dimensional array whose dimensions identify

1 time, in months
2 cell types: T, B, NK, Macrophages(M) and Granulocytes(G)
3 unique barcodes (clones)

Source
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979461/bin/NIHMS567927-supplement-02.xlsx
Index

* datasets
  Y_RM, 13

fit.null, 2
fit.re, 4

get.boxplots, 7
get.rescaled, 9
get.scatterpie, 10
get.sim.tl, 11

Y_RM, 13