Package ‘Rforestry’

July 21, 2022

Type Package

Title Random Forests, Linear Trees, and Gradient Boosting for Inference and Interpretability

Version 0.9.0.116

Maintainer Theo Saarinen <theo_s@berkeley.edu>

BugReports https://github.com/forestry-labs/Rforestry/issues

URL https://github.com/forestry-labs/Rforestry

License GPL (>= 3)

Encoding UTF-8

Imports Rcpp (>= 0.12.9), parallel, methods, visNetwork, glmnet (>= 4.1), grDevices, onehot, dplyr

LinkingTo Rcpp, RcppArmadillo, RcppThread

RoxygenNote 7.1.2

SystemRequirements C++11

Suggests testthat, knitr, markdown, mvtnorm

Collate R_preprocessing.R 'RcppExports.R' 'forestry.R'
 'adaptive_forestry.R' 'backwards_compatible.R'
 'compute_rf_lp.R' 'neighborhood_imputation.R' 'plottree.R'

NeedsCompilation yes

Author Sören Künzel [aut],
 Theo Saarinen [aut, cre],
 Simon Walter [aut],
 Edward Liu [aut],
 Allen Tang [aut],
 Jasjeet Sekhon [aut]
R topics documented:

- adaptiveForestry-forestry .. 3
- addTrees ... 7
- autoforestry ... 7
- autohonestRF .. 8
- compute_lp-forestry ... 9
- correctedPredict ... 10
- CppToR_translator ... 12
- forestry .. 12
- forestry-class ... 17
- forest_checker ... 18
- getCI ... 18
- getOOB-forestry ... 19
- getOOBpreds-forestry ... 20
- getSplitProps-forestry .. 20
- getVI ... 21
- honestRF ... 22
- impute_features ... 22
- loadForestry ... 23
- make_savable ... 24
- multilayer-forestry ... 25
- plot-forestry ... 29
- predict-adaptiveForestry ... 30
- predict-forestry ... 31
- predict-multilayer-forestry .. 33
- predictInfo ... 34
- preprocess_testing ... 35
- preprocess_training ... 35
- relinkCPP_prt ... 36
- saveForestry ... 36
- scale_center ... 37
- testing_data_checker-forestry ... 37
- training_data_checker .. 38
- unscale_uncenter ... 41

Index 42
Description

This is an experimental function where we run forestry in two stages, first estimating the feature weights by calculating the relative splitting proportions of each feature using a small forest, and then growing a much bigger forest using the first forest splitting proportions as the featureWeights in the second forest.

Usage

```r
adaptiveForestry(
  x,
  y,
  ntree = 500,
  ntree.first = 25,
  ntree.second = 500,
  replace = TRUE,
  sampsize = if (replace) nrow(x) else ceiling(0.632 * nrow(x)),
  sample.fraction = NULL,
  mtry = max(floor(ncol(x)/3), 1),
  nodesizeSpl = 5,
  nodesizeAvg = 5,
  nodesizeStrictSpl = 1,
  nodesizeStrictAvg = 1,
  minSplitGain = 0,
  maxDepth = round(nrow(x)/2) + 1,
  interactionDepth = maxDepth,
  interactionVariables = numeric(0),
  featureWeights = NULL,
  deepFeatureWeights = NULL,
  observationWeights = NULL,
  splitratio = 1,
  OOBhonest = FALSE,
  seed = as.integer(runif(1) * 1000),
  verbose = FALSE,
  nthread = 0,
  splitrule = "variance",
  middleSplit = FALSE,
  maxObs = length(y),
  linear = FALSE,
  linFeats = 0:(ncol(x) - 1),
  monotonicConstraints = rep(0, ncol(x)),
  monotoneAvg = FALSE,
  overfitPenalty = 1,
)```
scale = FALSE,
doubleTree = FALSE,
reuseforestry = NULL,
savable = TRUE,
saveable = TRUE
)

Arguments

x  A data frame of all training predictors.
y  A vector of all training responses.
ntree  The number of trees to grow in the forest. The default value is 500.
ntree.first  The number of trees to grow in the first forest when trying to determine which features are important.
ntree.second  The number of features to use in the second stage when we grow a second forest using the weights of the first stage.
replace  An indicator of whether sampling of training data is with replacement. The default value is TRUE.
sampsize  The size of total samples to draw for the training data. If sampling with replacement, the default value is the length of the training data. If sampling without replacement, the default value is two-thirds of the length of the training data.
sample.fraction  If this is given, then sampsize is ignored and set to be round(length(y) * sample.fraction). It must be a real number between 0 and 1
mtry  The number of variables randomly selected at each split point. The default value is set to be one-third of the total number of features of the training data.
nodesizeSpl  Minimum observations contained in terminal nodes. The default value is 5.
nodesizeAvg  Minimum size of terminal nodes for averaging dataset. The default value is 5.
nodesizeStrictSpl  Minimum observations to follow strictly in terminal nodes. The default value is 1.
nodesizeStrictAvg  The minimum size of terminal nodes for averaging data set to follow when predicting. No splits are allowed that result in nodes with observations less than this parameter. This parameter enforces overlap of the averaging data set with the splitting set when training. When using honesty, splits that leave less than nodesizeStrictAvg averaging observations in either child node will be rejected, ensuring every leaf node also has at least nodesizeStrictAvg averaging observations. The default value is 1.
minSplitGain  Minimum loss reduction to split a node further in a tree.
maxDepth  Maximum depth of a tree. The default value is 99.
interactionDepth  All splits at or above interaction depth must be on variables that are not weighting variables (as provided by the interactionVariables argument).
interactionVariables
Indices of weighting variables.

featureWeights (optional) vector of sampling probabilities/weights for each feature used when subsampling mtry features at each node above or at interactionDepth. The default is to use uniform probabilities.

deepFeatureWeights
Used in place of featureWeights for splits below interactionDepth.

observationWeights
Denotes the weights for each training observation that determine how likely the observation is to be selected in each bootstrap sample. This option is not allowed when sampling is done without replacement.

splitratio
Proportion of the training data used as the splitting dataset. It is a ratio between 0 and 1. If the ratio is 1 (the default), then the splitting set uses the entire data, as does the averaging set—i.e., the standard Breiman RF setup. If the ratio is 0, then the splitting data set is empty, and the entire dataset is used for the averaging set (This is not a good usage, however, since there will be no data available for splitting).

OOBhonest
In this version of honesty, the out-of-bag observations for each tree are used as the honest (averaging) set. This setting also changes how predictions are constructed. When predicting for observations that are out-of-sample (using predict(..., aggregation = "average")), all the trees in the forest are used to construct predictions. When predicting for an observation that was in-sample (using predict(..., aggregation = "oob")), only the trees for which that observation was not in the averaging set are used to construct the prediction for that observation. aggregation="oob" (out-of-bag) ensures that the outcome value for an observation is never used to construct predictions for a given observation even when it is in sample. This property does not hold in standard honesty, which relies on an asymptotic subsampling argument. By default, when OOBhonest = TRUE, the out-of-bag observations for each tree are resamples with replacement to be used for the honest (averaging) set. This results in a third set of observations that are left out of both the splitting and averaging set, we call these the double out-of-bag (doubleOOB) observations. In order to get the predictions of only the trees in which each observation fell into this doubleOOB set, one can run predict(..., aggregation = "doubleOOB"). In order to not do this second bootstrap sample, the doubleBootstrap flag can be set to FALSE.

seed
random seed

verbose
Indicator to train the forest in verbose mode

nthread
Number of threads to train and predict the forest. The default number is 0 which represents using all cores.

splitrule
Only variance is implemented at this point and it specifies the loss function according to which the splits of random forest should be made.

middleSplit
Indicator of whether the split value is takes the average of two feature values. If FALSE, it will take a point based on a uniform distribution between two feature values. (Default = FALSE)

maxObs
The max number of observations to split on.
linear

Indicator that enables Ridge penalized splits and linear aggregation functions in the leaf nodes. This is recommended for data with linear outcomes. For implementation details, see: https://arxiv.org/abs/1906.06463. Default is FALSE.

linFeats

A vector containing the indices of which features to split linearly on when using linear penalized splits (defaults to use all numerical features).

monotonicConstraints

Specifies monotonic relationships between the continuous features and the outcome. Supplied as a vector of length p with entries in 1,0,-1 which 1 indicating an increasing monotonic relationship, -1 indicating a decreasing monotonic relationship, and 0 indicating no constraint. Constraints supplied for categorical variable will be ignored.

monotoneAvg

This is a boolean flag that indicates whether or not monotonic constraints should be enforced on the averaging set in addition to the splitting set. This flag is meaningless unless both honesty and monotonic constraints are in use. The default is FALSE.

overfitPenalty

Value to determine how much to penalize the magnitude of coefficients in ridge regression when using linear splits.

scale

A parameter which indicates whether or not we want to scale and center the covariates and outcome before doing the regression. This can help with stability, so by default is TRUE.

doubleTree

if the number of tree is doubled as averaging and splitting data can be exchanged to create decorrelated trees. (Default = FALSE)

reuseforestry

Pass in an 'forestry' object which will recycle the dataframe the old object created. It will save some space working on the same data set.

savable

If TRUE, then RF is created in such a way that it can be saved and loaded using save(...) and load(...). However, setting it to TRUE (default) will take longer and use more memory. When training many RF, it makes sense to set this to FALSE to save time and memory.

saveable

deprecated. Do not use.

Details

adaptiveForestry

Value

Two forestry objects, the first forest, and the adaptive forest, as well as the splitting proportions used to grow the second forest.

Examples

```r
Set seed for reproducitvity
set.seed(292313)

Use Iris Data
test_idx <- sample(nrow(iris), 11)
```
addTrees

```r
x_train <- iris[-test_idx, -1]
y_train <- iris[-test_idx, 1]
x_test <- iris[test_idx, -1]

rf <- adaptiveForestry(x = x_train,
 y = y_train,
 ntree.first = 25,
 ntree.second = 500,
 nthread = 2)
predict(rf@second.forest, x_test)
```

---

### addTrees

#### addTrees-forestry

**Description**

Add more trees to the existing forest.

**Usage**

```
addTrees(object, ntree)
```

**Arguments**

- `object`: A ‘forestry’ object.
- `ntree`: Number of new trees to add

**Value**

A ‘forestry’ object

---

### autoforestry

#### autoforestry-forestry

**Description**

autoforestry-forestry
Usage

```r
autohonestRF(
 x,
 y,
 sampsize = as.integer(nrow(x) * 0.75),
 num_iter = 1024,
 eta = 2,
 verbose = FALSE,
 seed = 24750371,
 nthread = 0
)
```

Arguments

- `x`: A data frame of all training predictors.
- `y`: A vector of all training responses.
- `sampsize`: The size of total samples to draw for the training data.
- `num_iter`: Maximum iterations/epochs per configuration. Default is 1024.
- `eta`: Downsampling rate. Default value is 2.
- `verbose`: if tuning process in verbose mode
- `seed`: random seed
- `nthread`: Number of threads to train and predict the forest. The default number is 0 which represents using all cores.

Value

A ‘forestry’ object

Description

This function is deprecated and only exists for backwards compatibility. The function you want to use is ‘autoforestry’.

Usage

```r
autohonestRF(...)
``` 

Arguments

- `...`: parameters which are passed directly to ‘autoforestry’

Value

A ‘forestry’ object
Description

Return the $L_p$ norm distances of selected test observations relative to the training observations which the forest was trained on.

Usage

```r
compute_lp(object, newdata, feature, p)
```

Arguments

- `object` A `forestry` object.
- `newdata` A data frame of test predictors.
- `feature` A string denoting the dimension for computing $l_p$ distances.
- `p` A positive real number determining the norm $p$-norm used.

Value

A vector of the $l_p$ distances.

Examples

```r
Set seed for reproductivity
set.seed(292313)

Use Iris Data
test_idx <- sample(nrow(iris), 11)
x_train <- iris[-test_idx, -1]
y_train <- iris[-test_idx, 1]
x_test <- iris[test_idx, -1]

rf <- forestry(x = x_train, y = y_train,nthread = 2)
predict(rf, x_test)

Compute the l2 distances in the "Petal.Length" dimension
distances_2 <- compute_lp(object = rf,
 newdata = x_test,
 feature = "Petal.Length",
 p = 2)
```
correctedPredict

**Description**

Perform predictions given the forest using a bias correction based on the out of bag predictions on the training set. By default we use a final linear correction based on the leave-one-out hat matrix after doing 'nrounds' nonlinear corrections.

**Usage**

```r
correctedPredict(
 object,
 newdata = NULL,
 feats = NULL,
 observations = NULL,
 nrounds = 0,
 linear = TRUE,
 double = FALSE,
 simple = TRUE,
 verbose = FALSE,
 use_residuals = FALSE,
 adaptive = FALSE,
 monotone = FALSE,
 num_quants = 5,
 params.forestry = list(),
 keep_fits = FALSE
)
```

**Arguments**

- `object` A 'forestry' object.
- `newdata` Dataframe on which to predict. If this is left NULL, we predict on the in sample data.
- `feats` A vector of feature indices which should be included in the bias correction. By default only the outcome and predicted outcomes are used.
- `observations` A vector of observation indices from the original data set that should be used for the bias correction regression. This can be used for treatment effect estimation to carry out separate regressions for the treatment and control group.
- `nrounds` The number of nonlinear bias correction steps which should be taken. By default this is zero, so just a single linear correction is used.
- `linear` A flag indicating whether or not we want to do a final linear bias correction after doing the nonlinear corrections. Default is TRUE.
- `double` A flag indicating if one should use aggregation = "doubleOOB" for the initial predictions rather than aggregation = "oob." Default is FALSE.
correctedPredict

simple flag indicating whether we should do a simple linear adjustment or do different adjustments by quantiles. Default is TRUE.

verbose flag which displays the bias of each quantile.

use_residuals flag indicating if we should use the residuals to fit the bias correction steps. Default is FALSE which means that we will use Y rather than Y-Y.hat as the regression outcome in the bias correction steps.

adaptive flag to indicate whether we use adaptiveForestry or not in the regression step. Default is FALSE.

monotone flag to indicate whether or not we should use monotonicity in the regression of Y on Y hat (when doing forest correction steps). If TRUE, will constrain the corrected prediction for Y to be monotone in the original prediction of Y. Default is FALSE.

num_quants Number of quantiles to use when doing quantile specific bias correction. Will only be used if simple = FALSE. Default is 5.

params.forestry A list of parameters to pass to the subsequent forestry calls. Note that these forests will be trained on features of dimension length(feats) + 1 as the correction forests are trained on Y ~ cbind(newdata[,feats], Y.hat). so monotonic constraints etc given to this list should be of size length(feats) + 1. Defaults to the standard forestry parameters for any parameters that are not included in the list.

keep_fits A flag that indicates if we should save the intermediate forests used for the bias correction. If this is TRUE, we return a list of the forestry objects for each iteration in the bias correction.

Value

A vector of the bias corrected predictions

Examples

```r
library(Rforestry)
set.seed(121235312)
n <- 50
p <- 10
x <- matrix(rnorm(n * p), ncol = p)
beta <- runif(p, min = 0, max = 1)
y <- as.matrix(x) %*% beta + rnorm(50)
x <- data.frame(x)

forest <- forestry(x = x,
y = y[,1],
OOBhonest = TRUE,
doubleBootstrap = TRUE)
p <- predict(forest, x)

Corrected predictions
pred.bc <- correctedPredict(forest,
```
Add more trees to the existing forest.

Usage

CppToR_translator(object)

Arguments

object external CPP pointer that should be translated from Cpp to an R object

Value

A list of lists. Each sublist contains the information to span a tree.

Description

forestry

Usage

forestry(
  x,
  y,
  ntree = 500,
  replace = TRUE,
  sampsize = if (replace) nrow(x) else ceiling(0.632 * nrow(x)),
  sample.fraction = NULL,
  mtry = max(floor(ncol(x)/3), 1),
  nodesizeSpl = 5,
  nodesizeAvg = 5,
  nodesizeStrictSpl = 1,
  nodesizeStrictAvg = 1,
  minSplitGain = 0,
maxDepth = round(nrow(x)/2) + 1,
interactionDepth = maxDepth,
interactionVariables = numeric(0),
featureWeights = NULL,
deepFeatureWeights = NULL,
observerWeights = NULL,
splitratio = 1,
OOBhonest = FALSE,
doubleBootstrap = if (OOBhonest) TRUE else FALSE,
seed = as.integer(runif(1) * 1000),
verbose = FALSE,
nthread = 0,
splitrule = "variance",
middleSplit = FALSE,
maxObs = length(y),
linear = FALSE,
symmetric = rep(0, ncol(x)),
linFeats = 0:(ncol(x) - 1),
monotonicConstraints = rep(0, ncol(x)),
groups = NULL,
minTreesPerGroup = 0,
monotoneAvg = FALSE,
overfitPenalty = 1,
scale = TRUE,
doubleTree = FALSE,
reuseforestry = NULL,
savable = TRUE,
saveable = TRUE
)

Arguments

x A data frame of all training predictors.
y A vector of all training responses.
ntree The number of trees to grow in the forest. The default value is 500.
replace An indicator of whether sampling of training data is with replacement. The
default value is TRUE.
sampsize The size of total samples to draw for the training data. If sampling with replace-
ment, the default value is the length of the training data. If sampling without
replacement, the default value is two-thirds of the length of the training data.
sample.fraction If this is given, then sampsize is ignored and set to be round(length(y) * sam-
ple.fraction). It must be a real number between 0 and 1
mtry The number of variables randomly selected at each split point. The default value
is set to be one-third of the total number of features of the training data.
nodesizeSpl Minimum observations contained in terminal nodes. The default value is 5.
nodesizeAvg Minimum size of terminal nodes for averaging dataset. The default value is 5.
nodesizeStrictSpl
Minimum observations to follow strictly in terminal nodes. The default value is 1.

nodesizeStrictAvg
The minimum size of terminal nodes for averaging data set to follow when predicting. No splits are allowed that result in nodes with observations less than this parameter. This parameter enforces overlap of the averaging data set with the splitting set when training. When using honesty, splits that leave less than nodesizeStrictAvg averaging observations in either child node will be rejected, ensuring every leaf node also has at least nodesizeStrictAvg averaging observations. The default value is 1.

minSplitGain
Minimum loss reduction to split a node further in a tree.

maxDepth
Maximum depth of a tree. The default value is 99.

interactionDepth
All splits at or above interaction depth must be on variables that are not weighting variables (as provided by the interactionVariables argument).

interactionVariables
Indices of weighting variables.

featureWeights
(optional) vector of sampling probabilities/weights for each feature used when subsampling mtry features at each node above or at interactionDepth. The default is to use uniform probabilities.

depthFeatureWeights
Used in place of featureWeights for splits below interactionDepth.

observationWeights
Denotes the weights for each training observation that determine how likely the observation is to be selected in each bootstrap sample. This option is not allowed when sampling is done without replacement.

splitratio
Proportion of the training data used as the splitting dataset. It is a ratio between 0 and 1. If the ratio is 1 (the default), then the splitting set uses the entire data, as does the averaging set—i.e., the standard Breiman RF setup. If the ratio is 0, then the splitting data set is empty, and the entire dataset is used for the averaging set (This is not a good usage, however, since there will be no data available for splitting).

OOBhonest
In this version of honesty, the out-of-bag observations for each tree are used as the honest (averaging) set. This setting also changes how predictions are constructed. When predicting for observations that are out-of-sample (using predict(..., aggregation = "average")), all the trees in the forest are used to construct predictions. When predicting for an observation that was in-sample (using predict(..., aggregation = "oob")), only the trees for which that observation was not in the averaging set are used to construct the prediction for that observation. aggregation="oob" (out-of-bag) ensures that the outcome value for an observation is never used to construct predictions for a given observation even when it is in sample. This property does not hold in standard honesty, which relies on an asymptotic subsampling argument. By default, when OOBhonest = TRUE, the out-of-bag observations for each tree are resamples with replacement to be used for the honest (averaging) set. This results in a third set of observations that are
left out of both the splitting and averaging set, we call these the double out-of-
bag (doubleOOB) observations. In order to get the predictions of only the trees
in which each observation fell into this doubleOOB set, one can run predict(...,
aggregation = "doubleOOB"). In order to not do this second bootstrap sample,
the doubleBootstrap flag can be set to FALSE.

**doubleBootstrap**

The doubleBootstrap flag provides the option to resample with replacement from
the out-of-bag observations set for each tree to construct the averaging set when
using OOBhonest. If this is FALSE, the out-of-bag observations are used as
the averaging set. By default this option is TRUE when running OOBhonest =
TRUE. This option increases diversity across trees.

**seed**

random seed

**verbose**

Indicator to train the forest in verbose mode

**nthread**

Number of threads to train and predict the forest. The default number is 0 which
represents using all cores.

**splitrule**

Only variance is implemented at this point and it specifies the loss function
according to which the splits of random forest should be made.

**middleSplit**

Indicator of whether the split value is takes the average of two feature values. If
FALSE, it will take a point based on a uniform distribution between two feature
values. (Default = FALSE)

**maxObs**

The max number of observations to split on.

**linear**

Indicator that enables Ridge penalized splits and linear aggregation functions in
the leaf nodes. This is recommended for data with linear outcomes. For imple-
mentation details, see: https://arxiv.org/abs/1906.06463. Default is FALSE.

**symmetric**

Used for the experimental feature which imposes strict symmetric marginal
structure on the predictions of the forest through only selecting symmetric splits
with symmetric aggregation functions. Should be a vector of size ncol(x) with
a single 1 entry denoting the feature to enforce symmetry on. Defaults to all
zeroes. For version >= 0.9.0.83, we experimentally allow more than one feature
to enforce symmetry at a time. This should only be used for a small number
of features as it has a runtime that is exponential in the number of symmetric
features (O(N 2^|S|) where S is the set of symmetric features).

**linFeats**

A vector containing the indices of which features to split linearly on when using
linear penalized splits (defaults to use all numerical features).

**monotonicConstraints**

Specifies monotonic relationships between the continuous features and the out-
come. Supplied as a vector of length p with entries in 1,0,-1 which 1 indicating
an increasing monotonic relationship, -1 indicating a decreasing monotonic re-
lationship, and 0 indicating no constraint. Constraints supplied for categorical
variable will be ignored.

**groups**

A vector of factors specifying the group membership of each training observa-
tion. these groups are used in the aggregation when doing out of bag predictions
in order to predict with only trees where the entire group was not used for ag-
gregation. This allows the user to specify custom subgroups which will be used
to create predictions which do not use any data from a common group to make
predictions for any observation in the group. This can be used to create general custom resampling schemes, and provide predictions consistent with the Out-of-Group set.

**minTreesPerGroup**

The number of trees which we make sure have been created leaving out each group. This is 0 by default, so we will not give any special treatment to the groups when sampling, however if this is set to a positive integer, we modify the bootstrap sampling scheme to ensure that exactly that many trees have the group left out. We do this by, for each group, creating minTreesPerGroup trees which are built on observations sampled from the set of training observations which are not in the current group. This means we create at least # groups * minTreesPerGroup trees for the forest. If ntree > # groups * minTreesPerGroup, we create max(# groups * minTreesPerGroup,ntree) total trees, in which at least minTreesPerGroup are created leaving out each group. For debugging purposes, these group sampling trees are stored at the end of the R forest, in blocks based on the left out group.

**monotoneAvg**

This is a boolean flag that indicates whether or not monotonic constraints should be enforced on the averaging set in addition to the splitting set. This flag is meaningless unless both honesty and monotonic constraints are in use. The default is FALSE.

**overfitPenalty**

Value to determine how much to penalize the magnitude of coefficients in ridge regression when using linear splits.

**scale**

A parameter which indicates whether or not we want to scale and center the covariates and outcome before doing the regression. This can help with stability, so by default is TRUE.

**doubleTree**

if the number of tree is doubled as averaging and splitting data can be exchanged to create decorrelated trees. (Default = FALSE)

**reuseforestry**

Pass in an ‘forestry‘ object which will recycle the dataframe the old object created. It will save some space working on the same data set.

**savable**

If TRUE, then RF is created in such a way that it can be saved and loaded using save(...) and load(...). However, setting it to TRUE (default) will take longer and use more memory. When training many RF, it makes sense to set this to FALSE to save time and memory.

**saveable**

deprecated. Do not use.

**Value**

A ‘forestry‘ object.

**Note**

**Treatment of Missing Data**

In version 0.9.0.34, we have modified the handling of missing data. Instead of the greedy approach used in previous iterations, we now test any potential split by putting all NA's to the right, and all NA's to the left, and taking the choice which gives the best MSE for the split. Under this version of handling the potential splits, we will still respect monotonic constraints. So if we put all NA's
to either side, and the resulting leaf nodes have means which violate the monotone constraints, the split will be rejected.

Examples

```r
set.seed(292315)
library(Rforestry)
test_idx <- sample(nrow(iris), 3)
x_train <- iris[-test_idx, -1]
y_train <- iris[-test_idx, 1]
x_test <- iris[test_idx, -1]

rf <- forestry(x = x_train, y = y_train, nthread = 2)
predict(rf, x_test)

set.seed(49)
library(Rforestry)
n <- c(100)
a <- rnorm(n)
b <- rnorm(n)
c <- rnorm(n)
y <- 4*a + 5.5*b - .78*c
x <- data.frame(a,b,c)

forest <- forestry(
 x, y,
 ntree = 10,
 replace = TRUE,
 nodesizeStrictSpl = 5,
 nodesizeStrictAvg = 5,
 nthread = 2,
 linear = TRUE
)

predict(forest, x)
```

Description

‘honestRF’ class only exists for backwards compatibility reasons
forest_checker

Description
Checks if forestry object has valid pointer for C++ object.

Usage
forest_checker(object)

Arguments
object a forestry object

Value
A message if the forest does not have a valid C++ pointer.

getCI

description
For a new set of features, calculate the confidence intervals for each new observation.

Usage
getCI(
  object, newdata,
  level = 0.95,
  B = 100,
  method = "OOB-conformal",
  noWarning = FALSE
)

Arguments
object A ‘forestry’ object.
newdata A set of new observations for which we want to predict the outcomes and use confidence intervals.
level The confidence level at which we want to make our intervals. Default is to use .95 which corresponds to 95 percentile confidence intervals.
B Number of bootstrap draws to use when using method = "OOB-bootstrap"
method

A flag for the different ways to create the confidence intervals. Right now we have two ways of doing this. One is the ‘OOB-bootstrap’ flag which uses many bootstrap pulls from the set of OOB trees then with these different pulls, we use the set of trees to predict for the new feature and give the confidence set over the many bootstrap draws. The other method- ‘OOB-conformal’- creates intervals by taking the set of doubleOOB trees for each observation, and using the predictions of these trees to give conformal intervals. So for an observation obs_i, let S_i be the set of trees for which obs_i was in neither the splitting set nor the averaging set (or the set of trees for which obs_i was "doubleOOB"), we then predict for obs_i with only the trees in S_i. doubleOOB_tree_preds <- predict(S_i, obs_i): Then CI(obs_i, alpha = .95) = quantile(doubleOOB_tree_preds - y_i, probs = .95). The 'local-conformal' option takes the residuals of each training point (using) OOB predictions, and then uses the weights of the random forest to determine the quantiles of the residuals in the local neighborhood of the predicted point. Default is ‘OOB-conformal’.

noWarning

flag to not display warnings

Value

The confidence intervals for each observation in newdata.

getOOB-forestry

getOOB-forestry

Description

Calculate the out-of-bag error of a given forest. This is done by using the out-of-bag predictions for each observation, and calculating the MSE over the entire forest.

Usage

getOOB(object, noWarning)

Arguments

object A 'forestry' object.

noWarning flag to not display warnings

Value

The OOB error of the forest.
getOOBpreds-forestry

Description

Calculate the out-of-bag predictions of a given forest.

Usage

getOOBpreds(object, newdata = NULL, doubleOOB = FALSE, noWarning = FALSE)

Arguments

- object: A trained model object of class "forestry".
- newdata: A possible new data frame on which to run out of bag predictions. If this is not NULL, we assume that the indices of newdata are the same as the indices of the training set, and will use these to find which trees the observation is considered in/out of bag for.
- doubleOOB: A flag specifying whether or not we should use the double OOB set for the OOB predictions. This is the set of observations for each tree which were in neither the averaging set nor the splitting set. Note that the forest must have been trained with doubleBootstrap = TRUE for this to be used. Default is FALSE.
- noWarning: Flag to not display warnings.

Value

The vector of all training observations, with their out of bag predictions. Note each observation is out of bag for different trees, and so the predictions will be more or less stable based on the observation. Some observations may not be out of bag for any trees, and here the predictions are returned as NA.

See Also

forestry

getSplitProps-forestry

Description

Retrieves the proportion of splits for each feature in the given forestry object. These proportions are calculated as the number of splits on feature i in the entire forest over total the number of splits in the forest.
getVI

Usage

getSplitProps(object)

Arguments

object A trained model object of class "forestry".

Value

A vector of length equal to the number of columns

See Also

forestry

getVI

getVI-forestry

Description

Calculate the percentage increase in OOB error of the forest when each feature is shuffled.

Usage

getVI(object, noWarning)

Arguments

object A ‘forestry’ object.
noWarning flag to not display warnings

Value

The variable importance of the forest.

Note

No seed is passed to this function so it is not possible in the current implementation to replicate the vector permutations used when measuring feature importance.
honestRF  

**Honest Random Forest**

**Description**

This function is deprecated and only exists for backwards compatibility. The function you want to use is 'forestry'.

**Usage**

honestRF(...)

**Arguments**

... parameters which are passed directly to 'forestry'

**Value**

A ‘forestry’ object

---

impute_features  

**Feature imputation using random forests neighborhoods**

**Description**

This function uses the neighborhoods implied by a random forest to impute missing features. The neighbors of a data point are all the training points assigned to the same leaf in at least one tree in the forest. The weight of each neighbor is the fraction of trees in the forest for which it was assigned to the same leaf. We impute a missing feature for a point by computing the weighted average feature value, using neighborhood weights, using all of the point’s neighbors.

**Usage**

impute_features(
  object,
  newdata,
  seed = round(runif(1) * 10000),
  use_mean_imputation_fallback = FALSE
)
Arguments

object    an object of class ‘forestry’
newdata   the feature data.frame we will impute missing features for.
seed      a random seed passed to the predict method of forestry
use_mean_imputation_fallback
          if TRUE, mean imputation (for numeric variables) and mode imputation (for factor variables) is used for missing features for which all neighbors also had the corresponding feature missing; if FALSE these missing features remain NAs in the data frame returned by ‘impute_features’.

Value

A data.frame that is newdata with imputed missing values.

Examples

iris_with_missing <- iris
idx_miss_factor <- sample(nrow(iris), 25, replace = TRUE)
iris_with_missing[idx_miss_factor, 5] <- NA
idx_miss_numeric <- sample(nrow(iris), 25, replace = TRUE)
iris_with_missing[idx_miss_numeric, 3] <- NA

x <- iris_with_missing[, -1]
y <- iris_with_missing[, 1]

forest <- forestry(x, y, ntree = 500, seed = 2, nthread = 2)
imputed_x <- impute_features(forest, x, seed = 2)

loadForestry

Description

This wrapper function checks the forestry object, makes it saveable if needed, and then saves it.

Usage

loadForestry(filename)

Arguments

filename      a filename in which to store the ‘forestry’ object

Value

The loaded forest from filename.
Description

When a ‘foresty’ object is saved and then reloaded the Cpp pointers for the data set and the Cpp forest have to be reconstructed.

Usage

\texttt{make\_savable(object)}

Arguments

\texttt{object}  
\hspace{1em}an object of class ‘forestry’

Value

A list of lists. Each sublist contains the information to span a tree.

Note

‘make\_savable’ does not translate all of the private member variables of the C++ forestry object so when the forest is reconstructed with ‘relinkCPP\_prt’ some attributes are lost. For example, ‘nthreads’ will be reset to zero. This makes it impossible to disable threading when predicting for forests loaded from disk.

Examples

\begin{verbatim}
set.seed(323652639)
x <- iris[, -1]
y <- iris[, 1]
forest <- forestry(x, y, ntree = 3, nthread = 2)
y_pred_before <- predict(forest, x)

forest <- make_savable(forest)

wd <- tempdir()
saveForestry(forest, filename = file.path(wd, "forest.Rda"))
rm(forest)

forest <- loadForestry(file.path(wd, "forest.Rda"))

y_pred_after <- predict(forest, x)

file.remove(file.path(wd, "forest.Rda"))
\end{verbatim}
Description

Construct a gradient boosted ensemble with random forest base learners.

Usage

```r
multilayerForestry(
 x,
 y,
 ntree = 500,
 nrounds = 1,
 eta = 0.3,
 replace = FALSE,
 sampsize = nrow(x),
 sample.fraction = NULL,
 mtry = ncol(x),
 nodesizeSpl = 3,
 nodesizeAvg = 3,
 nodesizeStrictSpl = max(round(nrow(x)/128), 1),
 nodesizeStrictAvg = max(round(nrow(x)/128), 1),
 minSplitGain = 0,
 maxDepth = 99,
 splitratio = 1,
 OOBhonest = FALSE,
 doubleBootstrap = if (OOBhonest) TRUE else FALSE,
 seed = as.integer(runif(1) * 1000),
 verbose = FALSE,
 nthread = 0,
 splitrule = "variance",
 middleSplit = TRUE,
 maxObs = length(y),
 linear = FALSE,
 symmetric = rep(0, ncol(x)),
 linFeats = 0:(ncol(x) - 1),
 monotonicConstraints = rep(0, ncol(x)),
 groups = NULL,
 minTreesPerGroup = 0,
 monotoneAvg = FALSE,
 featureWeights = rep(1, ncol(x)),
 deepFeatureWeights = featureWeights,
 observationWeights = NULL,
 overfitPenalty = 1,
 scale = FALSE,
 doubleTree = FALSE,
)
reuseforestry = NULL,
savable = TRUE,
saveable = TRUE
)

Arguments

x
A data frame of all training predictors.
y
A vector of all training responses.
ntree
The number of trees to grow in the forest. The default value is 500.
nrounds
Number of iterations used for gradient boosting.
etta
Step size shrinkage used in gradient boosting update.
replace
An indicator of whether sampling of training data is with replacement. The
default value is TRUE.
sampsize
The size of total samples to draw for the training data. If sampling with replace-
ment, the default value is the length of the training data. If sampling without
replacement, the default value is two-thirds of the length of the training data.
sample.fraction
If this is given, then sampsize is ignored and set to be round(length(y) * sam-
ple.fraction). It must be a real number between 0 and 1
mtry
The number of variables randomly selected at each split point. The default value
is set to be one-third of the total number of features of the training data.

nodesizeSpl
Minimum observations contained in terminal nodes. The default value is 5.
nodesizeAvg
Minimum size of terminal nodes for averaging dataset. The default value is 5.
nodesizeStrictSpl
Minimum observations to follow strictly in terminal nodes. The default value is 1.
nodesizeStrictAvg
The minimum size of terminal nodes for averaging data set to follow when pre-
dicting. No splits are allowed that result in nodes with observations less than
this parameter. This parameter enforces overlap of the averaging data set with
the splitting set when training. When using honesty, splits that leave less than
nodesizeStrictAvg averaging observations in either child node will be rejected,
ensuring every leaf node also has at least nodesizeStrictAvg averaging observa-
tions. The default value is 1.

minSplitGain
Minimum loss reduction to split a node further in a tree.
maxDepth
Maximum depth of a tree. The default value is 99.
splitratio
Proportion of the training data used as the splitting dataset. It is a ratio between
0 and 1. If the ratio is 1 (the default), then the splitting set uses the entire data,
as does the averaging set—i.e., the standard Breiman RF setup. If the ratio is 0,
then the splitting data set is empty, and the entire dataset is used for the averaging
set (This is not a good usage, however, since there will be no data available for
splitting).
In this version of honesty, the out-of-bag observations for each tree are used as the honest (averaging) set. This setting also changes how predictions are constructed. When predicting for observations that are out-of-sample (using predict(..., aggregation = "average")), all the trees in the forest are used to construct predictions. When predicting for an observation that was in-sample (using predict(..., aggregation = "oob")), only the trees for which that observation was not in the averaging set are used to construct the prediction for that observation. aggregation="oob" (out-of-bag) ensures that the outcome value for an observation is never used to construct predictions for a given observation even when it is in sample. This property does not hold in standard honesty, which relies on an asymptotic subsampling argument. By default, when OOBhonest = TRUE, the out-of-bag observations for each tree are resamples with replacement to be used for the honest (averaging) set. This results in a third set of observations that are left out of both the splitting and averaging set, we call these the double out-of-bag (doubleOOB) observations. In order to get the predictions of only the trees in which each observation fell into this doubleOOB set, one can run predict(..., aggregation = "doubleOOB"). In order to not do this second bootstrap sample, the doubleBootstrap flag can be set to FALSE.

The doubleBootstrap flag provides the option to resample with replacement from the out-of-bag observations set for each tree to construct the averaging set when using OOBhonest. If this is FALSE, the out-of-bag observations are used as the averaging set. By default this option is TRUE when running OOBhonest = TRUE. This option increases diversity across trees.

Indicator to train the forest in verbose mode

Number of threads to train and predict the forest. The default number is 0 which represents using all cores.

Only variance is implemented at this point and it specifies the loss function according to which the splits of random forest should be made.

Indicator of whether the split value is takes the average of two feature values. If FALSE, it will take a point based on a uniform distribution between two feature values. (Default = FALSE)

The max number of observations to split on.

Indicator that enables Ridge penalized splits and linear aggregation functions in the leaf nodes. This is recommended for data with linear outcomes. For implementation details, see: https://arxiv.org/abs/1906.06463. Default is FALSE.

Used for the experimental feature which imposes strict symmetric marginal structure on the predictions of the forest through only selecting symmetric splits with symmetric aggregation functions. Should be a vector of size ncol(x) with a single 1 entry denoting the feature to enforce symmetry on. Defaults to all zeroes. For version >= 0.9.0.83, we experimentally allow more than one feature to enforce symmetry at a time. This should only be used for a small number of features as it has a runtime that is exponential in the number of symmetric features (O(N 2^|S|) where S is the set of symmetric features).
linFeats A vector containing the indices of which features to split linearly on when using linear penalized splits (defaults to use all numerical features).

monotonicConstraints Specifies monotonic relationships between the continuous features and the outcome. Supplied as a vector of length p with entries in 1,0,-1 which 1 indicating an increasing monotonic relationship, -1 indicating a decreasing monotonic relationship, and 0 indicating no constraint. Constraints supplied for categorical variable will be ignored.

groups A vector of factors specifying the group membership of each training observation. these groups are used in the aggregation when doing out of bag predictions in order to predict with only trees where the entire group was not used for aggregation. This allows the user to specify custom subgroups which will be used to create predictions which do not use any data from a common group to make predictions for any observation in the group. This can be used to create general custom resampling schemes, and provide predictions consistent with the Out-of-Group set.

minTreesPerGroup The number of trees which we make sure have been created leaving out each group. This is 0 by default, so we will not give any special treatment to the groups when sampling, however if this is set to a positive integer, we modify the bootstrap sampling scheme to ensure that exactly that many trees have the group left out. We do this by, for each group, creating minTreesPerGroup trees which are built on observations sampled from the set of training observations which are not in the current group. This means we create at least # groups * minTreesPerGroup trees for the forest. If ntree > # groups * minTreesPerGroup, we create max(# groups * minTreesPerGroup,ntree) total trees, in which at least minTreesPerGroup are created leaving out each group. For debugging purposes, these group sampling trees are stored at the end of the R forest, in blocks based on the left out group.

monotoneAvg This is a boolean flag that indicates whether or not monotonic constraints should be enforced on the averaging set in addition to the splitting set. This flag is meaningless unless both honesty and monotonic constraints are in use. The default is FALSE.

featureWeights weights used when subsampling features for nodes above or at interactionDepth.

deepFeatureWeights weights used when subsampling features for nodes below interactionDepth.

observationWeights Denotes the weights for each training observation that determine how likely the observation is to be selected in each bootstrap sample. This option is not allowed when sampling is done without replacement.

overfitPenalty Value to determine how much to penalize the magnitude of coefficients in ridge regression when using linear splits.

scale A parameter which indicates whether or not we want to scale and center the covariates and outcome before doing the regression. This can help with stability, so by default is TRUE.

doubleTree if the number of tree is doubled as averaging and splitting data can be exchanged to create decorrelated trees. (Default = FALSE)
reuseforestry Pass in an ‘forestry’ object which will recycle the dataframe the old object created. It will save some space working on the same data set.

savable If TRUE, then RF is created in such a way that it can be saved and loaded using save(...) and load(...). However, setting it to TRUE (default) will take longer and use more memory. When training many RF, it makes sense to set this to FALSE to save time and memory.

saveable deprecated. Do not use.

Value

A ‘multilayerForestry’ object.

Description

plots a tree in the forest.

Usage

```r
## S3 method for class 'forestry'
plot(x, tree.id = 1, print.meta_dta = FALSE, beta.char.len = 30, ...)
```

Arguments

- `x` A forestry x.
- `tree.id` Specifies the tree number that should be visualized.
- `print.meta_dta` A flag indicating whether the data for the plot should be printed.
- `beta.char.len` The length of the beta values in leaf node representation. This is only required when plotting a forestry object with linear aggregation functions (linear = TRUE).
- `...` additional arguments that are not used.

Value

A plot of the specified tree in the forest.

Examples

```r
set.seed(292315)
rf <- forestry(x = iris[, -1],
               y = iris[, 1],
nthread = 2)

plot(x = rf)
plot(x = rf, tree.id = 2)
```
predict-adaptiveForestry

Description

Return the prediction from the forest.

Usage

```r
## S3 method for class 'adaptiveForestry'
predict(
  object,
  newdata,
  aggregation = "average",
  seed = as.integer(runif(1) * 10000),
  nthread = 0,
  exact = NULL,
  weighting = NULL,
  ...
)
```

Arguments

- **object**: An ‘adaptiveForestry’ object.
- **newdata**: A data frame of testing predictors.
- **aggregation**: How the individual tree predictions are aggregated: ‘average’ returns the mean of all trees in the forest; ‘weightMatrix’ returns a list consisting of “weightMatrix”, the adaptive nearest neighbor weights used to construct the predictions; "terminalNodes", a matrix where the ith entry of the jth column is the index of the leaf node to which the ith observation is assigned in the jth tree; and "sparse", a matrix where the ith entry in the jth column is 1 if the ith observation in feature.new is assigned to the jth leaf and 0 otherwise. In each tree the leaves are indexed using a depth first ordering, and, in the "sparse" representation, the first leaf in the second tree has column index one more than the number of leaves in the first tree and so on. So, for example, if the first tree has 5 leaves, the sixth column of the "sparse" matrix corresponds to the first leaf in the second tree.
- **seed**: random seed
- **nthread**: The number of threads with which to run the predictions with. This will default to the number of threads with which the forest was trained with.
predict-forestry

exact This specifies whether the forest predictions should be aggregated in a reproducible ordering. Due to the non-associativity of floating point addition, when we predict in parallel, predictions will be aggregated in varied orders as different threads finish at different times. By default, exact is TRUE unless N > 100,000 or a custom aggregation function is used.

weighting This should be a number between 0 and 1 indicating the weight with which to use the predictions of the two forests. This specifically specifies the weight given to the second.forest object. The predictions are given by weighting * predict(object@second.forest) + (1-weighting) * predict(object@first.forest). Defaults to NULL, and in this case, weighting = ntree.second / (ntree.first + ntree.second).

Value A vector of predicted responses.

Description Return the prediction from the forest.

Usage
```r
## S3 method for class 'forestry'
predict(
  object,
  newdata = NULL,
  aggregation = "average",
  holdOutIdx = NULL,
  trainingIdx = NULL,
  seed = as.integer(runif(1) * 10000),
  nthread = 0,
  exact = NULL,
  trees = NULL,
  weightMatrix = FALSE,
  ...
)
```

Arguments

object A 'forestry' object.

newdata A data frame of testing predictors.
How the individual tree predictions are aggregated: 'average' returns the mean of all trees in the forest; 'terminalNodes' also returns the weightMatrix, as well as "terminalNodes", a matrix where the ith entry of the jth column is the index of the leaf node to which the ith observation is assigned in the jth tree; and "sparse", a matrix where the ith entry in the jth column is 1 if the ith observation in newdata is assigned to the jth leaf and 0 otherwise. In each tree the leaves are indexed using a depth first ordering, and, in the "sparse" representation, the first leaf in the second tree has column index one more than the number of leaves in the first tree and so on. So, for example, if the first tree has 5 leaves, the sixth column of the "sparse" matrix corresponds to the first leaf in the second tree. 'oob' returns the out-of-bag predictions for the forest. We assume that the ordering of the observations in newdata have not changed from training. If the ordering has changed, we will get the wrong OOB indices. 'doubleOOB' is an experimental flag, which can only be used when OOBhonest = TRUE and doubleBootstrap = TRUE. When both of these settings are on, the splitting set is selected as a bootstrap sample of observations and the averaging set is selected as a bootstrap sample of the observations which were left out of bag during the splitting set selection. This leaves a third set which is the observations which were not selected in either bootstrap sample. This predict flag gives the predictions using- for each observation- only the trees in which the observation fell into this third set (so was neither a splitting nor averaging example). 'coefs' is an aggregation option which works only when linear aggregation functions have been used. This returns the linear coefficients for each linear feature which were used in the leaf node regression of each predicted point.

This is an optional argument, containing a vector of indices from the training data set that should be not be allowed to influence the predictions of the forest. When a vector of indices of training observations are given, the predictions will be made only with trees in the forest that do not contain any of these indices in either the splitting or averaging sets. This cannot be used at the same time as any other aggregation options. If 'weightMatrix = TRUE', this will return the weightMatrix corresponding to the predictions made with trees respecting holdOutIdx. If there are no trees that have held out all of the indices in holdOutIdx, then the predictions will return NaN.

This is an optional parameter to give the indices of the observations in 'newdata' from the training data set. This is used when we want to run predict on only a subset of observations from the training data set and use 'aggregation = "oob"' or 'aggregation = "doubleOOB"'. For example, at the tree level, a tree make out of bag ('aggregation = "oob"') predictions for the indices in the set setdiff(trainingIdx,tree$averagingIndices) and will make double out-of-bag predictions for the indices in the set setdiff(trainingIdx,union(tree$averagingIndices,tree$splitttingIndices)). Note, this parameter must be set when predict is called with an out-of-bag aggregation option on a data set not matching the original training data size. The order of indices in 'trainingIdx' also needs to match the order of observations in newdata. So for an arbitrary index set 'trainingIdx' and dataframe 'newdata', of the same size as the training set, the predictions from 'predict(rf, newdata[trainingIdx,], aggregation = "oob", trainingIdx = trainingIdx)' should match the predictions of to 'predict(rf, newdata, aggregation = "oob")[trainingIdx]'. This option also works with the 'weightMatrix' option and will return the (smaller)
Predict-Multilayer-Forestry

Return the prediction from the forest.

Usage

```r
## S3 method for class 'multilayerForestry'
predict(
  object,
  newdata,
  aggregation = "average",
  seed = as.integer(runif(1) * 10000),
  nthread = 0,
  exact = NULL,
  ...,
)
```

Value

A vector of predicted responses.

Description

Return the prediction from the forest.
predictInfo

Arguments

object A 'multilayerForestry' object.
newdata A data frame of testing predictors.
aggregation How shall the leaf be aggregated. The default is to return the mean of the leave 'average'. Other options are 'weightMatrix' which returns the adaptive nearest neighbor weights used to construct the predictions.
seed random seed
nthread The number of threads with which to run the predictions with. This will default to the number of threads with which the forest was trained with.
extact This specifies whether the forest predictions should be aggregated in a reproducible ordering. Due to the non-associativity of floating point addition, when we predict in parallel, predictions will be aggregated in varied orders as different threads finish at different times. By default, exact is TRUE unless N > 100,000 or a custom aggregation function is used.

... additional arguments.

Value

A vector of predicted responses.

predictInfo predictInfo-forestry

Description

Get the observations which are used to predict for a set of new observations using either all trees (for out of sample observations), or tree for which the observation is out of averaging set or out of sample entirely.

Usage

predictInfo(object, newdata, aggregation = "average")

Arguments

object A 'forestry' object.
newdata Data on which we want to do predictions. Must be the same length as the training set if we are doing 'oob' or 'doubleOOB' aggregation.
aggregation Specifies which aggregation version is used to predict for the observation, must be one of 'average','oob', and 'doubleOOB'.
Value

A list with four entries. ‘weightMatrix’ is a matrix specifying the weight given to training observation i when prediction on observation j. ‘avgIndices’ gives the indices which are in the averaging set for each new observation. ‘avgWeights’ gives the weights corresponding to each averaging observation returned in ‘avgIndices’. ‘obsInfo’ gives the full observation vectors which were used to predict for an observation, as well as the weight given each observation.

Description

Perform preprocessing for the testing data, including converting data to dataframe, and testing if the columns are consistent with the training data and encoding categorical data into numerical representation in the same way as training data.

Usage

preprocess_testing(x, categoricalFeatureCols, categoricalFeatureMapping)

Arguments

x
A data frame of all training predictors.
categoricalFeatureCols
A list of index for all categorical data. Used for trees to detect categorical columns.
categoricalFeatureMapping
A list of encoding details for each categorical column, including all unique factor values and their corresponding numeric representation.

Value

A preprocessed training dataset x

Description

Perform preprocessing for the training data, including converting data to dataframe, and encoding categorical data into numerical representation.

Usage

preprocess_training(x, y)
saveForestry

Arguments

- `x` A data frame of all training predictors.
- `y` A vector of all training responses.

Value

A list of two datasets along with necessary information that encodes the preprocessing.

relinkCPP_prt

Description

When a ‘forestry’ object is saved and then reloaded the Cpp pointers for the data set and the Cpp forest have to be reconstructed.

Usage

`relinkCPP_prt(object)`

Arguments

- `object` an object of class ‘forestry’ or class ‘multilayerForestry’

Value

Relinks the pointer to the correct C++ object.

saveForestry

Description

This wrapper function checks the forestry object, makes it saveable if needed, and then saves it.

Usage

`saveForestry(object, filename, ...)`

Arguments

- `object` an object of class ‘forestry’
- `filename` a filename in which to store the ‘forestry’ object
- `...` additional arguments useful for specifying compression type and level

Value

Saves the forest into filename.
scale_center

Description
Given a dataframe, scale and center the continuous features

Usage

\[
scale_center(x, \text{categoricalFeatureCols}, \text{colMeans}, \text{colSd})
\]

Arguments
- **x**: A dataframe in order to be processed.
- **categoricalFeatureCols**: A vector of the categorical features, we don’t want to scale/center these. Should be 1-indexed.
- **colMeans**: A vector of the means to center each column.
- **colSd**: A vector of the standard deviations to scale each column with.

Value
A scaled and centered dataset x

testing_data_checker-forestry

Test data check

Description
Check the testing data to do prediction

Usage

\[
testing_data_checker(\text{object}, \text{newdata}, \text{hasNas})
\]

Arguments
- **object**: A forestry object.
- **newdata**: A data frame of testing predictors.
- **hasNas**: TRUE if the there were NAs in the training data FALSE otherwise.

Value
A feature dataframe if it can be used for new predictions.
training_data_checker Training data check

Description
Check the input to forestry constructor

Usage
training_data_checker(
 x,
 y,
 ntree,
 replace,
 sampsize,
 mtry,
 nodesizeSpl,
 nodesizeAvg,
 nodesizeStrictSpl,
 nodesizeStrictAvg,
 minSplitGain,
 maxDepth,
 interactionDepth,
 splitratio,
 OOBhonest,
 nthread,
 middleSplit,
 doubleTree,
 linFeats,
 monotonicConstraints,
 groups,
 featureWeights,
 deepFeatureWeights,
 observationWeights,
 linear,
 symmetric,
 scale,
 hasNas
)

Arguments

x A data frame of all training predictors.
y A vector of all training responses.
ntree The number of trees to grow in the forest. The default value is 500.
replace An indicator of whether sampling of training data is with replacement. The default value is TRUE.

sampsize The size of total samples to draw for the training data. If sampling with replacement, the default value is the length of the training data. If sampling without replacement, the default value is two-thirds of the length of the training data.

mtry The number of variables randomly selected at each split point. The default value is set to be one-third of the total number of features of the training data.

nodesizeSpl Minimum observations contained in terminal nodes. The default value is 5.

nodesizeAvg Minimum size of terminal nodes for averaging dataset. The default value is 5.

nodesizeStrictSpl Minimum observations to follow strictly in terminal nodes. The default value is 1.

nodesizeStrictAvg The minimum size of terminal nodes for averaging data set to follow when predicting. No splits are allowed that result in nodes with observations less than this parameter. This parameter enforces overlap of the averaging data set with the splitting set when training. When using honesty, splits that leave less than nodesizeStrictAvg averaging observations in either child node will be rejected, ensuring every leaf node also has at least nodesizeStrictAvg averaging observations. The default value is 1.

minSplitGain Minimum loss reduction to split a node further in a tree.

maxDepth Maximum depth of a tree. The default value is 99.

interactionDepth All splits at or above interaction depth must be on variables that are not weighting variables (as provided by the interactionVariables argument).

splitratio Proportion of the training data used as the splitting dataset. It is a ratio between 0 and 1. If the ratio is 1 (the default), then the splitting set uses the entire data, as does the averaging set—i.e., the standard Breiman RF setup. If the ratio is 0, then the splitting data set is empty, and the entire dataset is used for the averaging set (This is not a good usage, however, since there will be no data available for splitting).

OOBhonest In this version of honesty, the out-of-bag observations for each tree are used as the honest (averaging) set. This setting also changes how predictions are constructed. When predicting for observations that are out-of-sample (using predict(..., aggregation = "average")), all the trees in the forest are used to construct predictions. When predicting for an observation that was in-sample (using predict(..., aggregation = "oob")), only the trees for which that observation was not in the averaging set are used to construct the prediction for that observation. aggregation="oob" (out-of-bag) ensures that the outcome value for an observation is never used to construct predictions for a given observation even when it is in sample. This property does not hold in standard honesty, which relies on an asymptotic subsampling argument. By default, when OOBhonest = TRUE, the out-of-bag observations for each tree are resamples with replacement to be used for the honest (averaging) set. This results in a third set of observations that are left out of both the splitting and averaging set, we call these the double out-of-bag (doubleOOB) observations. In order to get the predictions of only the trees
in which each observation fell into this doubleOOB set, one can run `predict(..., aggregation = "doubleOOB")`. In order to not do this second bootstrap sample, the doubleBootstrap flag can be set to FALSE.

nthread
Number of threads to train and predict the forest. The default number is 0 which represents using all cores.

middleSplit
Indicator of whether the split value is takes the average of two feature values. If FALSE, it will take a point based on a uniform distribution between two feature values. (Default = FALSE)

doubleTree
if the number of tree is doubled as averaging and splitting data can be exchanged to create decorrelated trees. (Default = FALSE)

linFeats
A vector containing the indices of which features to split linearly on when using linear penalized splits (defaults to use all numerical features).

monotonicConstraints
Specifies monotonic relationships between the continuous features and the outcome. Supplied as a vector of length p with entries in 1,0,-1 which 1 indicating an increasing monotonic relationship, -1 indicating a decreasing monotonic relationship, and 0 indicating no constraint. Constraints supplied for categorical variable will be ignored.

groups
A vector of factors specifying the group membership of each training observation. these groups are used in the aggregation when doing out of bag predictions in order to predict with only trees where the entire group was not used for aggregation. This allows the user to specify custom subgroups which will be used to create predictions which do not use any data from a common group to make predictions for any observation in the group. This can be used to create general custom resampling schemes, and provide predictions consistent with the Out-of-Group set.

featureWeights
weights used when subsampling features for nodes above or at interactionDepth.

deepFeatureWeights
weights used when subsampling features for nodes below interactionDepth.

observationWeights
Denotes the weights for each training observation that determine how likely the observation is to be selected in each bootstrap sample. This option is not allowed when sampling is done without replacement.

linear
Indicator that enables Ridge penalized splits and linear aggregation functions in the leaf nodes. This is recommended for data with linear outcomes. For implementation details, see: https://arxiv.org/abs/1906.06463. Default is FALSE.

symmetric
Used for the experimental feature which imposes strict symmetric marginal structure on the predictions of the forest through only selecting symmetric splits with symmetric aggregation functions. Should be a vector of size ncol(x) with a single 1 entry denoting the feature to enforce symmetry on. Defaults to all zeroes. For version >= 0.9.0.83, we experimentally allow more than one feature to enforce symmetry at a time. This should only be used for a small number of features as it has a runtime that is exponential in the number of symmetric features (O(N 2^|S|) where S is the set of symmetric features).
A parameter which indicates whether or not we want to scale and center the covariates and outcome before doing the regression. This can help with stability, so by default is TRUE.

hasNas indicates if there is any missingness in x.

Value

A list of parameters after checking the selected parameters are valid.

Description

Given a dataframe, unscale and uncenter the continuous features.

Usage

unscale_uncenter(x, categoricalFeatureCols, colMeans, colSd)

Arguments

- **x**: A dataframe in order to be processed.
- **categoricalFeatureCols**: A vector of the categorical features, we don’t want to scale/center these. Should be 1-indexed.
- **colMeans**: A vector of the means to add to each column.
- **colSd**: A vector of the standard deviations to rescale each column with.

Value

A dataset x in it’s original scaling
Index

adaptiveForestry
 (adaptiveForestry-forestry), 3
adaptiveForestry-forestry, 3
addTrees, 7
autoforestry, 7
autohonestRF, 8
compute_lp(compute_lp-forestry), 9
compute_lp-forestry, 9
correctedPredict, 10
CppToR_translator, 12
forest_checker, 18
forestry, 12, 20, 21
forestry-class, 17
getCI, 18
getOOB (getOOB-forestry), 19
getOOB, forestry-method
 (getOOB-forestry), 19
getOOB-forestry, 19
getOOBpreds (getOOBpreds-forestry), 20
getOOBpreds-forestry, 20
getSplitProps (getSplitProps-forestry), 20
getSplitProps-forestry, 20
getVI, 21
honestRF, 22
impute_features, 22
loadForestry, 23
make_savable, 24
make_savable, forestry-method
 (make_savable), 24
multilayer-forestry, 25
multilayerForestry
 (multilayer-forestry), 25
plot-forestry, 29
plot.forestry (plot-forestry), 29
predict-adaptiveForestry, 30
predict-forestry, 31
predict-multilayer-forestry, 33
predict.adaptiveForestry
 (predict-adaptiveForestry), 30
predict.forestry (predict-forestry), 31
predict.multilayerForestry
 (predict-multilayer-forestry), 33
predictInfo, 34
preprocess_testing, 35
preprocess_training, 35
relinkCPP_prt, 36
saveForestry, 36
scale_center, 37

testing_data_checker
 (testing_data_checker-forestry), 37

testing_data_checker-forestry, 37
training_data_checker, 38
unscale_uncenter, 41