Package ‘RobustAFT’

June 25, 2018

Type Package
Title Truncated Maximum Likelihood Fit and Robust Accelerated Failure Time Regression for Gaussian and Log-Weibull Case
Version 1.4-3
Date 2018-06-22
Depends R (>= 3.2.0), stats, graphics, survival, robustbase
Author Alfio Marazzi <Alfio.Marazzi@chuv.ch>, Jean-Luc Muralti
Maintainer A. Randriamiharisoa <Alex.Randriamiharisoa@chuv.ch>
Description R functions for the computation of the truncated maximum likelihood and the robust accelerated failure time regression for gaussian and log-Weibull case.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-06-25 09:12:57 UTC

R topics documented:

RobustAFT-package ... 2
D243 ... 7
dfcomn2 ... 7
fits.compare ... 9
MCI ... 10
plot.fits.compare .. 10
plot.TML ... 11
predict.TML ... 13
summary.TML ... 14
TML.censored ... 16
TML.censored.control.ref 19
TML.censored.control.S ... 20
TML.censored.control.tml 21
Description

This package computes the truncated maximum likelihood regression estimates described in Marazzi and Yohai (2004) and Locatelli et al. (2010). The error distribution is assumed to follow approximately a Gaussian or a log-Weibull distribution. The cut-off values for outlier rejection are fixed or adaptive. The main functions of this package are `TML.noncensored` and `TML.censored`.

Details

- **Package**: RobustAFT
- **Type**: Package
- **Version**: 1.0
- **Date**: 2011-05-01
- **License**: GPL-2 or later
- **LazyLoad**: yes

Author(s)

Alfio Marazzi <Alfio.Marazzi@chuv.ch>, Jean-Luc Muralti
Maintainer: A. Randriamiharisoa <Alex.Randriamiharisoa@chuv.ch>

References

Examples

Example 1. This is the example described in Marazzi and Yohai (2004).

The two following auxiliary functions, not included in the library,
must be loaded.
------------------ Auxiliary functions ------------------------------

SDmux.lw <- function(x, theta, sigma, COV){
 # Standard deviation of the conditional mean estimate: log-Weibull case
 np <- length(theta); nc <- ncol(COV); nr <- nrow(COV)
 if (np!=length(x)) cat("length(x) must be the same as length(theta)")
 if (nc!=nr) cat("COV is not a square matrix")
 if (nc!=(np+1)) cat("ncol(COV) must be the same as length(theta)+1")
 log.mu.x <- t(x)*theta + lgamma(1+sigma) # log of conditional mean estimate
 mu.x <- exp(log.mu.x) # conditional mean estimate
 dg <- digamma(1+sigma)
 COV.TT <- COV[1:np, 1:np]
 Var.S <- COV(np+1), (np+1)]
 COV.TS <- COV[1:np, (np+1)]
 V.mu.x <- t(x)%*%COV.TT%*%x + dg^2*Var.S + 2*dg*(t(x)%*%COV.TS)
 SD.mu.x <- as.numeric((sqrt(V.mu.x))*mu.x)
 SD му.x)

plt <- function(LOS, Cost, Adm, theta.fr, sigma.fr, sd0.fr, sd1.fr, theta.ml,
 sigma.ml, sd0.ml, sd1.ml){
 # Plot of the conditional mean and confidence intervals: log-Weibull case
 par(mfrow=c(1,2), oma=c(0, 0, 2, 0))
 plot(LOS, Cost, type="n")
 points(LOS[Adm==0], Cost[Adm==0], pch=1)
 points(LOS[Adm==1], Cost[Adm==1], pch=16, col=2)
 x0t <- x0%*%theta.fr; x1t <- x1%*%theta.fr
 lines(10, exp(x0t)*gamma(1+sigma.fr))
 lines(10, exp(x1t)*gamma(1+sigma.fr), col=2)
 z0min <- exp(x0t)*gamma(1+sigma.fr)-2.576*sd0.fr
 z0max <- exp(x0t)*gamma(1+sigma.fr)+2.576*sd0.fr
 z1min <- exp(x1t)*gamma(1+sigma.fr)-2.576*sd1.fr
 z1max <- exp(x1t)*gamma(1+sigma.ml)+2.576*sd1.fr
 lines(10, z0min, lty=2, col=1)
 lines(10, z0max, lty=2, col=1)
 lines(10, z1min, lty=2, col=1)
 lines(10, z1max, lty=2, col=1)
 polygon(c(10, rev(10)), c(z0min, rev(z0max)), border=FALSE, density=10, angle=90)
 polygon(c(10, rev(10)), c(z1min, rev(z1max)), border=FALSE, density=12, angle=90, col=2)
 plot(LOS, Cost, type="n")
 points(LOS[Adm==0], Cost[Adm==0], pch=1)
 points(LOS[Adm==1], Cost[Adm==1], pch=16, col=2)
 x0t <- x0%*%theta.ml; x1t <- x1%*%theta.ml
 lines(10, exp(x0t)*gamma(1+sigma.ml))
 lines(10, exp(x1t)*gamma(1+sigma.ml), col=2)
 z0min <- exp(x0t)*gamma(1+sigma.ml)-2.576*sd0.ml
 z0max <- exp(x0t)*gamma(1+sigma.ml)+2.576*sd0.ml
 z1min <- exp(x1t)*gamma(1+sigma.ml)-2.576*sd1.ml
 z1max <- exp(x1t)*gamma(1+sigma.ml)+2.576*sd1.ml
z1max <- exp(x1t)*gamma(1+sigma.ml)+2.576+sd1.ml
lines(10,z1min, lty=2, col=1)
lines(10,z1max, lty=2, col=1)
lines(10,z1min, lty=2, col=1)
lines(10,z1max, lty=2, col=1)
polygon(c(10,rev(10)), c(z1min,rev(z1max)), border=FALSE, density=10, angle=90)
polygon(c(10,rev(10)), c(z1min,rev(z1max)), border=FALSE, density=12, angle=90, col=2)

#------ End of auxiliary functions ---

library(RobustAFT)
data(D243)
Cost <- D243$Cost # Cost (Swiss francs)
LOS <- D243$LOS # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm=="Urg")*1 # Type of admission
 # (0=on notification, 1=Emergency)
Ass <- D243$Typass; Ass <- (Ass=="P")*1 # Type of insurance (0=usual, 1=private)
Age <- D243$Age # Age (years)
Dst <- D243$dest; Dst <- (Dst=="DOMI")*1 # Destination (1=Home, 0=another hospital)
Sex <- D243$Sexe; Sex <- (Sex=="M")*1 # Sex (1=Male, 0=Female)

Not run:
Plot data
par(mfrow=c(1,2))
plot(LOS,Cost); plot(log(LOS),log(Cost))

log-Weibull fits
Full robust model
zwff <- TML.noncensored(log(Cost)-log(LOS)+Adm+Ass+Age+Sex+Dst,
 errors="logWeibull")
summary(zwff)

Reduced model
zwfr <- update(zwff,log(Cost)-log(LOS)+Adm)
summary(zwfr)

Residual plots
par(mfrow=c(1,2))
plot(zwfr, which=c(1,3))

Plot robust predictions on log-log scale
par(mfrow=c(1,1))
10 <- seq(from=2, to=60, by=0.5)
x0 <- as.matrix(cbind(1,log(10),0))
x1 <- as.matrix(cbind(1,log(10),1))
plot(log(LOS),log(Cost),type="n")
points(log(LOS[Adm==1]),log(Cost[Adm==1]), pch=16, col=2)
points(log(LOS[Adm==0]),log(Cost[Adm==0]), pch=1)
lines(log(10),predict(zwfr,x0))
lines(log(10),predict(zwfr,x1), col=2)
Maximum likelihood: full model
```
zmlf <- TML.noncensored(log(Cost)-log(LOS)+Adm+Ass+Age+Sex+Dst, errors="logWeibull",cu=100)
summary(zmlf)
```
Maximum likelihood: reduced model
```
zmlr <- update(zmlf,log(Cost)-log(LOS)+Adm)
summary(zmlr)
```
Plot conditional means and confidence intervals
```
l0 <- seq(from=2,to=62,by=0.5)
x0 <- as.matrix(cbind(1,log(l0),0))
x1 <- as.matrix(cbind(1,log(l0),1))
theta.fr <- coef(zwfr)
sigma.fr <- zwfr$V
COV.fr <- vcov(zwfr)
sd0.fr <- apply(x0,1,SDmux.lw,theta.fr,sigma.fr,COV.fr)
sd1.fr <- apply(x1,1,SDmux.lw,theta.fr,sigma.fr,COV.fr)
theta.ml <- coef(zmlr)
sigma.ml <- zmlr$V
COV.ml <- zmlr$COV
sd0.ml <- apply(x0,1,SDmux.lw,theta.ml,sigma.ml,COV.ml)
sd1.ml <- apply(x1,1,SDmux.lw,theta.ml,sigma.ml,COV.ml)
plt(LOS,Cost,Adm,theta.fr,sigma.fr,sd0.fr,sd1.fr,theta.ml,sigma.ml,sd0.ml,sd1.ml)
```
Gaussian fits (for comparison)

Reduced model
```
zgfr <- TML.noncensored(log(Cost)-log(LOS)+Adm,errors="Gaussian")
summary(zgfr)
```
Residual plots
```
par(mfrow=c(1,2))
plot(zgfr,which=c(1,3))
```
Classical Gaussian fit
```
lr <- lm(log(Cost)-log(LOS)+Adm)
summary(lr)
```
Compare several fits

Reduced model
```
comp <- fits.compare(TML.logWeibull=zwfr,ML.logWeibull=zmlr,least.squares=lr)
comp
```
Example 2. This is the example described in Locatelli Marazzi and Yohai (2010).
This is the example described in Locatelli et al. (2010).
The estimates are slightly different due to changes in the algorithm for the
final estimate.
Not run:
Remove data of Example 1
rm(Cost, LOS, Adm, Ass, Age, Dst, Sex)

data(MCI)
attach(MCI)

Exploratory Analysis
par(mfrow=c(1,1))

plot(Age, log(LOS), type = "n", cex = 0.7)

(1) filled square : regular, complete
(2) empty square : regular, censored
(3) filled triangle : emergency, complete
(4) empty triangle : emergency, censored

points(Age[Dest==1 & TypAdm==0], log(LOS)[Dest==1 & TypAdm==0], pch = 15, cex = 0.7) # (1)
points(Age[Dest==0 & TypAdm==0], log(LOS)[Dest==0 & TypAdm==0], pch = 0, cex = 0.7) # (2)
points(Age[Dest==1 & TypAdm==1], log(LOS)[Dest==1 & TypAdm==1], pch = 17, cex = 0.7) # (3)
points(Age[Dest==0 & TypAdm==1], log(LOS)[Dest==0 & TypAdm==1], pch = 2, cex = 0.7) # (4)

Maximum Likelihood
ML <- survreg(Surv(log(LOS), Dest) ~ TypAdm*Age, dist = "gaussian")
summary(ML)
B.ML <- ML$coef; S.ML <- ML$scale
abline(c(B.ML[1], B.ML[3]), lwd = 1, col = "grey", lty = 1)

Robust Accelerated Failure Time Regression with Gaussian errors
ctrol.S <- list(N=150, q=5, sigma=1, MAXIT=100, TOL=0.001, seed=123)
ctrol.ref <- list(maxit.sigma=2, tol.sigma=0.0001, maxit.Beta=2, tol.Beta=0.0001,
 Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001, alg.sigma=1, nitmon=FALSE)
ctrol.tml <- list(maxit.sigma=50, tol.sigma=0.0001, maxit.Beta=50, tol.Beta=0.0001,
 Maxit.TML=50, tol.TML.sigma=0.001, tol.TML.Beta=0.001, alg.sigma=1, nitmon=FALSE)

WML <- TML.censored(log(LOS)-TypAdm*Age, data=MCI, delta=Dest, otp="adaptive",
 control.S=ctrol.S, control.ref=ctrol.ref, control.tml=ctrol.tml)
summary(WML)

B.WML <- coef(WML)
abline(c(B.WML[1], B.WML[3]), lty = 1, col = "red")

detach(MCI)

End(Not run)
Sample of 100 hospital stays for medical back problems

Description

Sample of 100 patients hospitalized for medical back problems in Switzerland

Usage

data(D243)

Format

A data frame with 100 observations on the following 11 variables.

- **sexe**: Gender: M=Male, F=Female
- **age**: Age in years
- **dest**: Destination: DOMI=Home else=another hospital
- **typadm**: Type of admission: Urg=Emergency else=on notification
- **typass**: Type of insurance: P=Private else=usual
- **los**: Length of stay (days)
- **apdrg**: DRG code: Always 243
- **cost**: Cost (Swiss francs)
- **csansinv**: Intermediate cost
- **bbdaggr**: a numeric vector
- **bbd**: a numeric vector

Examples

data(D243)

dfcomm2

Assigns values to the ROBETH parameters included in common blocks

Description

See Marazzi A. (1993), p.405
Usage

dfcomn2(ipsi = -9, c = -1.345, h1 = -1.7, h2 = -3.4, h3 = -8.5,
xk = -1.548, d = -1.345, beta = -0.5, bet0 = -1, iucv = -1,
a2 = 0, b2 = -3, chk = -9, ckw = -2, bb = -1, bt = -1,
cw = -1, em = -1.345, cr = -2, vk = -1, np = -2, nu = -1,
v7 = -1, iwww = -1)

Arguments

ipsi Option parameter for the choice of \(\psi \). Set \(-4 \leq \text{ipsi} \leq 4\)
c Parameter \(c \) of the Huber function
h1 Parameter \(h_1 \) of the Hampel function
h2 Parameter \(h_2 \) of the Hampel function
h3 Parameter \(h_3 \) of the Hampel function
xk Parameter \(k \) of the rescaled Tukey biweight
d See reference
beta Parameter \(\beta \) to make \(\sigma \) estimate asymptotically unbiased
bet0 Parameter \(\beta_0 \) to make \(\sigma \) estimate asymptotically unbiased
iucv Option parameter for the choice of \(u(s), u'(s), v(s), v'(s), w(s) \) or \(w'(s) \)
a2 Parameter \(a^2 \) of Huber's mimimax u-function
b2 Parameter \(b^2 \) of Huber's mimimax u-function
chk Parameter \(c \) of the Hampel-Krasker u-function
ckw Parameter \(c \) of the Krasker-Welsch u-function
bb Parameter \(b \) of the Mallows-unstandard u-function
bt Option parameter for \(w(s) \) or \(w'(s) \)
cw Option parameter for \(w(s) \) or \(w'(s) \)
em Parameter \(em \) for unstandard u-function
cr Parameter \(cr \) for unstandard u-function
vk Parameter \(vk \) for unstandard u-function
np Parameter \(np \) for unstandard u-function
nu Parameter \(nu \) for unstandard u-function
v7 Parameter \(v \) for unstandard u-function
iwww Option parameter for the choice of \(\bar{\omega} \). Set \(0 \leq iwww \leq 3 \)

Value

See reference

References

Description

Creates a class "fits.compare" object allowing the user to display model summary statistics in a form allowing easy comparison of models.

Usage

fits.compare(...)

Arguments

... one or more class "lm", class "lm.robust" or class "TML" objects. Names given to objects in the list are used as labeling information in the printed output.

Details

The fits.compare function processes its arguments one at a time to create a named list of objects. The object returned is a member of class "fits.compare". Because of differences in the computed summary statistics, the list of input objects is currently limited to class "lm", class "lm.robust" and class "TML" objects. The print.fits.compare function displays a textual comparison of the input models, and the plot.fits.compare function provides comparative plots.

Value

An object of class "fits.compare" containing the list of input models to be compared.

See Also

tml.noncensored, plot.fits.compare

Examples

```r
## Not run:
data(D243)
Cost <- D243$Cost             # Cost (Swiss francs)
LOS  <- D243$LOS             # Length of stay (days)
Adm  <- D243$Typadm; Adm <- (Adm=="Urg")*1  # Type of admission
       # (0=on notification, 1=Emergency)

lwrob <- TML.noncensored(log(Cost)-log(LOS)+Adm, errors="logWeibull")
grob  <- TML.noncensored(log(Cost)-log(LOS)+Adm)
reg   <- lm(log(Cost)-log(LOS)+Adm)

fits.compare(least.squares=reg, TML.logWeibull=lwrob, TML.Gaussian=grob)
## End(Not run)
```
MCI Sample of 75 Hospital Stays

Description

Sample of 75 hospital for major cardiovascular interventions

Usage

data(MCI)

Format

A data frame with 75 observations on the following 6 variables.

Sex Gender: 1=Female, 2=Male
Age Age in years
LOS Length of stay (days)
TypAdm Type of admission: 1=Emergency 0=on notification
Dest Destination: 1=Home 0=another hospital
Cost Cost (Swiss francs)

Examples

data(MCI)

plot.fits.compare Plot Method for "fits.compare" objects

Description

Comparative plots for objects of class "fits.compare".

Usage

S3 method for class 'fits.compare'
plot(x, xplots = FALSE, ask = TRUE, which = 1:4,
 leg.position = c("topleft", "topleft", "topleft"), ...)

Arguments

- **x**: An object of class "fits.compare", usually, a result of a call to `fits.compare`.
- **xplots**: If `xplots=TRUE`, plots of the independent variables versus the residuals are produced.
- **ask**: If `ask=TRUE`, `plot.fits.compare()` operates in interactive mode.
- **which**: If a subset of the plots is required, specify a subset of the numbers 1:4.
- **leg.position**: A vector of character string specifying the legend position of the second, third and fourth plots.
- **...**: Optional arguments for `par`.

Details

For clarity reasons, at most three models should be compared. Four default plots (selectable by which) are produced: histograms of the residuals of each model, a residual Q-Q plot, response against fitted values and residuals against fitted values. Additional plots are produced if `xplots=TRUE`.

See Also

`fits.compare`, `plot.default`, `plot.TML`

Examples

```r
## Not run:
data(D243)
Cost <- D243$Cost  # Cost (Swiss francs)
LOS <- D243$LOS    # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm=="Urg")*1  # Type of admission
      # (0=on notification, 1=Emergency)

lwrob <- TML.nocensored(log(Cost)-log(LOS)+Adm, errors="logWeibull")
reg <- lm(log(Cost)-log(LOS)+Adm)

comp <- fits.compare(least.squares=reg, TML.logWeibull=lwrob)
plot(comp, leg.position=c("topleft", "topleft", "bottomleft"), xplots=TRUE)

## End(Not run)
```

Description

Diagnostic plots for elements of class "TML". Three plots (selectable by which) are currently available: a residual Q-Q plot, a plot of response against fitted values and a plot of standardized residuals against fitted values.
Usage

S3 method for class 'TML'
plot(x, which = 1:3, caption = c("Residual QQ-plot", "Response vs. Fitted Values", "Standardized Residuals vs. Fitted Values"), panel = points, sub.caption = deparse(x$call$formula), main = "", ask = prod(par("mfcol")) < length(which) && dev.interactive(), ...)

Arguments

x An object of class "TML", usually, a result of a call to TML.noncensored or TML.censored.
which If a subset of the plots is required, specify a subset of the numbers 1:3.
caption Caption for the different plots.
panel Panel.
sub.caption Sub titles.
main Main title.
ask If ask=TRUE, plot.TML() operates in interactive mode.
... Optional arguments for par.

Details

The residual Q-Q plot is build with respect to the errors argument of the object. This means that the expected order statistics are calculated either for a Gaussian or a log-Weibull distribution. The two horizontal dotted lines on the first and the third plots represent the upper and lower cut-off values for outlier rejection. Observations that were not retained for the estimation (outliers) are identified on the third plot.

See Also

TML.noncensored, TML.censored, plot.default

Examples

Not run:
data(D243)
Cost <- D243$Cost # Cost (Swiss francs)
LOS <- D243$LOS # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm="Urg")*1 # Type of admission
(0=on notification, 1=Emergency)

Truncated maximum likelihood regression with log-Weibull errors
w <- TML.noncensored(log(Cost)~log(LOS)+Adm, errors="logWeibull",
 otp="adaptive", control=list(fastS=TRUE))

plot(w)
plot(w, which = 1)
plot(w, which = 2)
plot(w, which = 3)
predict.TML

Predict method for "TML" objects

Description

Obtains predictions from a fitted Truncated Maximum Likelihood (TML) object.

Usage

S3 method for class 'TML'
predict(object, newdata = NULL, ...)

Arguments

- **object**: An object of class "TML", usually, a result of a call to TML.noncensored or TML.censored.
- **newdata**: Optionally, a vector, a matrix or a data frame containing the variables with which to predict. If omitted, the fitted values of object are returned.
- **...**: Additional arguments affecting the predictions produced.

Details

newdata must have the same number of variables (that is of columns) as the model. If object is a model with an intercept, newdata must have a first column of 1.

Value

Returns a vector of predictions.

See Also

TML.noncensored, TML.censored, predict

Examples

Not run:
data(D243)
Cost <- D243$Cost # Cost (Swiss francs)
LOS <- D243$LOS # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm=="Urg")*1 # Type of admission
(0=on notification, 1=Emergency)

Fitting the model
z <- TML.noncensored(log(Cost)-log(LOS)+Adm, errors="logWeibull")
With a vector of data
vec <- c(1, 2.4, 1)
predict(object = z, newdata = vec)
With a matrix of data
mat <- matrix(c(1, 2, 4, 2.7, 1, 0), ncol=3)
predict(z, mat)
With a data frame
dat <- as.data.frame(cbind("intercept"=c(1,1,1), "log(LOS)"=c(2.4, 2.7, 2.2), "Adm"=c(1, 0, 1)))
predict(z, dat)

End(Not run)

summary.TML

Summarizing Truncated Maximum Likelihood regression

Description

Summary and print methods for R object of class "TML" and print method for the summary object. Further, methods fitted(), residuals(), weights() or update() work (via the default methods), and coef(), vcov() have explicitly defined TML methods.

Usage

```r
## S3 method for class 'TML'
summary(object, ...)
## S3 method for class 'TML'
print(x, digits = max(3,getOption("digits") - 3), ...)
## S3 method for class 'TML'
coef(object, ...)
## S3 method for class 'TML'
vcov(object, ...)
## S3 method for class 'summary.TML'
print(x, digits = max(3,getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)
```

Arguments

- **object**: An object of class "TML", usually, a result of a call to TML.nocensored or TML.censored.
- **...**: Potentially more arguments passed to methods.
- **digits**: Number of digits for printing, see digits in options.
- **x**: An object of class "TML" or "summary.TML".
- **signif.stars**: Logical indicating if the P-values should be visualized by so called "significance stars".
Details

`summary.TML` returns an object of class "summary.TML".

`print.TML` returns a printed summary of object of class "TML".

`print.summary.TML` tries to be smart about formatting the coefficients, standard errors, etc, and gives "significance stars" if `signif.stars` is TRUE (as per default when `options` were not changed).

`coeff.TML` returns the final coefficient estimates (value `thQ` of a "TML" object), and `vcov.TML` returns the covariance matrix of the final estimates (value `cvQ` of a "TML" object).

Value

An object of class "summary.TML" is a list with the following components:

- `call`: The component from object.
- `terms`: The component from object.
- `residuals`: The component from object.
- `fitted.values`: The component from object.
- `tn`: The component from object.
- `coefficients`: The matrix of coefficients, standard errors, t-values and p-values. Aliased coefficients are omitted.
- `aliased`: Named logical vector showing if the original coefficients are aliased.
- `df`: Degrees of freedom, a 3-vector (p, n-p, p*), the last being the number of non-aliased coefficients.
- `sigma`: The final scale estimate from object.
- `cutoff.values`: A vector of the final lower and upper cut-off values from object.

See Also

`TML.noncensored`, `TML.censored`, `summary`, `print`

Examples

```r
## Not run:

data(D243)
Cost <- D243$Cost                   # Cost (Swiss francs)
LOS <- D243$LOS                    # Length of stay (days)
Adm <- D243$Typadm; Adm <- (Adm=="Urg")*1  # Type of admission
    # (0=on notification, 1=Emergency)
Ass <- D243$Typass; Ass <- (Ass=="P")*1  # Type of insurance
    # (0=usual, 1=private)
Age <- D243$age                    # Age (years)
Dst <- D243$dest; Dst <- (Dst=="DOMI")*1  # Destination
    # (1=Home, 0=another hospital)
Sex <- D243$Sexe; Sex <- (Sex=="M")*1  # Sex (1=Male, 0=Female)

# Truncated maximum likelihood regression with Gaussian errors
z <- TML.noncensored(log(Cost)+log(LOS)+Adm+Ass+Age+Dst+Sex, otp="adaptive",
```
TML.censored

Truncated Maximum Likelihood Regression With Censored Observations

Description

This function computes the truncated maximum likelihood estimates of accelerated failure time regression described in Locatelli et al. (2010). The error distribution is assumed to follow approximately a Gaussian or a log-Weibull distribution. The cut-off values for outlier rejection are fixed or adaptive.

Usage

TML.censored(formula, delta, data, errors = "Gaussian", initial = "S", input = NULL, otp = "fixed", cov=TRUE, cu = NULL, control.S=list(), control.ref=list(), control.tml=list())

Arguments

- **formula**: A formula, i.e., a symbolic description of the model to be adjusted (cf. glm or lm).
- **data**: An optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which robaft is called.
- **delta**: Vector of 0 and 1.
 - 0: censored observation.
 - 1: complete observation.
- **errors**: "Gaussian": the error distribution is assumed to be Gaussian.
 - "logWeibull": the error distribution is assumed to be log-Weibull.
- **initial**: "S": initial S-estimate.
 - "input": the initial estimate is given on input.
- **input**: A list(theta=c(...),sigma=...): initial input estimates where theta is a vector of p coefficients and sigma a scalar scale.
 Required when initial="input".
- **otp**: "adaptive": adaptive cut-off.
• "fixed": non adaptive cut-off.

cov If TRUE the covariance matrix is computed.
cu Preliminary minimal upper cut-off. The default is 2.5 in the Gaussian case and 1.855356 in the log-Weibull case.

control.S A list of control parameters for the computation of the initial S estimates. See the function TML.censored.control.S for the default values.
control.ref A list of control parameters for the refinement algorithm of the initial S estimates. See the function TML.censored.control.ref for the default values.
control.qml A list of control parameters for the computation of the final estimates. See the function TML.censored.control.qml for the default values.

Value

TML.censored returns an object of class "TML". The function summary can be used to obtain or print a summary of the results. The generic extractor functions fitted, residuals and weights can be used to extract various elements of the object returned by TML.censored. The function update can be used to update the model.

An object of class "TML" is a list with at least the following components:

th0 Initial coefficient estimates.
v0 Initial scale estimate.
nit.ref Reached number of iteration in the refinement step for the initial estimates.

th1 Final coefficient estimates.
v1 Final scale estimate.
nit.qml Number of iterations reached in IRLS algorithm for the final estimates.
tu,tl Final cut-off values.

alpha Estimated proportion of retained observations.

tn Number of retained observations.

weights Vector of weights (0 for rejected observations, 1 for retained observations).

COV Covariance matrix of the final estimates (th1[1],...,th1[p],v1) (where p=ncol(X)).

residuals Residuals of noncensored observations are calculated as response minus fitted values. For censored observations, the the expected residuals given that the response is larger than the recorded censored value are provided.

fitted.values The fitted mean values.
call The matched call.
formula The formula supplied.
terms The terms object used.
data The data argument.

References

See Also

TML.censored.control.ref, TML.censored.control.tm1, TML.censored.control.S, TML.noncensored

Examples

This is the example described in Locatelli et al. (2010).
The estimates are slightly different than those of the paper due to changes
in the algorithm for the final estimate.
#
Not run:
data(MCI)
attach(MCI)

Exploratory Analysis
plot(Age, log(LOS), type = "n", cex = 0.7)

(1) filled square : regular, complete
(2) empty square : regular, censored
(3) filled triangle : emergency, complete
(4) empty triangle : emergency, censored

points(Age[Dest==1 & TypAdm==0], log(LOS)[Dest==1 & TypAdm==0], pch = 15, cex = 0.7) # (1)
points(Age[Dest==0 & TypAdm==0], log(LOS)[Dest==0 & TypAdm==0], pch = 0, cex = 0.7) # (2)
points(Age[Dest==1 & TypAdm==1], log(LOS)[Dest==1 & TypAdm==1], pch = 17, cex = 0.7) # (3)
points(Age[Dest==0 & TypAdm==1], log(LOS)[Dest==0 & TypAdm==1], pch = 2, cex = 0.7) # (4)

Maximum Likelihood
ML <- survreg(Surv(log(LOS), Dest) ~ TypAdm*Age, dist = "gaussian")
summary(ML)
B. ML <- ML$coef
S. ML <- ML$scale

abline(c(B. ML[1], B. ML[3]), lwd = 1, col = "grey", lty = 1)

Robust Accelerated Failure Time Regression with Gaussian errors
ctrl. S <- list(N = 150, q = 5, sigma = 1, MAXIT = 100, TOL = 0.001, seed = 123)

ctrl. ref <- list(maxit.sigma = 2, tol.sigma = 0.0001, maxit.Beta = 2, tol.Beta = 0.0001,
 MAXit.S = 50, tol.S.sigma = 0.001, tol.S.Beta = 0.001, alg.sigma = 1, nitmon = FALSE)

ctrl. tm1 <- list(maxit.sigma = 50, tol.sigma = 0.0001, maxit.Beta = 50, tol.Beta = 0.0001,
 MAXit.tm1 = 50, tol.TM1.sigma = 0.001, tol.TM1.Beta = 0.001, alg.sigma = 1, nitmon = FALSE)

WML <- TML.censored(log(LOS) ~ TypAdm*Age, data = MCI, delta = Dest, otp = "adaptive",
 control. S = ctrl. S, control. ref = ctrl. ref, control. tm1 = ctrl. tm1)
summary(WML)

B. WML <- coef(WML)
abline(c(B. WML[1], B. WML[3]), lty = 1, col = "red")
TML.censored.control.ref

Control parameters for the refinement IRLS algorithm of the TML.censored initial S-estimates

Description

Auxiliary function for TML.censored. Typically only used internally by TML.censored, but may be used to provide a control argument. This function provides default values.

Usage

TML.censored.control.ref(maxit.sigma=2, tol.sigma=0.0001, maxit.Beta=2, tol.Beta=0.0001, Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001, alg.sigma=1, nitmon = FALSE)

Arguments

maxit.sigma Maximum number of iterations in scale step.
tol.sigma Tolerance for sigma in scale step.
maxit.Beta Maximum number of iterations in coefficient step.
tol.Beta Tolerance for coefficients in coefficient step.
Maxit.S Maximum number of iterations in global cycle.
tol.S.sigma Tolerance for sigma in global cycle.
tol.S.Beta Tolerance for coefficients in global cycle.
alg.sigma Type of algorithm in scale step:
 • 1: fixed point algorithm.
 • 2: regula falsi.
nitmon Set to TRUE if iteration monitoring is desired. Default=FALSE.

Value

A list with components named as the arguments.

See Also

TML.censored,TML.censored.control.S,TML.censored.control.tml
Examples

```r
## In the example(TML.censored), the control argument for the refinement
## algorithm can be built using this function:
## Not run:
data(MCI)
attach(MCI)

# Robust Accelerated Failure Time Regression with Gaussian errors
ctrl.ref <- TML.censored.control.ref(maxit.sigma=2,tol.sigma=0.0001,  
         maxit.Beta=2,tol.Beta=0.0001, Maxit.S=50, tol.S.sigma=0.001,  
         tol.S.Beta=0.001,alg.sigma=1,nitmon=FALSE)
ctrl.fml <- list(maxit.sigma=50,tol.sigma=0.0001,maxit.Beta=50,  
         tol.Beta=0.0001, Maxit.TML=50, tol.TML.sigma=0.001,  
         tol.TML.Beta=0.001, alg.sigma=1,nitmon=FALSE)
WML<-TML.censored(log(LOS)~TypAdm*Age,data=MCI,delta=Dest,otp="adaptive",  
         control.ref=ctrl.ref,control.fml=ctrl.fml)
  summary(WML)

## End(Not run)
```

TML.censored.control.S

Control parameters for the computation of the initial S estimates in TML.censored

Description

Auxiliary function for `TML.censored`. Typically only used internally by `TML.censored`, but may be used to provide a control argument. This function provides default values.

Usage

`TML.censored.control.S(N=100, q=6, sigma0=1, MAXIT=100, TOL=0.01, seed=153)`

Arguments

- **N**
 Number of subsamples.
- **q**
 Subsample size.
- **sigma0**
 Initial value of scale.
- **MAXIT**
 Maximum number of iterations for solving the equation for scale.
- **TOL**
 Relative tolerance for scale.
- **seed**
 Seed for the random number generator.
Value

A list with components named as the arguments.

See Also

TML.censored, TML.censored.control.ref, TML.censored.control.tml

Examples

In the example(TML.censored), the control argument for the refinement
algorithm can be built using this function:

```r
## Not run:
data(MCI)
attach(MCI)

# Robust Accelerated Failure Time Regression with Gaussian errors
ctrl.S <- list(N=150, q=5, sigma0=1, MAXIT=100, TOL=0.001, seed=123)

ctrl.ref <- TML.censored.control.ref(maxit.sigma=2, tol.sigma=0.0001, maxit.Beta=2, tol.Beta=0.0001, Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001, alg.sigma=1, nitmon=FALSE)

ctrl.tml <- list(maxit.sigma=50, tol.sigma=0.0001, maxit.Beta=50, tol.Beta=0.0001, Maxit.TML=50, tol.TML.sigma=0.001, tol.TML.Beta=0.001, alg.sigma=1, nitmon=FALSE)

WML <- TML.censored(log(LOS)-TypAdm*Age, data=MCI, delta=Dest, otp="adaptive", control.S=ctrl.S, control.ref=ctrl.ref, control.tml=ctrl.tml)

summary(WML)
```

End(Not run)

TML.censored.control.tml

Control parameters for the IRLS algorithm of the final TML.censored estimates

Description

Auxiliary function for **TML.censored**. Typically only used internally by **TML.censored**, but may be used to provide a control argument. This function provides default values.

Usage

TML.censored.control.tml(maxit.sigma=20, tol.sigma=0.0001, maxit.Beta=20, tol.Beta=0.0001, Maxit.TML=50, tol.TML.sigma=0.001, tol.TML.Beta=0.001, alg.sigma=1, nitmon = FALSE)
Arguments

- `maxit.sigma`: Maximum number of iterations in scale step.
- `tol.sigma`: Tolerance for sigma in scale step.
- `maxit.Beta`: Maximum number of iterations in coefficient step.
- `maxit.TML`: Maximum number of iterations for global cycle.
- `tol.TML.sigma`: Tolerance for sigma in global cycle.
- `tol.TML.Beta`: Tolerance for coefficients in global cycle.
- `alg.sigma`: Type of algorithm in scale step:
 - 1: fixed point algorithm.
 - 2: regula falsi.
- `nitmon`: Set to TRUE if iteration monitoring is desired. Default=FALSE.

Value

A list with components named as the arguments.

See Also

`tml.censored`, `tml.censored.control.S`, `TML.censored.control.ref`

Examples

```r
### In the example(TML.censored), the control argument for the final estimates
### can be built using this function:

# Not run:
data(MCI)
attach(MCI)

# Robust Accelerated Failure Time Regression with Gaussian errors
ctrl.ref <- list(maxit.sigma=2, tol.sigma=0.0001, maxit.Beta=2, tol.Beta=0.0001,
                  Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001, alg.sigma=1, nitmon=FALSE)
ctrl.tml <- TML.censored.control.tml(maxit.sigma=50, tol.sigma=0.0001, 
                                       maxit.Beta=50, tol.Beta=0.0001, Maxit.TML=50, 
                                       tol.TML.sigma=0.001, tol.TML.Beta=0.001, alg.sigma=1, nitmon=FALSE)

WML <- TML.censored(log(LOS)-TypAdm*Age, data=MCI, delta=Dest, otp="adaptive",
                    control.ref=ctrl.ref, control.tml=ctrl.tml)

summary(WML)

# End(Not run)
```
Truncated Maximum Likelihood Regression Without Censored Observations

Description

This function computes the truncated maximum likelihood regression estimate described in Marazzi and Yohai (2004). The error distribution is assumed to follow approximately a Gaussian or a log-Weibull distribution. The cut-off values for outlier rejection are fixed or adaptive.

Usage

TML.noncensored(formula, data, errors = "Gaussian", cu = NULL, initial = "S", otp = "fixed", cov = "parametric", input = NULL, control = list(), ...)

Arguments

formula A formula, i.e., a symbolic description of the model to be fit (cf. glm or lm).
data An optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which TML.noncensored is called.
errors • "Gaussian": the error distribution is assumed to be Gaussian.
• "logWeibull": the error distribution is assumed to be log-Weibull.
cu Preliminary minimal upper cut-off. The default is 2.5 in the Gaussian case and 1.855356 in the log-Weibull case.
initial • "S": initial S-estimate.
• "input": the initial estimate is given on input.
otp • "adaptive": adaptive cut-off.
• "fixed": non adaptive cut-off.
cov • "no": no estimate of the covariance matrix of the coefficients is provided on output.
• "parametric": a parametric estimate of the covariance matrix of the coefficients is provided (to be used when n is small).
• "nonparametric": a nonparametric estimate of the covariance matrix of the coefficients is provided.
input Initial input estimates of location and scale. Required when initial="input".
• "Gaussian case": list(theta=...,sigma=...) initial input estimates. theta: location; sigma: scale.
• "logWeibull case": list(tau=...,v=...) initial input estimates of location (tau) and scale (v).
control Control parameters. For the default values, see the function TML.noncensored.control.
... If fastS=TRUE, parameters for lmrrobS. See the function lmrrob.control (from the robustbase package) for the default values.
Value

TML.noncensored returns an object of class "TML". The function summary can be used to obtain or print a summary of the results. The generic extractor functions fitted, residuals and weights can be used to extract various elements of the value returned by TML.noncensored. The function update can be used to update the model.

An object of class "TML" is a list with the following components:

- `th0`: Initial coefficient estimates (S or input).
- `v0`: Initial scale (S or input).
- `nit0`: Reached number of iteration in lmrob.S (available only if fastS is TRUE).
- `th1`: Final coefficient estimates.
- `v1`: Final scale (S or input).
- `nit1`: Number of iterations reached by the IRLS algorithm for the final estimates.
- `tu,tl`: Final cut-off values.
- `alpha`: Estimated proportion of retained observations.
- `tn`: Number of retained observations.
- `beta`: Consistency constant for scale.
- `weights`: Vector of weights (0 for rejected observations, 1 for retained observations).
- `cov`: Covariance matrix of the final estimates (th1[1],...,th1[p],v1) (where p=ncol(X)).
- `residuals`: The residuals, that is response minus fitted values.
- `fitted.values`: The fitted mean values.
- `call`: The matched call.
- `formula`: The formula supplied.
- `terms`: The terms object used.
- `data`: The data argument.

References

See Also

TML.noncensored.control, TML1.noncensored, TML1.noncensored.control, TML.censored

Examples

```r
## Not run:
data(D243)
Cost <- D243$Cost        # Cost (Swiss francs)
LOS  <- D243$LOS         # Length of stay (days)
Adm  <- D243$Typadm; Adm <- (Adm=="Urg")*1  # Type of admission
     # (0=on notification, 1=Emergency)
```
TML.noncensored.control

Control Parameters for Truncated Maximum Likelihood Regression Without Censored Observations

Description

Control parameters for TML.noncensored. Typically only used internally by TML.noncensored, but may be used to construct a control argument. This function provides default values.

Usage

TML.noncensored.control(iv = 1, nrep = 0, gam = 0.1, nitmon = FALSE, maxit = 200, tol = 1e-04, fastS = FALSE, seed=1313)

Arguments

iv
 • 0: use and do not change the initial estimate of scale.
 • 1: compute a truncated maximum likelihood estimate of scale.

nrep
 • Number of subsamples to be used in the computation of the S-estimate.
 • 0: exhaustive sampling if the observation number is not too large.

gam
 Relaxation factor for the IRLS algorithm of final estimate. Set 0 < gam <= 1.

nitmon
 Set to TRUE if iteration monitoring in IRLS algorithm for the final estimate is desired. Default=FALSE.

maxit
 Maximum number of iterations in IRLS algorithm for the final estimate.

Examples

Ass <- D243$Typass; Ass <- (Ass=="P")*1 # Type of insurance
 # (0=usual, 1=private)
Age <- D243$age # Age (years)
Dst <- D243$dest; Dst <- (Dst=="DOMI")*1 # Destination
 # (1=Home, 0=another hospital)
Sex <- D243$Sexe; Sex <- (Sex=="M")*1 # Sex (1=Male, 0=Female)

Truncated maximum likelihood regression with Gaussian errors
z <- TML.noncensored(log(Cost)-log(LOS)+Adm+Ass+Age+Dst+Sex,
 otp="adaptive",control=list(fastS=TRUE))
summary(z)

Truncated maximum likelihood regression with log-Weibull errors
w <- TML.noncensored(log(Cost)-log(LOS)+Adm+Ass+Age+Dst+Sex,
 errors="logWeibull",otp="adaptive",control=list(fastS=TRUE))
summary(w)

End(Not run)
Relative tolerance in IRLS algorithm.

- "TRUE" : the initial S-estimate is computed using lmrob.S from the robustbase package. The control parameters are taken from lmrob.control.
- "FALSE" : the initial S-estimate is computed using hysest from the robeth package.

Seed for the random number generator in the resampling algorithm for the initial S-estimate.

A list with components named as the arguments.

This functions computes the truncated maximum likelihood estimates of location and scale described in Marazzi and Yohai (2004). It assumes that the error distribution is approximately Gaussian or log-Weibull. The cut-off values for outlier rejection are fixed or adaptive. This function is a simplified version of TML.noncensored for the case without covariates.
Usage

TML1.noncensored(y, errors= c("Gaussian", "logWeibull"), cu = NULL,
initial = c("S", "input"), otp = c("adaptive", "fixed"),
 cov = c("no", "parametric", "nonparametric"), input = NULL,
control = list(), ...)

Arguments

y Observation vector

errors
 • "Gaussian": the error distribution is assumed to be approximately Gaussian.
 • "logWeibull": the error distribution is assumed to be approximately log-Weibull.

cu Preliminary minimal upper cut-off. The default is 2.5 in the Gaussian case and
1.855356 in the log-Weibull case.

initial
 • "S": initial S-estimate.
 • "input": the initial estimate is given on input.

otp
 • "adaptive": adaptive cut-off.
 • "fixed": non adaptive cut-off.

cov
 • "no": no estimate of the covariance matrix of the estimates is provided on
 output.
 • "parametric": a parametric estimate of the covariance matrix of the location-
scale estimates is provided (to be used when n is small).
 • "nonparametric": a nonparametric estimate of the covariance matrix of the
 location-scale estimates is provided.

input Initial input estimates of location and scale.
 Required when initial="input".
 • "Gaussian case": list(theta=...,sigma=...) initial input estimates. theta: location;
sigma: scale.
 • "logWeibull case": list(tau=...,v=...) initial input estimates of location (tau)
 and scale (v).

control Control parameters. For the default values, see the function TML1.noncensored.control.

... If initial="S", parameters for the computation of the initial S estimates. See the
function TML1.noncensored.control.S for the default values.

Value

A list with the following components:

th0 Initial location estimate (S or input).

v0 Initial scale estimate (S or input).

nit0 Reached number of iteration if initial="S"

th1 Final location estimate.

vl Final scale estimate.
TML1.noncensored.control

<table>
<thead>
<tr>
<th>var</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nit1</td>
<td>Reached iteration number in IRLS algorithm for final estimate (only for the log_Weibull case).</td>
</tr>
<tr>
<td>tu, tl</td>
<td>Final cut-off values.</td>
</tr>
<tr>
<td>alpha</td>
<td>Estimated proportion of retained observations.</td>
</tr>
<tr>
<td>tn</td>
<td>Number of retained observations.</td>
</tr>
<tr>
<td>beta</td>
<td>Consistency constant for scale.</td>
</tr>
<tr>
<td>wi</td>
<td>Vector of weights (0 for rejected observations, 1 for retained observations).</td>
</tr>
<tr>
<td>CV0</td>
<td>Covariance matrix of the initial estimates (th0,v0).</td>
</tr>
<tr>
<td>CV1</td>
<td>Covariance matrix of the final estimates (th1,v1).</td>
</tr>
</tbody>
</table>

References

See Also

TML1.noncensored, TML1.noncensored.control, TML1.noncensored.control.S

Examples

```R
## Not run:
data(Z243)
Cost <- Z243$ZCoutTot
y <- log(Cost)
ctrl <- TML1.noncensored.control(iv=1,tol=1e-3)
z <- TML1.noncensored(y,errors="logWeibull", initial="S", otp="adaptive", cov="no",control=ctrl)
## End(Not run)
```

TML1.noncensored.control

Control Parameters for Truncated Maximum Likelihood Estimation of Location and Scale

Description

Auxiliary function for TML1.noncensored. Typically only used internally by TML1.noncensored, but may be used to construct a control argument. This function provides default values.

Usage

TML1.noncensored.control(iv = 1, gam = 0.1, maxit = 200, tol = 1e-04)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| iv | - 0: use and do not change the initial estimate of scale.
| | - 1: compute a truncated maximum likelihood estimate of scale. |
| gam | Relaxation factor for the IRLS algorithm for the final estimate. Set 0 < gam <= 1. |
| maxit | Maximum number of iterations in the IRLS algorithm for the final estimate. |
| tol | Relative tolerance in the IRLS algorithm for the final estimate. |

Value

A list with components named as the arguments.

See Also

TML1.noncensored
Sample of 100 hospital stays for medical back problems

Description

Sample of 100 patients hospitalized for medical back problems in Switzerland

Usage

data(Z243)

Format

A data frame with 100 observations on the following 14 variables:

- NoAdm Admission number
- APDRG DRG: Always 243
- Sex Gender: 1=Male, 0=Female
- Age Age in years
- LOS Length of stay (days)
- CouTot Total Cost (Swiss francs)
- CsansInv Cost (Swiss francs)
- Adm Type of admission (0=on notification, 1=Emergency)
- Ass Type of insurance (0=usual, 1=private)
- Death 0=No, 1=Yes
- BBD A numeric vector
- BBDaggr A numeric vector
- Charl5 A numeric vector
- LOSF Adjusted length of stay

Examples

data(Z243)
Index

*Topic Accelerated Failure Time
 TML.censored, 16
 TML.noncensored, 23
 TML1.noncensored, 26

*Topic Regression
 TML.censored, 16
 TML.noncensored, 23
 TNQ.noncensored, 26

*Topic Robust
 TML.censored, 16
 TML.noncensored, 23

*Topic datasets
 D243, 7
 MCI, 10
 Z243, 30

*Topic misc
 TML1.noncensored.control.S, 29

*Topic package
 Robustaft-package, 2

*Topic regression
 Robustaft-package, 2
 TML1.noncensored, 26

*Topic robust
 Robustaft-package, 2
 TML1.noncensored, 26

*Topic univar
 TML1.noncensored, 26

*Topic utilities
 dfcomnR, 7

 class, 15
 coef, 14
 coef.TML (summary.TML), 14

 D243, 7
 dfcomn2, 7

 fits.compare, 9, 11
 fitted, 14, 17, 24
 formula, 16, 23

 glm, 16, 23

lm, 16, 23
lmrob.control, 23
lmrob.S, 26

MCI, 10
methods, 14

options, 14, 15

par, 11, 12
plot.default, 11, 12
plot.fits.compare, 9, 10
plot.TML, 11, 11
predict, 13
predict.TML, 13
print, 14, 15
print.fits.compare(fits.compare), 9
print.summary.TML (summary.TML), 14
print.TML (summary.TML), 14

residuals, 14, 17, 24
Robustaft (Robustaft-package), 2
Robustaft-package, 2

summary, 15, 17, 24
summary.TML, 14

terms, 17, 24
TML.censored, 2, 12–15, 16, 19–22, 24
TML.censored.control.ref, 17, 18, 19, 21, 22
TML.censored.control.S, 17–19, 20, 22
TML.censored.control.tml, 17–19, 21, 21
TML.noncensored, 2, 9, 12–15, 18, 23, 25, 26, 28
TML.noncensored.control, 23, 24, 25
TML1.noncensored, 24, 26, 28, 29
TML1.noncensored.control, 24, 27, 28, 28
TML1.noncensored.control.S, 27, 28, 29

update, 14, 17, 24
vcov, 14
vcov.TML (summary.TML), 14

weights, 14, 17, 24

Z243, 30