Package ‘RobStatTM’

March 3, 2020

Version 1.0.2
Date 2020-03-02
Title Robust Statistics: Theory and Methods
Depends R (>= 3.5.0), fit.models
Imports stats, graphics, utils, methods, DEoptimR, pyinit, rrcov, robustbase, shiny, shinyjs, PerformanceAnalytics, DT, ggplot2, gridExtra, xts
Suggests knitr, R.rsp
LazyData yes
License GPL (>= 3)
RoxygenNote 6.1.1
Encoding UTF-8
VignetteBuilder knitr, R.rsp
NeedsCompilation yes
Author Matias Salibian-Barrera [cre],
 Victor Yohai [aut],
 Ricardo Maronna [aut],
 Doug Martin [aut],
 Gregory Brownson [aut] (ShinyUI),
 Kjell Konis [aut],
 Kjell Konis [cph] (erfi),
 Christophe Croux [ctb] (WBYlogreg, BYlogreg),
 Gentiane Haesbroeck [ctb] (WBYlogreg, BYlogreg),
 Martin Maechler [cph] (lmrob.fit, lmrob..M..fit, lmrob.S),
 Manuel Koller [cph] (lmrob.fit, .vcov.avar1, lmrob.S, lmrob.lar),
 Matias Salibian-Barrera [aut]
Maintainer Matias Salibian-Barrera <matias@stat.ubc.ca>
Repository CRAN
Date/Publication 2020-03-03 00:30:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohol</td>
<td>3</td>
</tr>
<tr>
<td>algae</td>
<td>4</td>
</tr>
<tr>
<td>biochem</td>
<td>5</td>
</tr>
<tr>
<td>bisquare</td>
<td>5</td>
</tr>
<tr>
<td>bus</td>
<td>6</td>
</tr>
<tr>
<td>cov.dcml</td>
<td>7</td>
</tr>
<tr>
<td>covClassic</td>
<td>7</td>
</tr>
<tr>
<td>covRob</td>
<td>9</td>
</tr>
<tr>
<td>covRobMM</td>
<td>10</td>
</tr>
<tr>
<td>covRobRocke</td>
<td>11</td>
</tr>
<tr>
<td>DCML</td>
<td>13</td>
</tr>
<tr>
<td>drop1.lmrobdetMM</td>
<td>14</td>
</tr>
<tr>
<td>fastmve</td>
<td>15</td>
</tr>
<tr>
<td>flour</td>
<td>16</td>
</tr>
<tr>
<td>glass</td>
<td>17</td>
</tr>
<tr>
<td>hearing</td>
<td>17</td>
</tr>
<tr>
<td>image</td>
<td>18</td>
</tr>
<tr>
<td>initPP</td>
<td>19</td>
</tr>
<tr>
<td>INVTR2</td>
<td>20</td>
</tr>
<tr>
<td>lmrobdet.control</td>
<td>21</td>
</tr>
<tr>
<td>lmrobdetDCML</td>
<td>23</td>
</tr>
<tr>
<td>lmrobdetMM</td>
<td>25</td>
</tr>
<tr>
<td>lmrobdetMM.RFPE</td>
<td>27</td>
</tr>
<tr>
<td>lmrobLinTest</td>
<td>28</td>
</tr>
<tr>
<td>lmrobM</td>
<td>29</td>
</tr>
<tr>
<td>lmrobM.control</td>
<td>31</td>
</tr>
<tr>
<td>locScaleM</td>
<td>32</td>
</tr>
<tr>
<td>logregBY</td>
<td>33</td>
</tr>
<tr>
<td>logregWBY</td>
<td>34</td>
</tr>
<tr>
<td>logregWML</td>
<td>35</td>
</tr>
<tr>
<td>mineral</td>
<td>36</td>
</tr>
<tr>
<td>MMPY</td>
<td>37</td>
</tr>
<tr>
<td>mopt</td>
<td>38</td>
</tr>
<tr>
<td>neuralgia</td>
<td>38</td>
</tr>
<tr>
<td>oats</td>
<td>39</td>
</tr>
<tr>
<td>opt</td>
<td>40</td>
</tr>
<tr>
<td>pcaRobS</td>
<td>40</td>
</tr>
<tr>
<td>pcompRob</td>
<td>42</td>
</tr>
<tr>
<td>refine.sm</td>
<td>43</td>
</tr>
<tr>
<td>resex</td>
<td>44</td>
</tr>
<tr>
<td>rho</td>
<td>45</td>
</tr>
<tr>
<td>rhoPrime</td>
<td>46</td>
</tr>
<tr>
<td>rhoPrime2</td>
<td>47</td>
</tr>
<tr>
<td>scaleM</td>
<td>48</td>
</tr>
<tr>
<td>ShinyUI</td>
<td>49</td>
</tr>
<tr>
<td>shock</td>
<td>49</td>
</tr>
</tbody>
</table>
Description

This data set contains physicochemical characteristics of 44 aliphatic alcohols. The aim of the experiment was the prediction of the solubility on the basis of molecular descriptors.

Usage

data(alcohol)

Format

An object of class "data.frame".

Details

Source

Description

Each row of the data set is a set of 90 measurements at a river in some place in Europe. There are 11 predictors. The response is the logarithm of the abundance of a certain class of algae. Description: The columns are: 1. season, categorical (1, 2, 3, 4 for winter, spring, summer and autumn) 2. river size (categorical) (1, 2, 3 for small, medium and large) 3. fluid velocity (categorical) (1, 2, 3 for low, medium and high) 4-11 (numeric): content of nitrogen in the form of nitrates, nitrites and ammonia, and other chemical compounds. Col. 12 ia the response: abundance of a type of algae (type 6 in the complete file). For simplicity we deleted the rows with missing values and took the logarithm of the response.

Usage

data(algae)

Format

An object of class "data.frame".

Details

Format 90 rows, 12 columns (3 categorical, 9 numeric)

Source

References

References go here.

Examples

data(algae)
biochem

Biochem data

Description
Two biochemical measurements on 12 men with similar weights.

Usage
data(biochem)

Format
An object of class "data.frame".

Details
Format: Numeric, 12 rows, two columns

Source

Examples
data(biochem)

bisquare

Tuning parameter the rho loss functions

Description
This function computes the tuning constant that yields an MM-regression estimator with a desired asymptotic efficiency when computed with a rho function in the corresponding family. The output of this function can be passed to the functions lmrobdet.control, mscale and rho.

Usage
bisquare(e)

Arguments
e the desired efficiency of the corresponding regression estimator for Gaussian errors
Value
A length-1 vector with the corresponding tuning constant.

Author(s)
Kjell Konis

Examples
Tuning parameters for an 85%-efficient M-estimator at a Gaussian model
bisquare(.85)

bus	Bus data

Description
This data set corresponds to a study in automatic vehicle recognition. Each of the 218 rows corresponds to a view of a bus silhouette, and contains 18 attributes of the image. It was decided to exclude variable 9 and divide the remaining variables by their MADN’s.

Usage
data(bus)

Format
An object of class "data.frame".

Details
Description: The following features were extracted from the silhouettes. 1. compactness 2. circularity 3. distance circularity 4. radius ratio 5. principal axis aspect ratio 6. maximum length aspect ratio 7. scatter ratio 8. elongatedness 9. principal axis rectangularity 10. maximum length rectangularity 11. scaled variance along major axis 12. scaled variance along minor axis 13. scaled radius of gyration 14. skewness about major axis 15. skewness about minor axis 16. kurtosis about minor axis 17. kurtosis about major axis 18. hollows ratio

Format: Numeric, 218 rows and 18 columns.

Source

Examples
data(bus)
cov.dcml

Approximate covariance matrix of the DCML regression estimator.

Description

The estimated covariance matrix of the DCML regression estimator. This function is used internally and not meant to be used directly.

Usage

```r
cov.dcml(res.LS, res.R, CC, sig.R, t0, p, n, control)
```

Arguments

- `res.LS`: vector of residuals from the least squares fit
- `res.R`: vector of residuals from the robust regression fit
- `CC`: estimated covariance matrix of the robust regression estimator
- `sig.R`: robust estimate of the scale of the residuals
- `t0`: mixing parameter
- `p, n`: the dimensions of the problem, needed for the finite sample correction of the tuning constant of the M-scale
- `control`: a list of control parameters as returned by `lmrobdet.control`

Value

The covariance matrix estimate.

Author(s)

Victor Yohai, <victoryohai@gmail.com>

covClassic

Classical Covariance Estimation

Description

Compute an estimate of the covariance/correlation matrix and location vector using classical methods.

Usage

```r
covClassic(data, corr = FALSE, center = TRUE, distance = TRUE, na.action = na.fail, unbiased = TRUE)
```
covClassic

Arguments

data a numeric matrix or data frame containing the data.
corr a logical flag. If corr = TRUE then the estimated correlation matrix is computed.
center a logical flag or a numeric vector of length p (where p is the number of columns of x) specifying the center. If center = TRUE then the center is estimated. Otherwise the center is taken to be 0.
distance a logical flag. If distance = TRUE the Mahalanobis distances are computed.
na.action a function to filter missing data. The default na.fail produces an error if missing values are present. An alternative is na.omit which deletes observations that contain one or more missing values.
unbiased a logical flag. If TRUE the unbiased estimator is returned (computed with denominator equal to n-1), else the MLE (computed with denominator equal to n) is returned.

details

Its main intention is to return an object compatible to that produced by covRob, but fit using classical methods.

Value

a list with class “covClassic” containing the following elements:
call an image of the call that produced the object with all the arguments named.
cov a numeric matrix containing the estimate of the covariance/correlation matrix.
center a numeric vector containing the estimate of the location vector.
dist a numeric vector containing the squared Mahalanobis distances. Only present if distance = TRUE in the call.
corr a logical flag. If corr = TRUE then cov contains an estimate of the correlation matrix of x.

Note

Originally, and in S-PLUS, this function was called cov; it has been renamed, as that did mask the function in the standard package stats.

Examples

data(wine)
round(covClassic(wine)$cov, 2)
Description
This function computes robust estimators for multivariate location and scatter.

Usage
covRob(X, type = "auto", maxit = 50, tol = 1e-04, cor = FALSE)

Arguments
- **X**: a data matrix with observations in rows.
- **type**: a string indicating which estimator to compute. Valid options are "Rocke" for Rocke’s S-estimator, "MM" for an MM-estimator with a SHR rho function, or "auto" (default) which selects "Rocke" if the number of variables is greater than or equal to 10, and "MM" otherwise.
- **maxit**: Maximum number of iterations, defaults to 50.
- **tol**: Tolerance for convergence, defaults to 1e-4.
- **cor**: A logical value. If TRUE a correlation matrix is included in the element cor of the returned object. Defaults to FALSE.

Details
This function computes robust estimators for multivariate location and scatter. The default behaviour (type = "auto") computes a "Rocke" estimator (as implemented in covRobRocke) if the number of variables is greater than or equal to 10, and an MM-estimator with a SHR rho function (as implemented in covRobMM) otherwise.

Value
A list with class “covClassic” with the following components:
- **mu**: The location estimate
- **V**: The scatter matrix estimate, scaled for consistency at the normal distribution
- **center**: The location estimate. Same as mu above.
- **cov**: The scatter matrix estimate, scaled for consistency at the normal distribution. Same as V above.
- **cor**: The correlation matrix estimate, if the argument cor equals TRUE. Otherwise it is set to NULL.
- **dist**: Robust Mahalanobis distances

Author(s)
Ricardo Maronna, <rmaronna@retina.ar>
covRobMM

MM robust multivariate location and scatter estimator

Description

This function computes an MM robust estimator for multivariate location and scatter with the "SHR" loss function.

Usage

covRobMM(X, maxit = 50, tolpar = 1e-04, cor = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>a data matrix with observations in rows.</td>
</tr>
<tr>
<td>maxit</td>
<td>Maximum number of iterations.</td>
</tr>
<tr>
<td>tolpar</td>
<td>Tolerance to decide convergence.</td>
</tr>
<tr>
<td>cor</td>
<td>A logical value. If TRUE a correlation matrix is included in the element cor of the returned object. Defaults to FALSE.</td>
</tr>
</tbody>
</table>

Details

This function computes an MM robust estimator for multivariate location and scatter with the "SHR" loss function.
Value

A list with class “covRob” containing the following elements

- **mu**
 The location estimate

- **V**
 The scatter or correlation matrix estimate, scaled for consistency at the normal distribution

- **center**
 The location estimate. Same as **mu** above.

- **cov**
 The scatter matrix estimate, scaled for consistency at the normal distribution. Same as **V** above.

- **cor**
 The correlation matrix estimate, if the argument **cor** equals TRUE. Otherwise it is set to NULL.

- **dista**
 Robust Mahalanobis distances

Author(s)

Ricardo Maronna, <rmaronna@retina.ar>

References

Examples

```r
data(bus)
X0 <- as.matrix(bus)
X1 <- X0[, -9]
tmp <- covRobMM(X1)
round(tmp$cov[1:10, 1:10], 3)
tmp$mu
```

covRobRocke
Rocke’s robust multivariate location and scatter estimator

Description

This function computes Rocke’s robust estimator for multivariate location and scatter.

Usage

```r
covRobRocke(X, initial = "K", maxsteps = 5, propmin = 2, qs = 2,
maxit = 50, tol = 1e-04, cor = FALSE)
```
Arguments

- **X**: a data matrix with observations in rows.
- **initial**: A character indicating the initial estimator. Valid options are 'K' (default) for the Pena-Prieto 'KSD' estimate, and 'mve' for the Minimum Volume Ellipsoid.
- **maxsteps**: Maximum number of steps for the line search section of the algorithm.
- **propmin**: Regulates the proportion of weights computed from the initial estimator that will be different from zero. The number of observations with initial non-zero weights will be at least p (the number of columns of X) times propmin.
- **qs**: Tuning parameter for Rocke’s loss functions.
- **maxit**: Maximum number of iterations.
- **tol**: Tolerance to decide convergence.
- **cor**: A logical value. If TRUE a correlation matrix is included in the element cor of the returned object. Defaults to FALSE.

Details

This function computes Rocke’s robust estimator for multivariate location and scatter.

Value

A list with class “covRob” containing the following elements:

- **mu**: The location estimate
- **V**: The scatter (or correlation) matrix estimate, scaled for consistency at the normal distribution
- **center**: The location estimate. Same as mu above.
- **cov**: The scatter matrix estimate, scaled for consistency at the normal distribution. Same as V above.
- **cor**: The correlation matrix estimate, if the argument cor equals TRUE. Otherwise it is set to NULL.
- **dista**: Robust Mahalanobis distances.
- **w**: weights
- **gamma**: Final value of the constant gamma that regulates the efficiency.

Author(s)

Ricardo Maronna, <rmaronna@retina.ar>

References

http://www.wiley.com/go/maronna/robust
Examples

```r
data(bus)
X0 <- as.matrix(bus)
X1 <- X0[, -9]
tmp <- covRobRocke(X1)
round(tmp$cov[1:10, 1:10], 3)
tmp$mu
```

DCML
DCML regression estimator

Description

This function computes the DCML regression estimator. This function is used internally by `lmrobdetDCML`, and not meant to be used directly.

Usage

```r
DCML(x, y, z, z0, control)
```

Arguments

- `x`: design matrix
- `y`: response vector
- `z`: robust fit as returned by `MMPY` or `SMPY`
- `z0`: least squares fit as returned by `lm.fit`
- `control`: a list of control parameters as returned by `lmrobdet.control`

Value

A list with the following components:

- `coefficients`: the vector of regression coefficients
- `cov`: the estimated covariance matrix of the DCML regression estimator
- `residuals`: the vector of regression residuals from the DCML fit
- `scale`: a robust residual (M-)scale estimate
- `t0`: the mixing proportion between the least squares and robust regression estimators

Author(s)

Victor Yohai, `<victoryohai@gmail.com>`, Matias Salibian-Barrera, `<matias@stat.ubc.ca>`

References

See Also

DCML, MMPY, SMPY

drop1.lmrobdetMM

*RFPE of submodels of an *lmrobdetMM* fit*

Description

This function computes the RFPE for the MM-estimators obtained with *lmrobdetMM* by recomputing it, successively removing each of a number of specified terms. It is used internally by *step.lmrobdetMM* and not meant to be used directly.

Usage

```r
## S3 method for class 'lmrobdetMM'
drop1(object, scope, scale, keep, ...)
```

Arguments

- `object`: the MM element (of class *lmrob*) in an object of class *lmrobdetMM*.
- `scope`: an optional formula giving the terms to be considered for dropping. Typically this argument is omitted, in which case all possible terms are dropped (without breaking hierarchy rules). The scope can also be a character vector of term labels. If the argument is supplied as a formula, any . is interpreted relative to the formula implied by the object argument.
- `scale`: an optional residual scale estimate. If missing the residual scale estimate in object is used.
- `keep`: a character vector of names of components that should be saved for each subset model. Only names from the set "coefficients", "fitted" and "residuals" are allowed. If `keep == TRUE`, the complete set is saved. The default behavior is not to keep anything.
- `...`: additional parameters to match generic method `drop1`

Value

An anova object consisting of the term labels, the degrees of freedom, and Robust Final Prediction Errors (RFPE) for each subset model. If `keep` is missing, the anova object is returned. If `keep` is present, a list with components "anova" and "keep" is returned. In this case, the "keep" component is a matrix of mode "list", with a column for each subset model, and a row for each component kept.

Author(s)

Victor Yohai, <victoryohai@gmail.com>, Matias Salibian-Barrera, <matias@stat.ubc.ca>
fastmve

References

http://www.wiley.com/go/maronna/robust

See Also

lmrobdetMM

Description

This function uses a fast algorithm to compute the Minimum Volume Ellipsoid (MVE) for multivariate location and scatter.

Usage

fastmve(x, nsamp = 500)

Arguments

x

data matrix (n x p) with cases stored in rows.

nsamp

number of random starts for the iterative algorithm, these are constructed using subsamples of the data.

Details

This function computes the Minimum Volume Ellipsoid (MVE) for multivariate location and scatter, using a fast algorithm related to the fast algorithm for S-regression estimators (see lmrob).

Value

A list with the following components:

center

a vector with the robust multivariate location estimate

cov

a matrix with the robust covariance / scatter matrix estimate

scale

A scalar that equals the median of the mahalanobis distances of the data to the center, multiplied by the determinant of the covariance matrix to the power 1/p

best

Indices of the observations that correspond to the MVE estimator

nsamp

Number of random starts used for the iterative algorithm

nsing

Number of random subsamples (among the nsamp attempted) that failed (resulting in singular initial values)

Author(s)

Matias Salibian-Barrera, <matias@stat.ubc.ca>
Flour

Flour data

Description

Determinations of the copper content in wholemeal flour (in parts per million), sorted in ascending order. Format: numeric vector of size 24.

Usage

`data(flour)`

Format

An object of class "data.frame".

Source

References

References go here.

Examples

```r
data(flour)
```
glass

Glass data

Description

Measurements of the presence of seven chemical constituents in 76 pieces of glass from nonfloat car windows.

Usage

```r
data(glass)
```

Format

An object of class "data.frame".

Details

Format: 76 cases and 7 continuous variables. Description: The columns are: 1. RI refractive index 2. Na2O sodium oxide (unit measurement: weight percent in corresponding oxide, as are the rest of attributes) 3. MgO magnesium oxide 4. Al2O3 aluminum oxide 5. SiO2 silcon oxide 6. K2O potassium oxide 7. CaO calcium oxide

Source

Examples

```r
data(glass)
```

hearing

Hearing data

Description

Prevalence rates in percent for men aged 55–64 with hearing levels 16 decibels or more above the audiometric zero.

Usage

```r
data(hearing)
```

Format

An object of class "data.frame".
Details

Format: Two-way ANOVA. Description: The rows correspond to different frequencies and to normal speech. 1. 500 hertz 2. 1000 hertz 3. 2000 hertz 4. 3000 hertz 5. 4000 hertz 6. 6000 hertz 7. Normal speech The columns classify the data in seven occupational groups: 1. professional–managerial 2. farm 3. clerical sales 4. craftsmen 5. operatives 6. service 7. laborers

Source

Roberts, J. and Cohrsen, J. (1968), Hearing levels of adults, US National Center for Health Statistics Publications, Series 11, No. 31

Examples

data(hearing)

data(image)

Description

These data are part of a synthetic aperture satellite radar image corresponding to a suburb of Munich, and contain the values corresponding to three frequency bands for each of 1573 pixels of a radar image.

Usage

data(image)

Format

An object of class "data.frame".

Details

Format: 1573 cases and 3 variables.

Source

Source: Frery, A. (2005), Personal communication.

Examples

data(image)
Description

This function computes robust multivariate location and scatter estimators using both random and deterministic starting points.

Usage

initPP(X, muldirand = 20, mldifix = 10, dirmin = 1000)

Arguments

X a data matrix with observations in rows.
muldirand used to determine the number of random directions (candidates), which is \(\max(p \times \text{muldirand}, \text{dirmin}) \), where \(p \) is the number of columns in \(X \).
mldifix used to determine the number of random directions (candidates), which is \(\min(n, 2 \times \text{mldifix} \times p) \).
dirmin minimum number of random directions

Details

This function computes robust multivariate location and scatter using both Pen~a-Prieto and random candidates.

Value

A list with the following components:

idx A zero/one vector with ones in the positions of the suspected outliers
disma Robust squared Mahalanobis distances
center Robust mean estimate
cova Robust covariance matrix estimate	 Outlyingness of data points

Author(s)

Ricardo Maronna, <rmaronna@retina.ar>, based on original code by D. Pen~a and J. Prieto

References

http://www.wiley.com/go/maronna/robust
Examples

```r
data(bus)
X0 <- as.matrix(bus)
X1 <- X0[, -9]
tmp <- initPP(X1)
round(tmp$cov[1:10, 1:10], 3)
tmp$center
```

INVTR2
Robust R^2 coefficient of determination

Description
This function computes a robust version of the R^2 coefficient of determination. It is used internally by `lmrobdetMM`, and not meant to be used directly.

Usage
`INVTR2(RR2, family, cc)`

Arguments

- `RR2`
 the proportional difference in loss functions (a naive robust R^2 coefficient).

- `family`
 family string specifying the name of the family of loss function to be used (current valid options are "bisquare", "opt" and "mopt").

- `cc`
 tuning parameters to be computed according to efficiency and / or breakdown considerations. See `lmrobdet.control`, `bisquare`, `mopt` and `opt`.

Details

This function computes a robust version of the R^2 coefficient. It is used internally by `lmrobdetMM`, and not meant to be used directly.

Value

An unbiased version of the robust R^2 coefficient of determination.

Author(s)

Victor Yohai, `<victoryohai@gmail.com>`

References

lmrobdet.control

Tuning parameters for lmrobdetMM and lmrobdetDCML

Description

This function sets tuning parameters for the MM estimator implemented in `lmrobdetMM` and the Distance Constrained Maximum Likelihood regression estimators computed by `lmrobdetDCML`.

Usage

```r
lmrobdet.control(bb = 0.5, efficiency = 0.95, family = "mopt",
                 tuning.psi, tuning.chi, compute.rd = FALSE, corr.b = TRUE,
                 split.type = "f", initial = "S", max.it = 100,
                 refine.tol = 1e-07, rel.tol = 1e-07, refine.PY = 10,
                 solve.tol = 1e-07, trace.lev = 0, psc_keep = 0.5,
                 resid_keep_method = "threshold", resid_keep_thresh = 2,
                 resid_keep_prop = 0.2, py_maxit = 20, py_eps = 1e-05,
                 mscale_maxit = 50, mscale_tol = 1e-06, mscale_rho_fun = "bisquare")
```

Arguments

- `bb` tuning constant (between 0 and 1/2) for the M-scale used to compute the initial S-estimator. It determines the robustness (breakdown point) of the resulting MM-estimator, which is `bb`. Defaults to 0.5.
- `efficiency` desired asymptotic efficiency of the final regression M-estimator. Defaults to 0.95.
- `family` string specifying the name of the family of loss function to be used (current valid options are "bisquare", "opt" and "mopt"). Incomplete entries will be matched to the current valid options. Defaults to "mopt".
- `tuning.psi` tuning parameters for the regression M-estimator computed with a rho function as specified with argument `family`. If missing, it is computed inside `lmrobdet.control` to match the value of `efficiency` according to the family of rho functions specified in `family`. Appropriate values for `tuning.psi` for a given desired efficiency for Gaussian errors can be constructed using the functions `bisquare`, `mopt` and `opt`.
- `tuning.chi` tuning constant for the function used to compute the M-scale used for the initial S-estimator. If missing, it is computed inside `lmrobdet.control` to match the value of `bb` according to the family of rho functions specified in `family`.
- `compute.rd` logical value indicating whether robust leverage distances need to be computed.
- `corr.b` logical value indicating whether a finite-sample correction should be applied to the M-scale parameter `bb`.
- `split.type` string determining how categorical and continuous variables are split. See `splitFrame`.
- `initial` string specifying the initial value for the M-step of the MM-estimator. Valid options are 'S', for an S-estimator and 'MS' for an M-S estimator which is appropriate when there are categorical explanatory variables in the model.
max.it maximum number of IRWLS iterations for the MM-estimator
refine.tol relative convergence tolerance for the S-estimator
rel.tol relative convergence tolerance for the IRWLS iterations for the MM-estimator
refine.PY number of refinement steps for the Pen-a-Yohai candidates
solve.tol (for the S algorithm): relative tolerance for matrix inversion. Hence, this corresponds to solve.default’s tol.
trace.lev positive values (increasingly) provide details on the progress of the MM-algorithm
psc_keep For pyinit, proportion of observations to remove based on PSCs. The effective proportion of removed observations is adjusted according to the sample size to be prosac*(1-p/n). See pyinit.
resid_keep_method
 For pyinit, how to clean the data based on large residuals. If "threshold", all observations with scaled residuals larger than C.res will be removed, if "proportion", observations with the largest prop residuals will be removed. See pyinit.
resid_keep_thresh
 See parameter resid_keep_method above. See pyinit.
resid_keep_prop
 See parameter resid_keep_method above. See pyinit.
py_maxit Maximum number of iterations. See pyinit.
py_eps Relative tolerance for convergence. See pyinit.
mscale_maxit Maximum number of iterations for the M-scale algorithm. See pyinit and mscale.
mscale_tol Convergence tolerance for the M-scale algorithm. See mscale and mscale.
mscale_rho_fun String indicating the loss function used for the M-scale. See pyinit.

Details

The argument family specifies the name of the family of loss function to be used. Current valid options are "bisquare", "opt" and "mopt"—"opt" refers to the optimal psi function defined in Section 5.8.1. of the book Robust Statistics: Theory and Methods (with R) by Maronna, Martin, Yohai and Salibian-Barrera, "mopt" is a modified version of the optimal psi function to make it strictly increasing close to 0, and to make the corresponding weight function non-increasing near 0.

Value

A list with the necessary tuning parameters.

Author(s)

Matias Salibian-Barrera, <matias@stat.ubc.ca>

See Also

pyinit, mscale.
lmrobdetDCML

Examples

```r
data(coleman, package='robustbase')
m2 <- lmrobdetMM(Y ~ ., data=coleman, control=lmrobdet.control(refine.PY=50))
m2
summary(m2)
```

lmrobdetDCML
Robust Distance Constrained Maximum Likelihood estimators for linear regression

Description

This function computes robust Distance Constrained Maximum Likelihood estimators for linear models.

Usage

```r
lmrobdetDCML(formula, data, subset, weights, na.action, model = TRUE, x = !control$compute.rd, y = FALSE, singular.ok = TRUE, contrasts = NULL, offset = NULL, control = lmrobdet.control())
```

Arguments

- **formula**: a symbolic description of the model to be fit.
- **data**: an optional data frame, list or environment containing the variables in the model. If not found in data, model variables are taken from `environment(formula)`, which usually is the root environment of the current R session.
- **subset**: an optional vector specifying a subset of observations to be used.
- **weights**: an optional vector of weights to be used in the fitting process.
- **na.action**: a function to indicates what should happen when the data contain NAs. The default is set by the `na.action` setting of `options`, and is `na.fail` if that is unset.
- **model**: logical value indicating whether to return the model frame.
- **x**: logical value indicating whether to return the model matrix.
- **y**: logical value indicating whether to return the vector of responses.
- **singular.ok**: logical value. If FALSE a singular fit produces an error.
- **contrasts**: an optional list. See the `contrasts.arg` of `model.matrix.default`.
- **offset**: this can be used to specify an a priori known component to be included in the linear predictor during fitting. An offset term can be included in the formula instead or as well, and if both are specified their sum is used.
- **control**: a list specifying control parameters as returned by the function `lmrobdet.control`.
Details

This function computes Distance Constrained Maximum Likelihood regression estimators computed using an MM-regression estimator based on Pen-a-Yohai candidates (instead of subsampling ones). This function makes use of the functions `lmrob.fit`, `lmrob.M.fit`, `vcov.avar1`, `lmrob.S` and `lmrob.lar`, from robustbase, along with utility functions used by these functions, modified so as to include use of the analytic form of the optimal psi and rho functions (for the optimal psi function, see Section 5.8.1 of Maronna, Martin, Yohai and Salibian Barrera, 2019)

Value

A list with the following components:

- **coefficients**: The estimated vector of regression coefficients
- **scale**: The estimated scale of the residuals
- **residuals**: The vector of residuals associated with the robust fit
- **converged**: Logical value indicating whether IRWLS iterations for the MM-estimator have converged
- **iter**: Number of IRWLS iterations for the MM-estimator
- **rweightsMM**: Robustness weights for the MM-estimator
- **fitted.values**: Fitted values associated with the robust fit
- **rank**: Numeric rank of the fitted linear model
- **cov**: The estimated covariance matrix of the regression estimates
- **df.residual**: The residual degrees of freedom
- **contrasts**: (only where relevant) the contrasts used
- **xlevels**: (only where relevant) a record of the levels of the factors used in fitting
- **call**: the matched call
- **model**: if requested, the model frame used
- **x**: if requested, the model matrix used
- **y**: if requested, the response vector used
- **na.action**: (where relevant) information returned by model.frame on the special handling of NAs

Author(s)

Matias Salibian-Barrera, <matias@stat.ubc.ca>, based on lmrob

References

http://www.wiley.com/go/maronna/robust

See Also

`DCML`, `MMPY`, `SMPY`
Examples

```r
data(coleman, package='robustbase')
m1 <- lmrobdetDCML(Y ~ ., data=coleman)
m1
summary(m1)
```

Description

This function computes an MM-regression estimators for linear models using deterministic starting points.

Usage

```r
lmrobdetMM(formula, data, subset, weights, na.action, model = TRUE,
            x = !control$compute.rd, y = FALSE, singular.ok = TRUE,
            contrasts = NULL, offset = NULL, control = lmrobdet.control())
```

Arguments

- **formula**: a symbolic description of the model to be fit.
- **data**: an optional data frame, list or environment containing the variables in the model. If not found in data, model variables are taken from `environment(formula)`, which usually is the root environment of the current R session.
- **subset**: an optional vector specifying a subset of observations to be used.
- **weights**: an optional vector of weights to be used in the fitting process.
- **na.action**: a function to indicates what should happen when the data contain NAs. The default is set by the `na.action` setting of `options`, and is `na.fail` if that is unset.
- **model**: logical value indicating whether to return the model frame.
- **x**: logical value indicating whether to return the model matrix.
- **y**: logical value indicating whether to return the vector of responses.
- **singular.ok**: logical value. If FALSE a singular fit produces an error.
- **contrasts**: an optional list. See the contrasts.arg of `model.matrix.default`.
- **offset**: this can be used to specify an a priori known component to be included in the linear predictor during fitting. An offset term can be included in the formula instead or as well, and if both are specified their sum is used.
- **control**: a list specifying control parameters as returned by the function `lmrobdet.control`.

This function computes MM-regression estimators computed using Pen-a-Yohai candidates (instead of subsampling ones). This function makes use of the functions \texttt{lmrob.fit}, \texttt{lmrob.M.fit}, \texttt{vcov.avar1}, \texttt{lmrob.S} and \texttt{lmrob.lar}, from robustbase, along with utility functions used by these functions, modified so as to include use of the analytic form of the optimal psi and rho functions (for the optimal psi function, see Section 5.8.1 of Maronna, Martin, Yohai and Salibian Barrera, 2019).

The estimated vector of regression coefficients
The estimated scale of the residuals
The vector of residuals associated with the robust fit
Logical value indicating whether IRWLS iterations for the MM-estimator have converged
Number of IRWLS iterations for the MM-estimator
Robustness weights for the MM-estimator
Fitted values associated with the robust fit
Numeric rank of the fitted linear model
The estimated covariance matrix of the regression estimates
The residual degrees of freedom
(only where relevant) the contrasts used
(only where relevant) a record of the levels of the factors used in fitting
the matched call
if requested, the model frame used
if requested, the model matrix used
if requested, the response vector used
(where relevant) information returned by model.frame on the special handling of NAs

Matias Salibian-Barrera, <matias@stat.ubc.ca>, based on \texttt{lmrob} from package robustbase

http://www.wiley.com/go/maronna/robust

\textbf{See Also}

\texttt{DCML}, \texttt{MMPY}, \texttt{SMPY}
Examples

```r
data(coleman, package='robustbase')
m2 <- lmrobdetMM(Y ~ ., data=coleman)
m2
summary(m2)
```

lmrobdetMM.RFPE Robust Final Prediction Error

Description

This function computes the robust Final Prediction Errors (RFPE) for a robust regression fit using M-estimates. It is used internally by `step.lmrobdetMM` and not meant to be used directly.

Usage

```r
lmrobdetMM.RFPE(object, scale = NULL)
```

Arguments

- `object`: the MM element (of class `lmrob`) in an object of class `lmrobdetMM`.
- `scale`: a numeric value specifying the scale estimate used to compute the RFPE. Usually this should be the scale estimate from an encompassing model. If `NULL`, the scale estimate in `object` is used.

Value

the robust final prediction error (numeric).

Author(s)

Victor Yohai, `<victoryohai@gmail.com>`, Matias Salibian-Barrera, `<matias@stat.ubc.ca>`

References

See Also

`lmrobdetMM`
lmrobLinTest

Robust likelihood ratio test for linear hypotheses

Description

This function computes a robust likelihood ratio test for linear hypotheses.

Usage

lmrobLinTest(object1, object2)

Arguments

object1
an lmrob object with the fit corresponding to the complete model

object2
an lmrob object with the fit corresponding to the model restricted under the null linear hypothesis.

Value

A list with the following components: c("test","chisq.pvalue","f.pvalue","df")

test
The value of the F-statistic

f.pvalue
p-value based on the F distribution

chisq.pvalue
p-value based on the chi-squared distribution

df
degrees of freedom

Author(s)

Victor Yohai, <vyohai@gmail.com>

References

http://www.wiley.com/go/maronna/robust

Examples

data(oats)
cont <- lmrobdet.control(bb = 0.5, efficiency = 0.85, family = "bisquare")
oats1M <- lmrobM(response1 ~ variety+block, control=cont, data=oats)
oats1M_var <- lmrobM(response1 ~ block, control=cont, data=oats)
(anov1M_var <- rob.linear.test(oats1M, oats1M_var))
Robust estimators for linear regression with fixed designs

Description

This function computes a robust regression estimator for a linear models with fixed designs.

Usage

```r
lmrobM(formula, data, subset, weights, na.action, model = TRUE,
       x = FALSE, y = FALSE, singular.ok = TRUE, contrasts = NULL,
       offset = NULL, control = lmrobM.control())
```

Arguments

- `formula`: a symbolic description of the model to be fit.
- `data`: an optional data frame, list or environment containing the variables in the model. If not found in data, model variables are taken from `environment(formula)`, which usually is the root environment of the current R session.
- `subset`: an optional vector specifying a subset of observations to be used.
- `weights`: an optional vector of weights to be used in the fitting process.
- `na.action`: a function to indicates what should happen when the data contain NAs. The default is set by the `na.action` setting of `options`, and is `na.fail` if that is unset.
- `model`: logical value indicating whether to return the model frame.
- `x`: logical value indicating whether to return the model matrix.
- `y`: logical value indicating whether to return the vector of responses.
- `singular.ok`: logical value. If `FALSE` a singular fit produces an error.
- `contrasts`: an optional list. See the `contrasts.arg` of `model.matrix.default`.
- `offset`: this can be used to specify an a priori known component to be included in the linear predictor during fitting. An offset term can be included in the formula instead or as well, and if both are specified their sum is used.
- `control`: a list specifying control parameters as returned by the function `lmrobM.control`.

Details

This function computes robust regression estimators for linear models with fixed designs. It computes an L1 estimator, and uses it as a starting point to find a minimum of a re-descending M estimator. The scale is set to a quantile of the absolute residuals from the L1 estimator. This function makes use of the functions `lmrob.fit`, `lmrob.M.fit`, `vcov.avar1`, `lmrob.S`, and `lmrob.lar`, from robustbase, along with utility functions used by these functions, modified so as to include use of the analytic form of the optimal psi and rho functions (for the optimal psi function, see Section 5.8.1 of Maronna, Martin, Yohai and Salibian Barrera, 2019)
Value

A list with the following components:

coefficients The estimated vector of regression coefficients
scale The estimated scale of the residuals
residuals The vector of residuals associated with the robust fit
converged Logical value indicating whether IRWLS iterations for the MM-estimator have converged
iter Number of IRWLS iterations for the MM-estimator
rweights Robustness weights for the MM-estimator
fitted.values Fitted values associated with the robust fit
rank Numeric rank of the fitted linear model
cov The estimated covariance matrix of the regression estimates
df.residual The residual degrees of freedom
contrasts (only where relevant) the contrasts used
xlevels (only where relevant) a record of the levels of the factors used in fitting
call the matched call
model if requested, the model frame used
x if requested, the model matrix used
y if requested, the response vector used
na.action (where relevant) information returned by model.frame on the special handling of NAs

Author(s)

Victor Yohai, <vyohai@gmail.com>, based on lmrob

References

http://www.wiley.com/go/maronna/robust

Examples

data(shock)
cont <- lmrobM.control(bb = 0.5, efficiency = 0.85, family = "bisquare")
shockrob <- lmrobM(time ~ n.shocks, data = shock, control=cont)
shockrob
summary(shockrob)
Description

This function sets tuning parameters for the M estimators of regression implemented in \texttt{lmrobM}.

Usage

\begin{verbatim}
 lmrobM.control(bb = 0.5, efficiency = 0.99, family = "opt",
 tuning.chi, tuning.psi, max.it = 100, rel.tol = 1e-07,
 mscale_tol = 1e-06, mscale_maxit = 50, trace.lev = 0)
\end{verbatim}

Arguments

- \texttt{bb} tuning constant (between 0 and 1/2) for the M-scale used to compute the residual scale estimator. Defaults to 0.5.
- \texttt{efficiency} desired asymptotic efficiency of the final regression M-estimator. Defaults to 0.85.
- \texttt{family} string specifying the name of the family of loss function to be used (current valid options are "bisquare", "opt" and "mopt"). Incomplete entries will be matched to the current valid options.
- \texttt{tuning.chi} tuning constant for the function used to compute the M-scale used for the residual scale estimator. If missing, it is computed inside \texttt{lmrobdet.control} to match the value of \texttt{bb} according to the family of rho functions specified in \texttt{family}.
- \texttt{tuning.psi} tuning parameters for the regression M-estimator computed with a rho function as specified with argument \texttt{family}. If missing, it is computed inside \texttt{lmrobdet.control} to match the value of \texttt{efficiency} according to the family of rho functions specified in \texttt{family}. Appropriate values for \texttt{tuning.psi} for a given desired efficiency for Gaussian errors can be constructed using the functions \texttt{bisquare}, \texttt{mopt} and \texttt{opt}.
- \texttt{max.it} maximum number of IRWLS iterations for the M-estimator
- \texttt{rel.tol} relative convergence tolerance for the IRWLS iterations for the M-estimator
- \texttt{mscale_tol} Convergence tolerance for the M-scale algorithm. See \texttt{mscale}.
- \texttt{mscale_maxit} Maximum number of iterations for the M-scale algorithm. See \texttt{mscale}.
- \texttt{trace.lev} positive values (increasingly) provide details on the progress of the M-algorithm

Value

A list with the necessary tuning parameters.

Author(s)

Matias Salibian-Barrera, <matias@stat.ubc.ca>
Examples

data(coleman, package='robustbase')
m2 <- lmrobM(Y ~ ., data=coleman, control=lmrobM.control())
m2
summary(m2)

locScaleM

Robust univariate location and scale M-estimators

Description

This function computes M-estimators for location and scale.

Usage

locScaleM(x, psi = "mopt", eff = 0.95, maxit = 50, tol = 1e-04,
na.rm = FALSE)

Arguments

x a vector of univariate observations
psi a string indicating which score function to use. Valid options are "bisquare",
"huber", "opt" and "mopt".
eff desired asymptotic efficiency. Valid options are 0.85, 0.9 and 0.95 (default) when
psi = "bisquare" or "huber", and 0.85, 0.9, 0.95 (default) and 0.99 when
psi = "opt" or "mopt".
maxit maximum number of iterations allowed.
tol tolerance to decide convergence of the iterative algorithm.
na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds. Defaults to FALSE

Details

This function computes M-estimators for location and scale.

Value

A list with the following components:

mu The location estimate
std.mu Estimated standard deviation of the location estimator mu
disper M-scale/dispersion estimate

Author(s)

Ricardo Maronna, <rmaronna@retina.ar>
logregBY

Bianco and Yohai estimator for logistic regression

Description
This function computes the M-estimator proposed by Bianco and Yohai for logistic regression. By default, an intercept term is included and p parameters are estimated. Modified by Yohai (2018) to take as initial estimator a weighted ML estimator with weights derived from the MCD estimator. For more details we refer to Croux, C., and Haesbroeck, G. (2002), "Implementing the Bianco and Yohai estimator for Logistic Regression"

Usage
logregBY(x0, y, intercept = 1, const = 0.5, kmax = 1000, maxhalf = 10)

Arguments
x0 matrix of explanatory variables;
y vector of binomial responses (0 or 1);
intercept 1 or 0 indicating if an intercept is included or or not
const tuning constant used in the computation of the estimator (default=0.5);
kmax maximum number of iterations before convergence (default=1000);
maxhalf max number of step-halving (default=10).

Value
A list with the following components:

coefficients estimates for the regression coefficients
standard.deviation standard deviations of the coefficients

Examples
set.seed(123)
r <- rnorm(150, sd=1.5)
locScaleM(r)
10% of outliers, sd of good points is 1.5
set.seed(123)
r2 <- c(rnorm(135, sd=1.5), rnorm(15, mean=-10, sd=.5))
locScaleM(r2)
logregWBY

fitted.values fitted values
residual.deviances residual deviances
components logical value indicating whether convergence was achieved
objective value of the objective function at the minimum

Author(s)
Christophe Croux, Gentiane Haesbroeck, Victor Yohai

References
http://www.wiley.com/go/maronna/robust

Examples
data(skin)
Xskin <- as.matrix(skin[, 1:2])
yskin <- skin$vasoconst
skinBY <- logregBY(Xskin, yskin, intercept=1)
skinBY$coeff
skinBY$standard.deviation

logregWBY
Bianco and Yohai estimator for logistic regression

Description
This function computes the weighted M-estimator of Bianco and Yohai in logistic regression. By default, an intercept term is included and p parameters are estimated. Modified by Yohai (2018) to take as initial estimator a weighted ML estimator computed with weights derived from the MCD estimator of the continuous explanatory variables. The same weights are used to compute the final weighted M-estimator. For more details we refer to Croux, C., and Haesbroeck, G. (2002), “Implementing the Bianco and Yohai estimator for Logistic Regression”

Usage
logregWBY(x0, y, intercept = 1, const = 0.5, kmax = 1000,
maxhalf = 10)

Arguments
x0 matrix of explanatory variables;
y vector of binomial responses (0 or 1);
intercept 1 or 0 indicating if an intercept is included or not
const tuning constant used in the computation of the estimator (default=0.5);
kmax maximum number of iterations before convergence (default=1000);
maxhalf max number of step-halving (default=10).
logregWML

Value

A list with the following components:

- coefficients: estimates for the regression coefficients
- standard.deviation: standard deviations of the coefficients
- fitted.values: fitted values
- residual.deviances: residual deviances
- components: logical value indicating whether convergence was achieved
- objective: value of the objective function at the minimum

Author(s)

Christophe Croux, Gentiane Haesbroeck, Victor Yohai

References

http://www.wiley.com/go/maronna/robust

Examples

data(skin)
Xskin <- as.matrix(skin[, 1:2])
yskin <- skin$vasoconst
skinWBY <- logregWBY(Xskin, yskin, intercept=1)
skinWBY$coeff
skinWBY$standard.deviation

Description

This function computes a weighted likelihood estimator for the logistic model, where the weights penalize high leverage observations. In this version the weights are zero or one.

Usage

logregWML(x0, y, intercept = 1)

Arguments

- x0: p x n matrix of explanatory variables, p is the number of explanatory variables, n is the number of observations
- y: response vector
- intercept: 1 or 0 indicating if an intercept is included or not
Value

A list with the following components:

- **coefficients**: vector of regression coefficients
- **standard.deviation**: standard deviations of the regression coefficient estimators
- **fitted.values**: vector with the probabilities of success
- **residual.deviances**: residual deviances
- **cov**: covariance matrix of the regression estimates
- **objective**: value of the objective function at the minimum
- **xweights**: vector of zeros and ones used to compute the weighted maximum likelihood estimator

Author(s)

Victor Yohai

References

http://www.wiley.com/go/maronna/robust

Examples

data(skin)
Xskin <- as.matrix(skin[, 1:2])
yskin <- skin$vasoconst
skinWML <- logregWML(Xskin, yskin, intercept=1)
skinWML$coeff
skinWML$standard.deviation

mineral

<table>
<thead>
<tr>
<th>Mineral data</th>
</tr>
</thead>
</table>

Description

Contents (in parts per million) of 22 chemical elements in 53 samples of rocks in Western Australia. Two columns (8 and 9) were selected for use in this book.

Usage

data(mineral)

Format

An object of class "data.frame".
MMPY

Details

Format: Numeric with 53 rows and 2 columns:

Source

Examples

```r
data(mineral)
```

MMPY

MM regression estimator using Pen–a-Yohai candidates

Description

This function computes MM-regression estimator using Pen–a-Yohai candidates for the initial S-estimator. This function is used internally by `lmrobdetMM`, and not meant to be used directly.

Usage

```r
MMPY(X, y, control, mf)
```

Arguments

- `X`: design matrix
- `y`: response vector
- `control`: a list of control parameters as returned by `lmrobdet.control`
- `mf`: model frame

Value

an `lmrob` object with the M-estimator obtained starting from the S-estimator computed with the Pen–a-Yohai initial candidates. The properties of the final estimator (efficiency, etc.) are determined by the tuning constants in the argument `control`.

Author(s)

Victor Yohai, <victoryohai@gmail.com>, Matias Salibian-Barrera, <matias@stat.ubc.ca>

References

http://www.wiley.com/go/maronna/robust

See Also

`DCML`, `MMPY`, `SMPY`
mopt

Tuning parameter for a rho function in the modified (asymptotic bias-) optimal family

Description

This function computes the tuning constant that yields an MM-regression estimator with a desired asymptotic efficiency when computed with a rho function in the corresponding family. The output of this function can be passed to the functions lmrobdet.control, mscale and rho.

Usage

mopt(e)

Arguments

e the desired efficiency of the corresponding regression estimator for Gaussian errors

Value

A vector with named elements containing the corresponding tuning parameters.

Author(s)

Kjell Konis

Examples

Tuning parameters for an 85%-efficient M-estimator at a Gaussian model
mopt(.85)

neuralgia

Neuralgia data

Description

Neuralgia data. More details here.

Usage

data(neuralgia)

Format

An object of class "data.frame".
Source

Source goes here.

References

References go here.

Examples

data(neuralgia)

oats

Oats data

Description

Yield of grain for eight varieties of oats in five replications of a randomized-block experiment

Usage

data(oats)

Format

An object of class "data.frame".

Details

Format: Two-way ANOVA table with 8 rows and 5 columns.

Source

References

References go here.

Examples

data(oats)
opt

Tuning parameter for a rho function in the (asymptotic bias-) optimal family

Description

This function computes the tuning constant that yields an MM-regression estimator with a desired asymptotic efficiency when computed with a rho function in the corresponding family. The output of this function can be passed to the functions `lmrobdet.control`, `mscale` and `rho`.

Usage

```r
opt(e)
```

Arguments

- `e`
 the desired efficiency of the corresponding regression estimator for Gaussian errors

Value

A vector with named elements containing the corresponding tuning parameters.

Author(s)

Kjell Konis

Examples

```
# Tuning parameters for an 85%-efficient M-estimator at a Gaussian model
opt(.85)
```

pcaRobS

Robust principal components

Description

This function computes robust principal components based on the minimization of the "residual" M-scale.

Usage

```r
pcaRobS(X, ncomp, desprop = 0.9, deltasca = 0.5, maxit = 100)
```
Arguments

- **X**: a data matrix with observations in rows.
- **ncomp**: desired (maximum) number of components
- **desprop**: desired (minimum) proportion of explained variability (default = 0.9)
- **deltasca**: "delta" parameter of the scale M-estimator (default=0.5)
- **maxit**: maximum number of iterations (default= 100)

Value

A list with the following components:

- **q**: The actual number of principal components
- **propex**: The actual proportion of unexplained variability
- **eigvec**: Eigenvectors, in a \(p \times q \) matrix
- **fit**: an \(n \times p \) matrix with the rank-\(q \) approximation to \(X \)
- **repre**: An \(n \times q \) matrix with representation of data in \(\mathbb{R}^q \) (scores)
- **propSPC**: A vector of length \(p \) with the cumulative explained variance from initial SPC

Author(s)

Ricardo Maronna, <rmaronna@retina.ar>, based on original code by D. Pen-a and J. Prieto

References

http://www.wiley.com/go/maronna/robust

Examples

data(bus)
X0 <- as.matrix(bus)
X1 <- X0[, -9]
ss <- apply(X1, 2, mad)
mu <- apply(X1, 2, median)
X <- scale(X1, center=mu, scale=ss)
q <- 3 #compute three components
rr <- pcaRobS(X, q, 0.99)
round(rr$eigvec, 3)
Robust Principal Components Cont’d

Description

This function uses the pcaRobS function to compute all principal components while behaving similarly to the prcomp function.

Usage

prcompRob(x, rank. = NULL, delta.scale = 0.5, max.iter = 100L)

Arguments

- **x**: data matrix with observations in rows
- **rank.**: Maximal number of principal components to be used (optional)
- **delta.scale**: "delta" parameter of the scale M-estimator (default = 0.5)
- **max.iter**: maximum number of iterations (default = 100)

Value

- **sdev**: the standard deviation of the principal components
- **rotation**: matrix containing the factor loadings
- **x**: matrix containing the rotated data
- **center**: the centering used

Author(s)

Gregory Brownson, <gregory.brownson@gmail.com>

Examples

data(wine)

p.wine <- prcompRob(wine)
summary(p.wine)

Choose only 5
p5.wine <- prcompRob(wine, rank. = 5)
summary(p5.wine)
Description

This function performs iterative improvements for S- or M-estimators.

Usage

refine.sm(x, y, initial.beta, initial.scale, k = 50, conv = 1, b, cc, family, step = "M")

Arguments

x design matrix
y vector of responses
initial.beta vector of initial regression estimates
initial.scale initial residual scale estimate. If missing the (scaled) median of the absolute residuals is used.
k maximum number of refining steps to be performed
conv an integer indicating whether to check for convergence (1) at each step, or to force running k steps (0)
b tuning constant for the M-scale estimator, used if iterations are for an S-estimator.
cc tuning constant for the rho function.
family string specifying the name of the family of loss function to be used (current valid options are "bisquare", "opt" and "mopt")
step a string indicating whether the iterations are to compute an S-estimator ('S') or an M-estimator ('M')

Details

This function performs iterative improvements for S- or M-estimators. Both iterations are formally the same, the only difference is that for M-iterations the residual scale estimate remains fixed, while for S-iterations it is updated at each step. In this case, we follow the Fast-S algorithm of Salibian-Barrera and Yohai and use one step updates for the M-scale, as opposed to a full computation. This is an internal function.

Value

A list with the following components:

beta.rw The updated vector of regression coefficients
scale.rw The corresponding estimated residual scale
converged A logical value indicating whether the algorithm converged
Author(s)

Matias Salibian-Barrera, <matias@stat.ubc.ca>.

Description

Usage

data(resex)

Format

An object of class "data.frame".

Details

Format: numeric vector of size 89.

Source

References

Examples

data(resex)
rho

Rho functions

Description

This function returns the value of the "rho" loss function used to compute either an M-scale estimator or a robust regression estimator. It currently can be used to compute the bisquare, optimal and modified optimal loss functions.

Usage

rho(u, family = "bisquare", cc, standardize = TRUE)

Arguments

u point or vector at which rho is to be evaluated
family family string specifying the name of the family of loss function to be used (current valid options are "bisquare", "opt" and "mopt").
cc tuning parameters to be computed according to efficiency and/or breakdown considerations. See lmrobdet.control, bisquare, mopt and opt.
standardize logical value determining whether the rho function is to be standardized so that its maximum value is 1. See Mpsi.

Value

The value(s) of rho at u

Author(s)

Matias Salibian-Barrera, <matias@stat.ubc.ca>

Examples

Evaluate rho tuned for 85% efficiency
rho(u=1.1, family="bisquare", cc=bisquare(.85))
Evaluate rho tuned for 50% breakdown
rho(u=1.1, family="opt", cc=lmrobdet.control(bb=.5, family='opt')$tuning.chi)
The first derivative of the rho function

Description
The first derivative of the rho function

Usage
rhoprime(u, family, cc, standardize = FALSE)

Arguments
u
point or vector at which rho is to be evaluated

family
family string specifying the name of the family of loss function to be used (current valid options are "bisquare", "opt" and "mopt").

cc
tuning parameters to be computed according to efficiency and / or breakdown considerations. See lmrobdet.control, bisquare, mopt and opt.

standardize
logical value determining whether the rho function is to be standardized so that its maximum value is 1. See Mpsi.

Value
The value of the first derivative rho evaluated at u

Author(s)
Matias Salibian-Barrera, <matias@stat.ubc.ca>

Examples
Evaluate the derivative of a rho function tuned for 85% efficiency
rhoprime(u=1.1, family='bisquare', cc=bisquare(.85))
Evaluate the derivative of a rho function tuned for 50% breakdown
rhoprime(u=1.1, family='opt', cc=lmrobdet.control(bb=.5, family='opt')$tuning.chi)
rhoprime2
The second derivative of the rho function

Description

The second derivative of the rho function

Usage

```r
rhoprime2(u, family, cc, standardize = FALSE)
```

Arguments

- `u` point or vector at which rho is to be evaluated
- `family` family string specifying the name of the family of loss function to be used (current valid options are "bisquare", "opt" and "mopt").
- `cc` tuning parameters to be computed according to efficiency and/or breakdown considerations. See `lmrobdet.control`, `bisquare`, `mopt` and `opt`.
- `standardize` logical value determining whether the rho function is to be standardized so that its maximum value is 1. See `Mpsi`.

Value

The value of the second derivative of rho evaluated at `u`

Author(s)

Matias Salibian-Barrera, <matias@stat.ubc.ca>

Examples

```r
# Evaluate the 2nd derivative of a rho function tuned for 85% efficiency
rhoprime2(u=1.1, family='bisquare', cc=bisquare(.85))
# Evaluate the 2nd derivative of a rho function tuned for 50% breakdown
rhoprime2(u=1.1, family='opt', cc=lmrobdet.control(bb=.5, family='opt')$tuning.chi)
```
Description

This function computes an M-scale, which is a robust scale (spread) estimator. M-estimators of scale are a robust alternative to the sample standard deviation. Given a vector of residuals \(r \), the M-scale estimator \(s \) solves the non-linear equation \(\text{mean}(\rho(r/s, cc)) = b \), where \(b \) and \(cc \) are user-chosen tuning constants. In this package the function \(\rho \) is one of Tukey’s bisquare family. The breakdown point of the estimator is \(\min(b, 1-b) \), so the optimal choice for \(b \) is 0.5. To obtain a consistent estimator the constant \(cc \) should be chosen such that \(\text{E}(\rho(Z, cc)) = b \), where \(Z \) is a standard normal random variable.

Usage

\[
\text{scaleM}(u, \delta = 0.5, \text{tuning.chi} = 1.547645, \text{family} = "\text{bisquare}"),\
\text{max.it} = 100, \text{tol} = 1e-06, \text{tolerancezero} = .\text{Machine}\$\text{double}_\text{eps})
\]

Arguments

- \(u \) vector of residuals
- \(\delta \) the right hand side of the M-scale equation
- \(\text{tuning.chi} \) the tuning object for the \(\rho \) function as returned by \text{lmrobdet.control}, \text{bisquare}, \text{mopt} or \text{opt}. It should correspond to the family of rho functions specified in the argument \(\text{family} \).
- \(\text{family} \) string specifying the name of the family of loss function to be used (current valid options are "bisquare", "opt" and "mopt").
- \(\text{max.it} \) maximum number of iterations allowed
- \(\text{tol} \) relative tolerance for convergence
- \(\text{tolerancezero} \) smallest (in absolute value) non-zero value accepted as a scale. Defaults to \(.\text{Machine}\$\text{double}_\text{eps} \)

Details

The iterative algorithm starts from the scaled median of the absolute values of the input vector, and then cycles through the equation \(s^2 = s^2 \times \text{mean}(\rho(r/s, cc)) / b \).

Value

The scale estimate value at the last iteration or at convergence.

Author(s)

Matias Salibian-Barrera, <matias@stat.ubc.ca>
Examples

```r
set.seed(123)
r <- rnorm(150, sd=1.5)
mscale(r)
sd(r)
# 10% of outliers, sd of good points is 1.5
set.seed(123)
r2 <- c(rnorm(135, sd=1.5), rnorm(15, mean=-5, sd=.5))
mscale(r2)
sd(r2)
```

ShinyUI

Open the Shiny interface for the package

Description

This function opens the Shiny interface for the package.

Usage

`ShinyUI()`

Author(s)

Gregory Brownson <gsb25@uw.edu>

References

shock

Shock data

Description

Times recorded for a rat to go through a shuttlebox in successive attempts. If the time exceeded 5 seconds, the rat received an electric shock for the duration of the next attempt. The data are the number of shocks received and the average time for all attempts between shocks.

Usage

`data(shock)`

Format

An object of class "data.frame".
Details

Format: Numeric matrix with 16 rows and 2 columns

Source

References

References go here.

Examples

data(shock)

data(skin)

Skin data

Description

These data correspond to a study of the relationship between air inspiration and blood circulation in the skin.

Usage

data(skin)

Format

An object of class "data.frame".

Details

Description: The covariates are the logarithms of the volume of air inspired (log VOL) and of the inspiration rate (log RATE). The response (column 3) is the presence or absence of vasoconstriction of the skin of the digits after air inspiration. Format Numeric, 23 rows and 3 columns.

Source

Finney, D.J. (1947), The estimation from individual records of the relationship between dose and quantal response, Biometrika, 34, 320-334.

Examples

data(skin)
SMPY

SM regression estimator using Pen~a-Yohai candidates

Description

This function computes a robust regression estimator when there are categorical / dummy explanatory variables. It uses Pen~a-Yohai candidates for the S-estimator. This function is used internally by `lmrobdetMM`, and not meant to be used directly.

Usage

```r
SMPY(mf, y, control, split)
```

Arguments

- `mf` : model frame
- `y` : response vector
- `control` : a list of control parameters as returned by `lmrobdet.control`
- `split` : a list as returned by `splitFrame` containing the continuous and dummy components of the design matrix

Value

An `lmrob` object with the M-estimator obtained starting from the MS-estimator computed with the Pen~a-Yohai initial candidates. The properties of the final estimator (efficiency, etc.) are determined by the tuning constants in the argument `control`.

Author(s)

Victor Yohai, <victoryohai@gmail.com>, Matias Salibian-Barrera, <matias@stat.ubc.ca>

References

See Also

`DCML`, `MMPY`, `SMPY`
stackloss
Stackloss data

Description

Observations from 21 days operation of a plant for the oxidation of ammonia as a stage in the production of nitric acid.

Usage

```r
data(stackloss)
```

Format

An object of class "data.frame".

Details

Format: 21 cases and 4 continuous variables. Description: The columns are: 1. air flow 2. cooling water inlet temperature (C) 3. acid concentration (4. Stack loss, defined as the percentage of ingoing ammonia that escapes unabsorbed (response)

Source

Examples

```r
data(stackloss)
```

step.lmrobdet
Robust stepwise using RFPE

Description

This function performs stepwise model selection on a robustly fitted linear model using the RFPE criterion and the robust regression estimators computed with `lmrobdetMM`. Only backwards stepwise is currently implemented.

Usage

```r
step.lmrobdet(object, scope, direction = c("both", "backward", "forward"), trace = TRUE, keep = NULL, steps = 1000, whole.path = FALSE)
```
Arguments

object a robust fit as returned by `lmrobdetMM`

scope either a formula or a list with elements `lower` and `upper` each of which is a formula. The terms in the right-hand-side of `lower` are always included in the model and the additional terms in the right-hand-side of `upper` are the candidates for inclusion/exclusion from the model. If a single formula is given, it is taken to be `upper`, and `lower` is set to the empty model. The . operator is interpreted in the context of the formula in `object`.

direction the direction of stepwise search. Currently only backward stepwise searches are implemented.

trace logical. If TRUE information about each step is printed on the screen.

keep a filter function whose input is a fitted model object and the associated AIC statistic, and whose output is arbitrary. Typically keep will select a subset of the components of the object and return them. The default is not to keep anything.

steps maximum number of steps to be performed. Defaults to 1000, which should mean as many as needed.

whole.path if FALSE (default) variables are dropped until the RFPE fails to improve. If TRUE the best variable to be dropped is removed, even if this does not improve the RFPE.

Details

Presently only backward stepwise selection is supported. During each step the Robust Final Prediction Error (as computed by the function `lmrobdetMM.RFPE`) is calculated for the current model and for each sub-model achievable by deleting a single term. If the argument `whole.path` is FALSE, the function steps to the sub-model with the lowest Robust Final Prediction Error or, if the current model has the lowest Robust Final Prediction Error, terminates. If the argument `whole.path` is TRUE, the function steps through all smaller submodels removing, at each step, the variable that most reduces the Robust Final Prediction Error. The scale estimate from `object` is used to compute the Robust Final Prediction Error throughout the procedure.

Value

If `whole.path == FALSE` the function returns the robust fit as obtained by `lmrobdetMM` using the final model. If `whole.path == TRUE` a list is returned containing the RFPE of each model on the sequence of submodels. The names of the components of this list are the formulas that correspond to each model.

Author(s)

Victor Yohai, `<victoryohai@gmail.com>`, Matias Salibian-Barrera, `<matias@stat.ubc.ca>`

References

See Also

DCML, MMPY, SMPY

Examples

```r
cont <- lmrobdet.control(bb = 0.5, efficiency = 0.85, family = "bisquare")
set.seed(300)
X <- matrix(rnorm(50*6), 50, 6)
beta <- c(1,1,1,0,0,0)
y <- as.vector(X %*% beta) + 1 + rnorm(50)
y[1:6] <- seq(30, 55, 5)
for (i in 1:6) X[,i] <- c(X[,1:3],i/2,i/2,i/2)
Z <- cbind(y,X)
Z <- as.data.frame(Z)
obj <- lmrobdetMM(y ~ ., data=Z, control=cont)
out <- step.lmrobdetMM(obj)
```
Description

Waste data. The original data are the result of a study on production waste and land use by Golueke and McGauhey (1970), and contain nine variables, of which we consider six.

Usage

data(waste)

Format

An object of class "data.frame".

Details

Format: 40 cases and 6 continuous variables. Description: The columns are 1. industrial land (acres) 2. fabricated metals (acres) 3. trucking and wholesale trade (acres) 4. retail trade (acres) 5. restaurants and hotels (acres) 6. solid waste (millions of tons), response

Source

References

Examples

data(waste)
Description

It contains, for each of 59 wines grown in the same region in Italy, the quantities of 13 constituents. The original purpose of the analysis was to classify wines from different cultivars by means of these measurements. In this example we treat cultivar one.

Usage

data(wine)

Format

An object of class "data.frame".

Details

Source

Examples

data(wine)
Index

*Topic datasets
 alcohol, 3
 algae, 4
 biochem, 5
 bus, 6
 flour, 16
 glass, 17
 hearing, 17
 image, 18
 mineral, 36
 neuralgia, 38
 oats, 39
 resex, 44
 shock, 49
 skin, 50
 stackloss, 52
 vehicle, 54
 waste, 55
 wine, 56

alcohol, 3
algae, 4

biochem, 5
bisquare, 5, 20, 21, 31, 45–48
bus, 6
BYlogreg (logregBY), 33
cov.dcm1, 7
covClassic, 7
covRob, 8, 9
covRobMM, 9, 10, 10
covRobRobe, 9, 10, 11
DCML, 13, 14, 24, 26, 37, 51, 54
drop1.lmrobdetMM, 14
fastmve, 15
flour, 16
glass, 17

hearing, 17
image, 18
initPP, 19
INVTR2, 20
KurtSDNew (initPP), 19

lm.fit, 13
lmrob, 14, 15, 27, 37, 51
lmrobdet.control, 5, 7, 13, 20, 21, 23, 25,
 37, 38, 40, 45–48, 51
lmrobdetDCML, 13, 23
lmrobdetMM, 14, 15, 20, 25, 27, 37, 51–53
lmrobdetMM.RFPE, 27
lmrobLinTest, 28
lmrobM, 29, 31
lmrobM.control, 29, 31
locScaleM, 32
logregBY, 33
logregWBY, 34
logregWML, 35

mineral, 36
MLocDis (locScaleM), 32
MMPPY, 13, 14, 24, 26, 37, 37, 51, 54
MMultiSHR (covRobMM), 10
model.matrix.default, 23, 25, 29
mopt, 20, 21, 31, 38, 45–48
Mpsi, 45–47
mscale, 5, 22, 31, 38, 40
mscale (scaleM), 48
Multirob (covRob), 9

na.action, 23, 25, 29
neuralgia, 38

oats, 39
opt, 20, 21, 31, 40, 45–48
options, 23, 25, 29
pcaRobS, 40
prcompRob, 42
pyinit, 22

refine.sm, 43
resex, 44
rho, 5, 38, 40, 45
rhoprime, 46
rhoprime2, 47
rob.linear.test(lmrobLinTest), 28
RockeMulti(covRobRocke), 11

scaleM, 48
ShinyUI, 49
shock, 49
skin, 50
SMPCA(pcaRobS), 40
SMPY, 13, 14, 24, 26, 37, 51, 51, 54
solve.default, 22
splitFrame, 21, 51
stackloss, 52
step.lmrobdet, 52
step.lmrobdetMM, 14, 27
step.lmrobdetMM(step.lmrobdet), 52

vehicle, 54

waste, 55
WBYlogreg(logregWBY), 34
wine, 56
WMLlogreg(logregWML), 35