RobustLinearReg: Robust Linear Regressions

Provides an easy way to compute the Theil Sehn Regression method and also the Siegel Regression Method which are both robust methods base on the median of slopes between all pairs of data. In contrast with the least squared linear regression, these methods are not sensitive to outliers. Theil, H. (1992) <doi:10.1007/978-94-011-2546-8_20>, Sen, P. K. (1968) <doi:10.1080/01621459.1968.10480934>.

Version: 1.2.0
Depends: R (≥ 3.1.0)
Published: 2020-06-12
Author: Santiago I. Hurtado
Maintainer: Santiago I. Hurtado <santih at>
License: GPL-3
NeedsCompilation: no
CRAN checks: RobustLinearReg results


Reference manual: RobustLinearReg.pdf


Package source: RobustLinearReg_1.2.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): RobustLinearReg_1.2.0.tgz, r-oldrel (arm64): RobustLinearReg_1.2.0.tgz, r-release (x86_64): RobustLinearReg_1.2.0.tgz, r-oldrel (x86_64): RobustLinearReg_1.2.0.tgz


Please use the canonical form to link to this page.