Package ‘Rfolding’

Type Package
Title The Folding Test of Unimodality
Version 1.0
Description The basic algorithm to perform the folding test of unimodality.
 Given a dataset X (d dimensional, n samples), the test checks whether the
distribution of the data are rather unimodal or rather multimodal. This
package stems from the following research publication:
 Siffer Alban, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouët.
 ``Are your data gathered?'' In Proceedings of the 24th ACM SIGKDD International
Encoding UTF-8
License GPL-3
LazyData true
RoxygenNote 6.1.0
Suggests testthat,MASS,knitr,rmarkdown
Imports stats
VignetteBuilder knitr
NeedsCompilation no
Author Alban Siffer [aut, cre], Amossys [cph, fnd]
Maintainer Alban Siffer <alban.siffer@irisa.fr>
Repository CRAN
Date/Publication 2018-09-30 13:10:12 UTC

R topics documented:

folding.ratio ... 2
folding.statistics .. 2
folding.test ... 3
folding.test.bound ... 4
folding.ratio

Description
 Computes the folding ratio of the input data

Usage
 folding.ratio(X)

Arguments
 X nxd matrix (n observations, d dimensions)

Value
 the folding ratio

Examples
 X = matrix(runif(n = 1000, min = 0., max = 1.), ncol = 1)
 phi = folding.statistics(X)

folding.statistics

Description
 Computes the folding statistics of the input data

Usage
 folding.statistics(X)

Arguments
 X nxd matrix (n observations, d dimensions)

Value
 the folding statistics
Examples

folding.test

Perform the folding test of unimodality

Description

Perform the folding test of unimodality

Usage

folding.test(X)

Arguments

X

nxd matrix (n observations, d dimensions)

Value

1 if unimodal, 0 if multimodal

Examples

library(MASS)

n = 10000

d = 3

mu = c(0,0,0)

Sigma = matrix(c(1,0.5,0.5,0.5,1,0.5,0.5,0.5,1), ncol = d)

X = mvrnorm(n = n, mu = mu, Sigma = Sigma)

m = folding.test(X)
folding.test.bound

Computes the confidence bound for the significance level \(p \)

Description

Computes the confidence bound for the significance level \(p \)

Usage

folding.test.bound(n, d, p)

Arguments

- **n**: sample size
- **d**: dimension
- **p**: significance level (between 0 and 1, the lower, the more significant)

Value

the confidence bound \(q \) (the bounds are \(1-q \) and \(1+q \))

Examples

```r
n = 2000  # number of observations
d = 2    # 2 dimensional data
p = 0.05  # we want the bound at the level 0.05 (classical p-value)
q = folding.test.bound(n,d,p)
```

folding.test.pvalue

Description

Computes the p-value of the folding test

Usage

folding.test.pvalue(Phi, n, d)

Arguments

- **Phi**: the folding statistics
- **n**: sample size
- **d**: dimension
Value
the p-value (the lower, the more significant)

Examples
library(MASS)
n = 5000
d = 2
mu = c(0,0)
Sigma = matrix(c(1,0.5,1,0.5), ncol = d)
X = mvrnorm(n = n, mu = mu, Sigma = Sigma)
Phi = folding.statistics(X)
p = folding.test.pvalue(Phi,n,d)

pivot.approx Computes the pivot s_2 (approximate pivot)

Description
Computes the pivot s_2 (approximate pivot)

Usage
pivot.approx(X)

Arguments
X nxd matrix (n observations, d dimensions)

Value
the approximate pivot

Examples
library(MASS)
mu = c(0,0)
Sigma = matrix(c(1,0.5,1,0.5), ncol = 2)
X = mvrnorm(n = 5000, mu = mu, Sigma = Sigma)
Phi = pivot.approx(X)
Index

folding.ratio, 2
folding_statistics, 2
folding_test, 3
folding_test_bound, 4
folding_test_pvalue, 4

pivot_approx, 5