Package ‘Rssa’

October 12, 2022

Type Package
Title A Collection of Methods for Singular Spectrum Analysis
Version 1.0.5
Depends R (>= 3.1), svd (>= 0.4), forecast
Imports lattice, methods
Suggests testthat (>= 0.7), RSpectra, PRIMME
SystemRequirements fftw (>=3.2)
Author Anton Korobeynikov, Alex Shlemov, Konstantin Usevich, Nina Golyandina
Maintainer Anton Korobeynikov <anton@korobeynikov.info>
Description Methods and tools for Singular Spectrum Analysis including decomposition, forecasting and gap-filling for univariate and multivariate time series. General description of the methods with many examples can be found in the book Golyandina (2018, <doi:10.1007/978-3-662-57380-8>). See 'citation("Rssa")' for details.
License GPL (>= 2)
URL https://github.com/asl/rssa
BugReports https://github.com/asl/rssa/issues
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-08-22 22:10:02 UTC

R topics documented:

Rssa-package ... 3
AustralianWine ... 4
Barbara ... 5
bforecast ... 5
cadzow ... 7
calc.v ... 9
cleanup ... 10
R topics documented:

- clone ... 10
- clplot ... 11
- decompose ... 12
- eossa ... 13
- forecast .. 16
- fossa ... 18
- frobenius.cor .. 22
- gapfill ... 24
- grouping.auto ... 26
- grouping.auto.pgram .. 27
- grouping.auto.wcor .. 29
- hhbmat .. 30
- hmat ... 31
- hmatr ... 32
- igapfill ... 34
- iossa ... 36
- iossa.result ... 40
- lrr ... 42
- Mars ... 44
- MotorVehicle .. 44
- owcor .. 45
- parestimate ... 46
- plot ... 50
- plot.reconstruction ... 52
- precache .. 56
- reconstruct ... 56
- residuals .. 58
- rforecast .. 59
- ssa ... 62
- ssa-input .. 68
- ssa-object .. 69
- ssa.capabilities .. 72
- summarize.gaps .. 73
- tmat ... 74
- USUnemployment ... 75
- vforecast .. 75
- wcor ... 78
- wnorm .. 80

Index

82
Description

Singular Spectrum Analysis (SSA, in short) is a modern non-parametric method for the analysis of time series and digital images. This package provides a set of fast and reliable implementations of various routines to perform decomposition, reconstruction and forecasting. A comprehensive description of the methods and functions from Rssa can be found in Golyandina et al (2018). The companion web-site is https://ssa-with-r-book.github.io/.

Details

Typically the use of the package starts with the decomposition of the time series using `ssa`. After this a suitable grouping of the elementary time series is required. This can be done heuristically, for example, via looking at the plots of the decomposition (`plot`). Alternatively, one can examine the so-called w-correlation matrix (`wcor`). Automatic grouping can be performed by means of `grouping.auto`. In addition, Oblique SSA methods can be used to improve the series separability (`iossa`, `fossa`).

Next step includes the reconstruction of the time-series using the selected grouping (`reconstruct`). One ends with frequency estimation (`parestimate`), series forecasting (`forecast`, `rforecast`, `vforecast`) and (if any) gap filling (`gapfill`, `igapfill`).

References

https://arxiv.org/abs/1507.05286

See Also

ssa-input, ssa, decompose, reconstruct, wcor, plot, parestimate, rforecast, vforecast, forecast, iossa, fossa

Examples

s <- ssa(co2) # Perform the decomposition using the default window length
summary(s) # Show various information about the decomposition
plot(s) # Show the plot of the eigenvalues
r <- reconstruct(s, groups = list(Trend = c(1, 4),
 Seasonality = c(2:3, 5:6))) # Reconstruct into 2 series
plot(r, add.original = TRUE) # Plot the reconstruction

Simultaneous trend extraction using MSSA

s <- ssa(EuStockMarkets, kind = "mssa")
r <- reconstruct(s, groups = list(Trend = c(1,2)))
plot(r, plot.method = "xyplot", add.residuals = FALSE,
 superpose = TRUE, auto.key = list(columns = 2))
Trend forecast
f <- rforecast(s, groups = list(Trend = c(1, 2)),
 len = 50, only.new = FALSE)
library(lattice)
xyplot(ts.union(Original = EuStockMarkets, "Recurrent Forecast" = f),
 superpose = TRUE, auto.key = list(columns = 2))

AustralianWine

Australian Wine Sales

Description

Monthly Australian wine sales in thousands of litres from Jan 1980 till Jul 1995. By wine makers in bottles of less than or equal to 1 litre.

Usage

data(AustralianWine)

Format

A multivariate time series with 187 observations on 7 variables. The object is of class ’mts’.

Barbara

Source

Barbara

Classical ‘Barbara’ image (color, wide)

Description

Classical ‘Barbara’ image (wide version). 720 x 576 x 3 (color, RGB model), from 0 to 255.

Usage

```r
data(Barbara)
```

Format

An integer array of dimension 3.

Source

http://www.hlevkin.com/hlevkin/06testimages.htm

bforecast

Perform bootstrap SSA forecasting of the series

Description

Perform bootstrap SSA forecasting of the one-dimensional series.

Usage

```r
## S3 method for class ‘1d.ssa’
bforecast(x, groups, len = 1, R = 100, level = 0.95,
type = c("recurrent", "vector"),
interval = c("confidence", "prediction"),
only.new = TRUE,
only.intervals = FALSE, ...,
drop = TRUE, drop.attributes = FALSE, cache = TRUE)

## S3 method for class ‘toeplitz.ssa’
bforecast(x, groups, len = 1, R = 100, level = 0.95,
type = c("recurrent", "vector"),
interval = c("confidence", "prediction"),
only.new = TRUE,
only.intervals = FALSE, ...,
drop = TRUE, drop.attributes = FALSE, cache = TRUE)
```
Arguments

- **x**: SSA object holding the decomposition
- **groups**: list, the grouping of eigentriples to be used in the forecast
- **len**: the desired length of the forecasted series
- **R**: number of bootstrap replications
- **level**: vector of confidence levels for bounds
- **type**: the type of forecast method to be used during bootstrapping
- **interval**: type of interval calculation
- **only.new**: logical, if 'FALSE' then confidence bounds for the signal as well as prediction are reported
- **only.intervals**: logical, if 'TRUE' then bootstrap method is used for confidence bounds only, otherwise — mean bootstrap forecast is returned as well
- **drop**: logical, if 'TRUE' then the result is coerced to series itself, when possible (length of 'groups' is one)
- **drop.attributes**: logical, if 'TRUE' then the attributes of the input series are not copied to the reconstructed ones
- **cache**: logical, if 'TRUE' then intermediate results will be cached in the SSA object

Details

The routine uses the reconstruction residuals in order to calculate their empirical distribution (the residuals are assumed to be stationary). Empirical distribution of the residuals is used to perform bootstrap series simulation. Such bootstrapped series are then extended via selected forecast method. Finally, the distribution of forecasted values is used to calculate bootstrap estimate of series forecast and confidence bounds.

See Section 3.2.1.5 from Golyandina et al (2018) for details.

Value

List of matrices. Each matrix has 1 + 2*length(level) columns and 'len' rows. First column contains the forecasted values, remaining columns — low and upper bootstrap confidence bounds for average forecasted values.

The matrix itself, if length of groups is one and 'drop = TRUE'.

References

See Also

- [Rssa](#) for an overview of the package, as well as, [rforecast](#), [vforecast](#), [forecast](#).
Examples

Decompose 'co2' series with default parameters
s <- ssa(co2)
Produce 24 forecasted values and confidence bounds of the series using
the first 3 eigentriples as a base space for the forecast.
f <- bforecast(s, groups = list(1:3), len = 24, R = 50)
matplot(f, col = c("black", "red", "red"), type='l')

Description

Perform the finite rank approximation of the series via Cadzow iterations

Usage

S3 method for class 'ssa'
cadzow(x, rank, correct = TRUE, tol = 1e-6, maxiter = 0,
 norm = function(x) max(abs(x)),
 trace = FALSE, ..., cache = TRUE)

Arguments

x input SSA object
rank desired rank of approximation
correct logical, if 'TRUE' then additional correction as in Gillard et al (2013) is performed
tol tolerance value used for convergence criteria
maxiter number of iterations to perform, if zero then iterations are performed until the convergence
norm distance function used for convergence criterion
trace logical, indicates whether the convergence process should be traced
... further arguments passed to reconstruct
cache logical, if 'TRUE' then intermediate results will be cached in the SSA object.

Details

Cadzow iterations aim to solve the problem of the approximation of the input series by a series of finite rank. The idea of the algorithm is quite simple: alternating projections of the trajectory matrix to Hankel and low-rank matrices are performed which hopefully converge to a Hankel low-rank matrix. See Algorithm 3.10 in Golyandina et al (2018).

Note that the results of one Cadzow iteration with no correction coincides with the result of reconstruction by the leading rank components.

Unfortunately, being simple, the method often yields the solution which is far away from the optimum.
References

See Also

Rssa for an overview of the package, as well as, *reconstruct*

Examples

```r
# Decompose co2 series with default parameters
s <- ssa(co2)
# Now make rank 3 approximation using the Cadzow iterations
F <- cadzow(s, rank = 3, tol = 1e-10)
library(lattice)
xyplot(cbind(Original = co2, Cadzow = F), superpose = TRUE)
# All but the first 3 eigenvalues are close to 0
plot(ssa(F))

# Compare with SSA reconstruction
F <- cadzow(s, rank = 3, maxiter = 1, correct = FALSE)
Fr <- reconstruct(s, groups = list(1:3))$F1
print(max(abs(F - Fr)))

# Cadzow with and without weights
set.seed(3)
N <- 60
L <- 30
K <- N - L + 1
alpha <- 0.1

sigma <- 0.1
signal <- cos(2*pi * seq_len(N) / 10)
x <- signal + rnorm(N, sd = sigma)
weights <- rep(alpha, K)
weights[seq(1, K, L)] <- 1
salpha <- ssa(x, L = L,
  column.oblique = "identity",
  row.oblique = weights)
calpha <- cadzow(salpha, rank = 2)

cz <- cadzow(ssa(x, L = L), rank = 2)
print(mean((cz - signal)^2))
print(mean((calpha - signal)^2))
```
Description

Generic function for the factor vector calculation given the SSA decomposition.

Usage

```r
## S3 method for class 'ssa'
calc.v(x, idx, ...)
## S3 method for class 'cssa'
calc.v(x, idx, ...)
```

Arguments

- `x` SSA object holding the decomposition.
- `idx` indices of the factor vectors to compute.
- `...` additional arguments to `calc.v`.

Details

Factor vector is a column of the factor matrix V, which is calculated as follows:

$$ V = \Sigma^{-1} X^T U, $$

where X is a Hankel trajectory matrix, U is the matrix of eigenvectors and Σ is a matrix of singular values.

Value

A numeric vector of suitable length (usually depends on SSA method and window length).

See Also

[Rssa](https://www.rdocumentation.org/packages/Rssa) for an overview of the package, as well as, [ssa-object](https://www.rdocumentation.org/packages/ssa), [ssa](https://www.rdocumentation.org/packages/ssa), [decompose](https://www.rdocumentation.org/packages/decompose).

Examples

```r
# Decompose 'co2' series with default parameters
s <- ssa(co2)
# Calculate the 5th factor vector
v <- calc.v(s, 5)
```
cleanup

Cleanup of all cached data from SSA objects

Description

Function to copy SSA objects

Usage

```r
cleanup(x)
```

Arguments

- `x` object to be cleaned

Details

For the sake of memory efficiency SSA objects hold references to the data, not the data itself. That is why they can hold huge amount of data and passing them by value is still cheap.

Also, SSA routines tend to save some intermediate information which can be used later inside SSA object. This includes (but not limited to) elementary series, etc.

`cleanup` call deletes all pre-cached stuff freeing memory necessary for calculations.

clone

Cloning of SSA objects

Description

Function to copy SSA objects

Usage

```r
## S3 method for class 'ssa'
clone(x, copy.storage = TRUE, copy.cache = TRUE, ...)
```

Arguments

- `x` object to be cloned
- `copy.storage` enable/disable copying of the internal storage
- `copy.cache` enable/disable copying of the set of pre-cached elementary series
- `...` additional arguments to `clone`
Details

For the sake of memory efficiency SSA objects hold references to the data, not the data itself. That is why they can hold huge amount of data and passing them by value is still cheap.

However, this means that one cannot safely copy the object using normal assignment operator, since freeing of references in one object would yield stale references in another. The clone method provides safe ‘deep copy’ of SSA objects.

Examples

Decompose 'co2' series with default parameters
s <- ssa(co2);
Perform 'normal copy' of SSA object
s1 <- s;
Perform 'deep copy' of SSA object
s2 <- clone(s);
Add some data to 's'
reconstruct(s);
Now 's1' also contains this data, but 's2' - not
summary(s1);
summary(s2);

clplot

Ratio of complete lag vectors in dependence on window length

Description

Function to plot the dependence of ratios of complete lagged vectors on window lengths.

Usage

clplot(x, ...)

Arguments

x input series
... further arguments passed to plotting functions

Details

The function plots the dependence of ratios of complete lagged vectors on window lengths. This information can be used for the choice of window length, since only complete lagged vectors are used for construction of the SVD expansion in SSA. See page 89 (Chapter 2) in Golyandina et al (2018).

References

See Also

 `Rssa` for an overview of the package, as well as, `igapfill`, `gapfill summarize.gaps`.

decompose

Perform SSA Decomposition

Description

Performs the SSA decomposition.

Usage

```r
## S3 method for class 'ssa'
decompose(x, neig = NULL, ..., force.continue = FALSE)
## S3 method for class 'toeplitz.ssa'
decompose(x, neig = NULL, ..., force.continue = FALSE)
## S3 method for class 'cssa'
decompose(x, neig = NULL, ..., force.continue = FALSE)
```

Arguments

- `x` SSA object holding the decomposition.
- `neig` number of desired eigentriples or 'NULL' for default value (minimum from 50 and trajectory space dimension).
- `...` additional arguments passed to SVD routines.
- `force.continue` logical, if TRUE then continuation of the decomposition is explicitly requested

Details

This is the main function which does the decomposition of the SSA trajectory matrix. Depending on the SVD method selected in the `ssa` different SVD implementations are called. This might be the ordinary full SVD routines or fast methods which exploit the Hankel / Toeplitz / Hankel with Hankel blocks matrix structure and allow the calculation of first few eigentriples.

Some SVD methods support continuation of the decomposition: if the 'ssa' object already holds some decomposition and more eigentriples are requested, then the decomposition continues using the current values as a starting point reducing the computation time dramatically.

Value

The SSA object.

Note

Usually there is no need to call this function directly. Call to `ssa` does the decomposition in the end. Other functions do the decomposition when necessary.
See Also

Rssa for an overview of the package, as well as, svd, ssa.

Examples

Decompose 'co2' series with default parameters and decomposition turned off.
s <- ssa(co2, force.decompose = FALSE, svd.method = "nutrlan")
Perform the decomposition
decompose(s, neig = 50)
Continue the decomposition
decompose(s, neig = 100)

Description

Perform ESPRIT-based O-SSA (EOSSA) algorithm.

Usage

S3 method for class 'ssa'
eossa(x, nested.groups, k = 2,
 subspace = c("column", "row"),
 dimensions = NULL,
 solve.method = c("ls", "tls"),
 beta = 8,
 ...)

Arguments

x SSA object holding SSA decomposition
nested.groups list or named list of numbers of eigentriples from full decomposition, describes elementary components for EOSSA nested redecomposition
k the number of components in desired resultant decomposition
subspace which subspace will be used for oblique matrix construction
dimensions a vector of dimension indices to construct shift matrices along. 'NULL' means all dimensions
solve.method approximate matrix equation solving method, 'ls' for least-squares, 'tls' for total-least-squares.
beta In multidimensional (nD) case, coefficient(s) in convex linear combination of shifted matrices. The length of beta should be ndim - 1, where ndim is the number of independent dimensions. If only one value is passed, it is expanded to a geometric progression.
... additional arguments passed to decompose routines
Details

EOSSA is an experimental signal separation method working in Nested Oblique SSA setting. As opposed to iossa, this method does not require initial approximate decomposition. Moreover, it can be used for initial decomposition construction for IOSSA.

EOSSA is motivated by parametric model of finite-dimensional signal, however it does not exploit this model directly and does not estimate the parameters. Therefore, it works for wider class of time series. According to the experiments, it works for series that could be locally approximated by a series of finite dimension, but at this moment there is no any theoretical results for this.

EOSSA constructs shift matrix estimation by the same way is in ESPRIT (see parestimate) method and uses its eigenspace to build separating scalar products (see iossa for more information about Oblique SSA decompositions). Consequently, the method ideally separates signals of finite dimension with absence of noise. With presence of noise it provides approximate results due to continuity. The method performs eigenvectors clustering inside (for now hclust is used), the number of components (argument k) should be passed.

Value

Object of ‘ossa’ class.

References

See Also

Rssa for an overview of the package, as well as, ssa-object, ESPRIT, iossa, fossa, owcor, iossa.result.

Examples

Separability of three finite-dimensional series, EOSSA vs Basic SSA
N <- 150
L <- 70
omega1 <- 0.065
omega2 <- 0.07
omega3 <- 0.02
sigma <- 0.5
F1.real <- 2*sin(2*pi*omega1*(1:N))
F2.real <- 4*sin(2*pi*omega2*(1:N))
F3.real <- sin(2*pi*omega3*(1:N))
noise <- rnorm(N, sd = sigma)
F <- F1.real + F2.real + F3.real + noise
ss <- ssa(F, L)
eoss <- eossa(ss, nested.groups = list(1:2, 3:4, 5:6), k = 3)
print(eoss)
```r
plot(ss, type = "series", groups = list(1:2, 3:4, 5:6))
plot(eoss, type = "series", groups = eoss$iossa.groups)

plot(reconstruct(ss, 
groups = list(1:2, 3:4, 5:6)),
add.residuals = TRUE, plot.method = "xyplot", main = "", xlab = "")
plot(reconstruct(eoss, groups = list(1:2, 3:4, 5:6)),
add.residuals = TRUE, plot.method = "xyplot", main = "", xlab = "")
plot(reconstruct(ss, 
groups = list(Reconstructed = 1:6, F1 = 1:2, F2 = 3:4, F3 = 5:6)),
add.residuals = TRUE, plot.method = "xyplot", main = "", xlab = "")
plot(reconstruct(eoss, 
groups = list(Reconstructed = 1:6, F1 = 1:2, F2 = 3:4, F3 = 5:6)),
add.residuals = TRUE, plot.method = "xyplot", main = "", xlab = "")
rec.ideal <- reconstruct(ss, 
groups = list(Signal = 1:6, F1 = 1:2, F2 = 3:4, F3 = 5:6))
rec.ideal$Signal <- F1.real + F2.real + F3.real
rec.ideal$F1 <- F2.real
rec.ideal$F2 <- F1.real
rec.ideal$F3 <- F3.real

plot(rec.ideal, 
add.residuals = TRUE, plot.method = "xyplot", main = "", xlab = "")

# Real-life example (co2), EOSSA vs Basic SSA
sigma <- 0.05
ss <- ssa(co2)
plot(ss, type = "vector")
eoss <- eossa(ss, 1:6, k = 4)
eoss$iossa.groups

plot(eoss)
rec <- reconstruct(eoss, groups = eoss$iossa.groups)
plot(rec)

plot(reconstruct(ss, 
groups = list(ET1 = 1, ET2 = 2, ET3 = 3, ET4 = 4, ET5 = 5, ET6 = 6)),
add.residuals = TRUE, plot.method = "xyplot", main = "", xlab = "")
plot(reconstruct(eoss, 
groups = eoss$iossa.groups),
add.residuals = TRUE, plot.method = "xyplot", main = ""]
```
xlab = "")

Sine wave with phase shift, EOSSA vs Basic SSA
omega1 <- 0.06
omega2 <- 0.07
sigma <- 0.25

F1.real <- sin(2*pi*omega1*(1:N))
F2.real <- sin(2*pi*omega2*(1:N))
v <- c(F1.real, F2.real)
v <- v + rnorm(v, sd = sigma)
v <- c(F1.real, F2.real)

ss <- ssa(v, L = 35)
eoss <- eossa(ss, 1:4, 2)
ioss <- iossa(ss, list(1:2, 3:4))

plot(reconstruct(eoss, groups = eoss$iossa.groups))
plot(reconstruct(eoss,
groups = eoss$iossa.groups), plot.method = "xyplot", main = "",
xlab = "")

plot(reconstruct(ss, groups = list(1:2, 3:4)),
plot.method = "xyplot",
main = "", xlab = "")
plot(reconstruct(ss, groups = list(1,2, 3,4)),
plot.method = "xyplot",
main = "", xlab = "")

forecast

Perform SSA forecasting of series

Description

All-in-one function to perform SSA forecasting of one-dimensional series.

Usage

```
## S3 method for class '1d.ssa'
forecast(object, 
groups, h = 1, 
method = c("recurrent", "vector"), 
interval = c("none", "confidence", "prediction"), 
only.intervals = TRUE, 
..., 
drop = TRUE, drop.attributes = FALSE, cache = TRUE)

## S3 method for class 'toeplitz.ssa'
```

forecast(object,
groups, h = 1,
method = c("recurrent", "vector"),
interval = c("none", "confidence", "prediction"),
only.intervals = TRUE,
...,
drop = TRUE, drop.attributes = FALSE, cache = TRUE)
S3 method for class '1d.ssa'
predict(object,
groups, len = 1,
method = c("recurrent", "vector"),
interval = c("none", "confidence", "prediction"),
only.intervals = TRUE,
...,
drop = TRUE, drop.attributes = FALSE, cache = TRUE)
S3 method for class 'toeplitz.ssa'
predict(object,
groups, len = 1,
method = c("recurrent", "vector"),
interval = c("none", "confidence", "prediction"),
only.intervals = TRUE,
...,
drop = TRUE, drop.attributes = FALSE, cache = TRUE)
S3 method for class 'mssa'
predict(object,
groups, len = 1,
method = c("recurrent", "vector"),
direction = c("column", "row"),
...,
drop = TRUE, drop.attributes = FALSE, cache = TRUE)

Arguments

object SSA object holding the decomposition
groups list, the grouping of eigentriples to be used in the forecast
h,len the desired length of the forecasted series
method method of forecasting to be used
interval type of interval calculation
only.intervals logical, if 'TRUE' then bootstrap method is used for confidence bounds only, otherwise — mean bootstrap forecast is returned as well
direction direction of forecast in multichannel SSA case, "column" stands for so-called L-forecast and "row" stands for K-forecast
... further arguments passed for forecast routines (e.g. level argument to bforecast)
drop logical, if 'TRUE' then the result is coerced to series itself, when possible (length of 'groups' is one)
drop.attributes

logical, if 'TRUE' then the forecast routines do not try to infer the time index arguments for the forecasted series.

cache

logical, if 'TRUE' then intermediate results will be cached in the SSA object.

Details

This function is a convenient wrapper over other forecast routines (see 'See Also') turning their value into object of type 'forecast' which can be used with the routines from forecast package.

Value

object of class 'forecast' for forecast function call, predicted series for predict call.

See Also

Rssa for an overview of the package, as well as, rforecast, vforecast, bforecast, forecast (package)

Examples

s <- ssa(co2)
Calculate 24-point forecast using first 6 components as a base
f <- forecast(s, groups = list(1:6), method = "recurrent", bootstrap = TRUE, len = 24, R = 10)
Plot the result including the last 24 points of the series
plot(f, include = 24, shadecols = "green", type = "l")
Use of predict() for prediction
p <- predict(s, groups = list(1:6), method = "recurrent", len = 24)
Simple plotting
plot(p, ylab = "Forecasted Values")

fossa

Nested Filter-adjusted O-SSA decomposition

Description

Perform nested decomposition by Filter-adjusted O-SSA (FOSSA).

Usage

S3 method for class 'ssa'
fossa(x, nested.groups, filter = c(-1, 1), gamma = Inf, normalize = TRUE, ...)
Arguments

- **x**: SSA object holding SSA decomposition
- **nested.groups**: vector of numbers of eigentriples from full decomposition for nested decomposition. The argument is coerced to a vector, if necessary
- **filter**: numeric vector or array of reversed impulse response (IR) coefficients for filter adjustment or list of such vectors or arrays
- **gamma**: weight of filter adjustment. See ‘Details’ and ‘References’
- **normalize**: logical, whether to normalize left decomposition vectors before filtering
- **...**: additional arguments passed to `decompose` routines

Details

See Golyandina N. and Shlemov A. (2015) and Section 2.5 in Golyanina et al (2018) for full details in the 1D case and p.250-252 from the same book for an example in the 2D case.

Briefly, FOSSA serves for decomposition of series components that are mixed due to equal contributions of their elementary components, e.g. of sinusoids with equal amplitudes or of complex-form trend and periodics. FOSSA performs a new decomposition of a part of the ssa-object, which is given by a set of eigentriples. Note that eigentriples that do not belong to the chosen set are not changed.

In particular, Filter-adjusted O-SSA performs a nested decomposition specified by a number of eigentriples via Oblique SSA with a specific inner product in the row space:

\[\langle x, y \rangle = \langle x, y \rangle + \gamma^2 \langle \Phi(x), \Phi(y) \rangle, \]

where \(\langle \cdot, \cdot \rangle \) denotes conventional inner product and \(\Phi \) is linear filtration which is specified by filter argument.

The default value of \(\Phi \) corresponds to sequential differences, that is, to derivation. Such version of Filter-adjusted O-SSA is called ‘DerivSSA’. See ‘References’ for more details.

filter argument: For 1D-SSA, Toeplitz-SSA and MSSA: Filter can be given by a vector or a list of vectors. Each vector corresponds to reversed IR for a filter, these filters are applied independently and their results are stacked such that the matrix \([X : \Phi_1(X) : \Phi_2(X)]\) is decomposed.

For 2D-SSA: the following variants are possible: (1) a list of vectors. Each vector corresponds to reversed IR for a filter. Each filter is applied to different dimensions, the first to columns, the second to rows, and the results are stacked. (2) single vector. Given vector corresponds to one-dimensional filter applied to both dimensions, the same as list of two equal vectors. (3) a list of matrices, where each matrix provides 2d filter coefficients and the results are stacked. (4) single matrix. Given matrix corresponds to two-dimensional filter applied once, the same as list of one matrix.

For nD-SSA: the same as for 2D-SSA, a list of vectors for filters by directions, single vector, a list of arrays (matroids) for nD filters or single array.

Normalization: Let us explain for the 1D case. Let \(X \) be the reconstructed matrix, corresponding to the selected eigentriples \(\{(\sigma_i, U_i, V_i)\} \), \(\Psi(X) \) is the matrix, where the filter is applied to each row of \(X \).
Then normalize = FALSE (Algorithm 2.9 or 2.10 in Golyandina et al (2018)) corresponds to finding the basis in the column space of X by means of the SVD of $[X, \Psi(X)]$, while normalize = TRUE (by default, see Algorithm 2.11 in Golyandina et al (2018)) corresponds to finding the basis by the SVD of $[V, \Phi(V)]$, where the rows of matrix V are V_i. The value by default TRUE guarantees that the contributions of sine waves will be ordered by decreasing of frequencies, although can slightly worsen the weak separability

Value

Object of class 'ossa'. The field 'ossa.set' contains the vector of indices of elementary components used in Filter-adjusted O-SSA (that is, used in nested.groups).

References

See Also

Rssa for an overview of the package, as well as, iossa.

Examples

```r
# Separation of two mixed sine-waves with equal amplitudes
N <- 150
L <- 70
omega1 <- 1/15
omega2 <- 1/10
v <- sin(2*pi*omega1 * (1:N)) + sin(2*pi*omega2 * (1:N))
s <- ssa(v, L)
fs <- fossa(s, nested.groups = 1:4, gamma = 100)

# Rssa does most of the plots via lattice
ws <- plot(wcor(s, groups = 1:4))
wfs <- plot(wcor(fs, groups = 1:4))
plot(ws, split = c(1, 1, 2, 1), more = TRUE)
plot(wfs, split = c(2, 1, 2, 1), more = FALSE)

opar <- par(mfrow = c(2, 1))
plot(reconstruct(s, groups = list(1:2, 3:4)))
plot(reconstruct(fs, groups = list(1:2, 3:4)))
par(opar)

# Real-life example: Australian Wine Sales
data(AustralianWine)
s <- ssa(AustralianWine[1:120, "Fortified"], L = 60)
```
fs <- fossa(s, nested.groups = list(6:7, 8:9, 10:11), gamma = 10)

plot(reconstruct(fs, groups = list(6:7, 8:9, 10:11)))
plot(wcor(s, groups = 6:11))
plot(wcor(fs, groups = 6:11))

Real life example: improving of strong separability
data(USUnemployment)
unempl.male <- USUnemployment[, "MALE"]
s <- ssa(unempl.male)
fs <- fossa(s, nested.groups = 1:13, gamma = 1000)

Comparison of reconstructions
rec <- reconstruct(s, groups = list(c(1:4, 7:11), c(5:6, 12:13)))
frec <- reconstruct(fs, groups <- list(5:13, 1:4))

Trends
matplot(data.frame(frec$F1, rec$F1, unempl.male), type='l',
 col=c("red","blue","black"), lty=c(1,1,2))
Seasonalities
matplot(data.frame(frec$F2, rec$F2), type = 'l',
 col=c("red","blue"), lty=c(1,1))

W-cor matrices before and after FOSSA
ws <- plot(wcor(s, groups = 1:30), grid = 14)
wfs <- plot(wcor(fs, groups = 1:30), grid = 14)
plot(ws, split = c(1, 1, 2, 1), more = TRUE)
plot(wfs, split = c(2, 1, 2, 1), more = FALSE)

Eigenvectors before and after FOSSA
plot(s, type = "vectors", idx = 1:13)
plot(fs, type = "vectors", idx = 1:13)

2D plots of periodic eigenvectors before and after FOSSA
plot(s, type = "paired", idx = c(5, 12))
plot(fs, type = "paired", idx = c(1, 3))

Compare FOSSA with and without normalize
N <- 150
L <- 70
omega1 <- 1/15
omega2 <- 1/10
v <- 3*sin(2*pi*omega1 * (1:N)) + 2*sin(2*pi*omega2 * (1:N))
s <- ssa(v, L)
fs <- fossa(s, nested.groups = 1:4, gamma = 100)
fs.norm <- fossa(s, nested.groups = 1:4, gamma = 100, normalize = TRUE)
opar <- par(mfrow = c(2, 1))
plot(reconstruct(fs, groups = list(1:2, 3:4)))
plot(reconstruct(fs.norm, groups = list(1:2, 3:4)))
par(opar)

2D example
data(Mars)
s <- ssa(Mars)
```r
plot(s, "vectors", idx = 1:50)
plot(s, "series", idx = 1:50)
fs <- fossa(s, nested.groups = 1:50, gamma = Inf)
plot(fs, "vectors", idx = 1:14)
plot(fs, "series", groups = 1:13)

# Filters example, extracting horizontal and vertical stripes
data(Mars)
s <- ssa(Mars)
fs.hor <- fossa(s, nested.groups = 1:50, gamma = Inf,
    filter = list(c(-1, 1), c(1)))
plot(fs.hor, "vectors", idx = 1:14)
plot(fs.hor, "series", groups = 1:13)
fs.ver <- fossa(s, nested.groups = 1:50, gamma = Inf,
    filter = list(c(1), c(-1, 1)))
plot(fs.ver, "vectors", idx = 1:14)
plot(fs.ver, "series", groups = 1:13)
```

frobenius.cor

Calculate Frobenius correlations of the component matrices

Description

Function calculates Frobenius correlations between grouped matrices from the SSA matrix decomposition.

Usage

```r
frobenius.cor(x, groups, ...)
```

Arguments

- **x**
 - input SSA object, supposed to be of class ‘ossa’
- **groups**
 - list of numeric vectors, indices of elementary matrix components in the SSA matrix decomposition
- **...**
 - further arguments passed to `decompose`

Details

Function computes matrix of Frobenius correlations between grouped matrices from the SSA matrix decomposition. For group \(\mathcal{I} = \{i_1, \ldots, i_s\} \) the group matrix is defined as \[X_\mathcal{I} = \sum_{i \in \mathcal{I}} \sigma_i U_i V_i^T. \]

Frobenius correlation of two matrices is defined as follows:

\[
\text{fcor}(Z, Y) = \frac{(Z, Y)_F}{\|Z\|_F \cdot \|Y\|_F}.
\]
Frobenius correlation is a measure of Frobenius orthogonality of the components. If grouped matrices are correlated then the w-correlations of the corresponding reconstructed series is not relevant measure of separability (and one should use `owcor` instead). Also, if the elementary matrices $X_i = \sigma_i U_i V_i^T$ of the decomposition are not F-orthogonal, then σ_i do not reflect their true contributions into the matrix decomposition.

This function normally should be used only for object of class ‘ossa’. Otherwise it always returns identical matrix (for disjoint groups).

Value

Object of type ‘wcor.matrix’.

See Also

`wcor`, `owcor`, `iossa`.

Examples

```r
# Separation of two mixed sine-waves with equal amplitudes
N <- 150
L <- 70
omega1 <- 1/5
omega2 <- 1/10

v <- sin(2*pi*omega1 * (1:N)) + sin(2*pi*omega2 * (1:N))
s <- ssa(v, L)
fs <- fossa(s, nested.groups = 1:4, gamma = 100)

# Decomposition is F-orthogonal
plot(frobenius.cor(fs, groups = 1:4), main = "F-correlation matrix")
plot(wcor(s, groups = 1:4))
plot(wcor(fs, groups = 1:4))

# Separate two non-separable sine series with different amplitudes
N <- 150
L <- 70

omega1 <- 0.07
omega2 <- 0.0675

F <- 2*sin(2*pi*omega1 * (1:N)) + 2*sin(2*pi*omega2 * (1:N))
s <- ssa(F, L)
ios <- iossa(s, nested.groups = list(1:2, 3:4),
               kappa = NULL, maxiter = 1000, tol = 1e-5)

plot(reconstruct(ios, groups = ios$iossa.groups))
summary(ios)

# Decomposition is really oblique
```
plot(frobenius.cor(ios, groups = 1:4), main = "F-correlation matrix")

plot(wcor(ios, groups = 1:4))
plot(owcor(ios, groups = list(1:2, 3:4)), main = "Oblique W-correlation matrix")

data(USUnemployment)
unempl.male <- USUnemployment[, "MALE"]
s <- ssa(unempl.male)
ios <- iossa(s, nested.groups = list(c(1:4, 7:11), c(5:6, 12:13)))
summary(ios)

W-cor matrix before IOSSA and w-cor matrix after it
plot(wcor(s, groups = 1:30))
plot(wcor(ios, groups = 1:30))

Confirmation of the indicated max value in the above warning
plot(frobenius.cor(ios, groups = 1:30), main = "F-correlation matrix")
gapfill

alpha = function(len) seq.int(0, 1, length.out = len), ...
drop = TRUE, drop.attributes = FALSE, cache = TRUE)

Arguments

x
Shaped SSA object holding the decomposition

groups
list, the grouping of eigentriples to be used in the forecast

base
series used as a 'seed' for gapfilling: original or reconstructed according to the value of groups argument

method
method used for gapfilling, "sequential" means to filling by a recurrent forecast from complete parts; "simultaneous" tries to build projections onto the signal subspace. See 'References' for more info.

alpha
weight used for combining forecasts from left and right when method = "sequential"; 0.5 means that the forecasts are averaged, 0 (1) means that only forecast from the left (right correspondingly) is used, arbitrary function could be specified; by default linear weights are used.

... additional arguments passed to reconstruct routines

drop
logical, if 'TRUE' then the result is coerced to series itself, when possible (length of 'groups' is one)

drop.attributes
logical, if 'TRUE' then the attributes of the input series are not copied to the reconstructed ones.

cache
logical, if 'TRUE' then intermediate results will be cached in the SSA object.

Details

The function fills in the missed entries in the series. Both methods described in Golyandina and Osipov (2007) are implemented:

- method = "sequential" performs forecast from complete chunks onto incomplete. For internal gaps forecast is performed from both sides of the gap and average is taken in order to reduce the forecast error. For gaps in the beginning or end of the series the method coincides with ordinary recurrent forecast;
- method = "simultaneous" performs gap filling via projections onto signal subspace. The method may fail if insufficient complete observations are provided.

Details of the used algorithms see in Golyandina et al (2018), Algorithms 3.8 and 3.9 respectively.

Value

List of objects with gaps filled in. Elements of the list have the same names as elements of groups. If group is unnamed, corresponding component gets name ‘Fn’, where ‘n’ is its index in groups list.

Or, the forecasted object itself, if length of groups is one and 'drop = TRUE'.
References

See Also

Rssa for an overview of the package, as well as, *rforecast, igapfill, clplot, summarize.gaps*,

Examples

```r
# Produce series with gaps
F <- co2; F[100:200] <- NA
# Perform shaped SSA
s <- ssa(F, L = 72)
# Fill in gaps using the trend and 2 periodicty components
g <- gapfill(s, groups = list(1:6))
# Compare the result
plot(g)
lines(co2, col = "red")
```

grouping.auto
Group Elementary Series

Description

The ‘grouping.auto’ function performs the Grouping Step of SSA using different approaches.

Usage

```r
grouping.auto(x, ..., grouping.method = c("pgram", "wcor"))
```

Arguments

- `x`: SSA object
- `grouping.method`: String specifying the method used to perform the grouping. Allowed methods are “pgram” (the default) and “wcor”
- `...`: Further arguments to specific methods

Details

‘grouping.auto’ is a wrapper function which calls the methods ‘grouping.auto.pgram’ and ‘grouping.auto.wcor’.
Value

List of integer vectors holding the indices of the elementary components forming each grouped objects.

See Also

`grouping.auto.pgram`, `grouping.auto.wcor`

grouping.auto.pgram
Group elementary series using periodogram

Description

Group elementary components automatically using their frequency contributions

Usage

```r
## S3 method for class '1d.ssa'
grouping.auto.pgram(x, groups,
  base = c("series", "eigen", "factor"),
  freq.bins = 2,
  threshold = 0,
  method = c("constant", "linear"),
  ...
  drop = TRUE)
## S3 method for class 'grouping.auto.pgram'
plot(x, superpose, order, ...)
```

Arguments

- `x`
 SSA object
- `groups`
 indices of elementary components for grouping
- `base`
 input for periodogram: elementary reconstructed series, eigenvectors or factor vectors
- `freq.bins`
 single integer number > 1 (the number of intervals), vector of frequency breaks (of length >=2) or list of frequency ranges. For each range, if only one element provided it will be used as the upper bound and the lower bound will be zero
- `threshold`
 contribution threshold. If zero then dependent grouping approach will be used
- `method`
 method of periodogram interpolation
- `superpose`
 logical, whether to plot contributions for all intervals on one panel
- `order`
 logical, whether to reorder components by contribution
- `...`
 additional arguments passed to `reconstruct` and `xyplot` routines
- `drop`
 logical, whether to exclude empty groups from resulted list
grouping.auto.pgram

Details

Elementary components are grouped using their frequency contribution (periodogram). Optionally (see argument ‘base’) periodogram of eigen or factor vectors may be used.

For each elementary component and for each frequency interval (which are specified by ‘freq.bins’ argument) relative (from 0 till 1) contribution is computed using one of two methods: ‘constant’ (periodogram is considered as a sequence of separate bars) or ‘linear’ (periodogram is linearly interpolated).

Two approaches of grouping is implemented:

'**independent**' or 'threshold' Each group includes components with frequency contribution in correspondent interval is greater than specified threshold; resulted groups can intersect. If 'threshold' is a vector, correspondent value of threshold will be using for each interval. See Algorithm 2.16 in Golyandina et al (2018).

'**dependent**' or 'splitting' Elementary components are separated to disjoint subsets; for each component interval with the highest contribution is selected. See Algorithm 2.17 in Golyandina et al (2018)

If 'freq.bins' is named, result groups will take the same names.

If drop = 'TRUE' (by default), empty groups will be excluded from result.

See Section 2.7 in Golyandina et al (2018) and the paper Alexandrov, Golyandina (2005) for the details of the algorithm.

Value

object of class 'grouping.auto.pgram' (list of groups with some additional info) for grouping method; 'trellis' object for plot method.

References

See Also

`Rssa` for an overview of the package, as well as, `reconstruct`, `rforecast`, `vforecast`, `parestimate`

Examples

```r
ss <- ssa(co2)
plot(ss, type = "vectors", idx = 1:12)
plot(ss, type = "vectors", vectors = "factor", idx = 1:12)
plot(ss, type = "series", groups = 1:12)

g1 <- grouping.auto(ss, base = "series", freq.bins = list(0.005), threshold = 0.95)
```
g2 <- grouping.auto(ss, base = "eigen", freq.bins = 2, threshold = 0)
g3 <- grouping.auto(ss, base = "factor", freq.bins = list(c(0.1), c(0.1, 0.2)),
 threshold = 0, method = "linear")
g4 <- grouping.auto(ss, freq.bins = c(0.1, 0.2), threshold = 0)
g <- grouping.auto(ss, freq.bins = 8, threshold = 0)
plot(reconstruct(ss, groups = g))
plot(g)
g <- grouping.auto(ss, freq.bins = list(0.1, 0.2, 0.3, 0.4, 0.5), threshold = 0.95)
plot(reconstruct(ss, groups = g))
plot(g)

grouping.auto.wcor Group Elementary Series Using W-correlation Matrix

Description
Group elemenatry series automatically via the hierarchical clustering with w-correlation matrix as a proximity matrix

Usage
S3 method for class 'ssa'
grouping.auto.wcor(x, groups, nclust = length(groups) / 2, ...)

Arguments
x SSA object

groups list of numeric vectors, indices of elementary components used for reconstruction

nclust integer, desired number of output series

... further arguments passed to hclust

Details
Standard hclust routine is used to perform the grouping of the elementary components. See Algorithm 2.15 in Golyandina et al (2018) for details.

Value
List of integer vectors holding the indices of the elementary components forming each grouped objects

References
See Also
 hclust, wcor

Examples

Decompose 'co2' series with default parameters
s <- ssa(co2)
Form 3 series from the initial 6 ones:
lst <- grouping.auto(s, grouping.method = "wcor",
 groups = 1:6, nclust=3)

Automatic grouping:
print(lst)
plot(lst)
Check separability
w <- wcor(s, groups = lst)
plot(w)

hbhmat

Hankel with Hankel block matrices operations.

Description

A set of routines to operate on Hankel with Hankel block matrices stored in compact FFT-based form.

Usage

```r
new.hbhmat(F, L = (N + 1) %/% 2,
          wmask = NULL, fmask = NULL, weights = NULL,
          circular = FALSE)
```

is.hbhmat(h)

hbhcols(h)

hbhrows(h)

hbhmatmul(hmat, v, transposed = FALSE)

Arguments

- **F**
 - array to construct the trajectory matrix for.
- **L**
 - the window length.
- **wmask, fmask, weights**
 - special parameters for shaped SSA case (see `ssa`). `wmask` and `fmask` are logical matrices, window and factor masks respectively. `weights` is integer matrix which denotes hankel weights for array elements. If 'NULL', parameters for simple rectangular 2D SSA case are used.
- **circular**
 - logical vector of one or two elements, describes field topology. 'TRUE' means circularity by a corresponding coordinate. If vector has only one element, this element will be used twice.
hmat

- **h, hmat**: matrix to operate on.
- **transposed**: logical, if 'TRUE' the multiplication is performed with the transposed matrix.
- **v**: vector to multiply with.

Details

Fast Fourier Transform provides a very efficient matrix-vector multiplication routine for Hankel matrices. See the paper in 'References' for the details of the algorithm.

Author(s)

Konstantin Usevich

References

hmat

Hankel matrices operations.

Description

A set of routines to operate on Hankel matrices stored in compact FFT-based form.

Usage

```r
new.hmat(F, L = (N + 1)%/%2, circular = FALSE, wmask = NULL, fmask = NULL, weights = NULL, fft.plan = NULL)
```

```r
is.hmat(h)
```

```r
hcols(h)
```

```r
hrows(h)
```

```r
hmatmul(hmat, v, transposed = FALSE)
```

```r
hankel(X, L)
```

Arguments

- **F**: series to construct the trajectory matrix for.
- **fft.plan**: internal hint argument, should be NULL in most cases
- **wmask, fmask, weights**: special parameters for shaped SSA case (see *ssa*). *wmask* and *fmask* are logical vectors, window and factor masks respectively. *weights* is integer vector which denotes hankel weights for array elements. If 'NULL', parameters for simple 1D SSA case are used.
- **circular**: logical vector of one element, describes series topology. 'TRUE' means circularity by time.
hmatr

Calculate the heterogeneity matrix.

Description

Function calculates the heterogeneity matrix for the one-dimensional series.

Usage

```r
hmatr(F, ..., B = N %% 4, T = N %% 4, L = B %% 2, neig = 10)
```

```r
## S3 method for class 'hmatr'
plot(x, col = rev(heat.colors(256)), main = "Heterogeneity Matrix", xlab = ", ylab = ", ...)
```
Arguments

- **F**: the series to be checked for structural changes
- ... further arguments passed to `ssa` routine for `hmatr` call or `image` for `plot.hmatr` call
- **B**: integer, length of base series
- **T**: integer, length of tested series
- **L**: integer, window length for the decomposition of the base series
- **neig**: integer, number of eigentriples to consider for calculating projections
- **x**: `'hmatr'` object
- **col**: color palette to use
- **main**: plot title
- **xlab, ylab**: labels for ‘x’ and ‘y’ axis

Details

The heterogeneity matrix (H-matrix) provides a consistent view on the structural discrepancy between different parts of the series. Denote by $F_{i,j}$ the subseries of F of the form: $F_{i,j} = (f_i, \ldots, f_j)$. Fix two integers $B > L$ and $T \geq L$. Let these integers denote the lengths of base and test subseries, respectively. Introduce the H-matrix $G_{B,T}$ with the elements g_{ij} as follows:

$$g_{ij} = g(F_{i,i+B}, F_{j,j+T}),$$

for $i = 1, \ldots, N - B + 1$ and $j = 1, \ldots, N - T + 1$, that is we split the series F into subseries of lengths B and T and calculate the heterogeneity index between all possible pairs of the subseries.

The heterogeneity index $g(F^{(1)}, F^{(2)})$ between the series $F^{(1)}$ and $F^{(2)}$ can be calculated as follows: let $U^{(1)}$, $j = 1, \ldots, L$ denote the eigenvectors of the SVD of the trajectory matrix of the series $F^{(1)}$. Fix I to be a subset of $\{1, \ldots, L\}$ and denote $\mathcal{L}^{(1)} = \text{span} \{U_i, i \in I\}$. Denote by $X^{(2)}_1, \ldots, X^{(2)}_{K_2} (K_2 = N_2 - L + 1)$ the L-lagged vectors of the series $F^{(2)}$. Now define

$$g(F^{(1)}, F^{(2)}) = \frac{\sum_{j=1}^{K_2} \text{dist}^2 \left(X^{(2)}_j, \mathcal{L}^{(1)} \right)}{\sum_{j=1}^{K_2} \left\| X^{(2)}_j \right\|^2},$$

where $\text{dist} (X, \mathcal{L})$ denotes the Euclidean distance between the vector X and the subspace \mathcal{L}. One can easily see that $0 \leq g \leq 1$.

Value

object of type 'hmatr'

References

igapfill

Perform SSA gapfilling via iterative reconstruction

Description

Perform iterative gapfilling of the series.

Usage

```r
## S3 method for class '1d.ssa'
igapfill(x, groups, fill = NULL, tol = 1e-6, maxiter = 0,
         norm = function(x) sqrt(max(x^2)),
         base = c("original", "reconstructed"), ..., trace = FALSE,
         drop = TRUE, drop.attributes = FALSE, cache = TRUE)

## S3 method for class 'cssa'
igapfill(x, groups, fill = NULL, tol = 1e-6, maxiter = 0,
         norm = function(x) sqrt(max(x^2)),
         base = c("original", "reconstructed"), ..., trace = FALSE,
         drop = TRUE, drop.attributes = FALSE, cache = TRUE)

## S3 method for class 'toeplitz.ssa'
igapfill(x, groups, fill = NULL, tol = 1e-6, maxiter = 0,
         norm = function(x) sqrt(max(x^2)),
         base = c("original", "reconstructed"), ..., trace = FALSE,
         drop = TRUE, drop.attributes = FALSE, cache = TRUE)

## S3 method for class 'nd.ssa'
igapfill(x, groups, fill = NULL, tol = 1e-6, maxiter = 0,
         norm = function(x) sqrt(max(x^2)),
         base = c("original", "reconstructed"), ..., trace = FALSE,
         drop = TRUE, drop.attributes = FALSE, cache = TRUE)
```

Arguments

- `x` : Shaped SSA object holding the decomposition
- `groups` : list, the grouping of eigentriples to be used in the forecast
- `fill` : initial values for missed entries, recycled if necessary; if missed, then average of the series will be used
tol tolerance for reconstruction iterations
maxiter upper bound for the number of iterations
norm distance function used for convergence criterion
base series used as a ‘seed’ for gapfilling: original or reconstructed according to the value of groups argument
... additional arguments passed to reconstruct routines
trace logical, indicates whether the convergence process should be traced
drop logical, if ‘TRUE’ then the result is coerced to series itself, when possible (length of ‘groups’ is one)
drop.attributes logical, if ‘TRUE’ then the attributes of the input series are not copied to the reconstructed ones.
cache logical, if ‘TRUE’ then intermediate results will be cached in the SSA object.

Details

Iterative gapfilling starts from filling missed entries with initial values, then the missed values are imputed from the successive reconstructions. This process continues until convergence up to a stationary point (e.g. filling / reconstruction does not change missed values at all).

Details of the used algorithm see in Golyandina et al (2018), Algorithms 3.7.

Value

List of objects with gaps filled in. Elements of the list have the same names as elements of groups. If group is unnamed, corresponding component gets name ‘Fn’, where ‘n’ is its index in groups list.

Or, the forecasted object itself, if length of groups is one and ‘drop = TRUE’.

Note

The method is very sensitive to the initial value of missed entries (‘fill’ argument). If the series are not stationary (e.g. contains some trend) than the method may be prohibitely slow, or even fail to converge or produce bogus results.

References

See Also

Rssa for an overview of the package, as well as, gapfill, clplot, summarize.gaps.
Examples

```r
# Produce series with gaps
F <- co2; F[100:200] <- NA
# Perform shaped SSA
s <- ssa(F, L = 72)
# Fill in gaps using the trend and 2 periodicity components
# Due to trend, provide a linear filler to speed up the process
fill <- F; fill[100:200] <- F[99] + (1:101)/101*(F[201] - F[99])
g <- igapfill(s, groups = list(1:6), fill = fill, maxit = 50)
# Compare the result
plot(g)
lines(co2, col = "red")
```

iossa

Iterative O-SSA nested decomposition

Description

Perform Iterative O-SSA (IOSSA) algorithm.

Usage

```r
## S3 method for class 'ssa'
iossa(x, nested.groups, ..., tol = 1e-5, kappa = 2,
       maxiter = 100,
       norm = function(x) sqrt(mean(x^2)),
       trace = FALSE,
       kappa.balance = 0.5)
```

Arguments

- `x` SSA object holding SSA decomposition
- `nested.groups` list or named list of numbers of eigentriples from full decomposition, describes initial grouping for IOSSA iterations
- `tol` tolerance for IOSSA iterations
- `kappa` ‘kappa’ parameter for sigma-correction (see ‘Details’ and ‘References’) procedure. If ‘NULL’, sigma-correction will not be performed
- `maxiter` upper bound for the number of iterations
- `norm` function, calculates a norm of a vector; this norm is applied to the difference between the reconstructed series at sequential iterations and is used for convergence detection
- `trace` logical, indicates whether the convergence process should be traced
- `kappa.balance` sharing proportion of sigma-correction multiplier between column and row inner products
- `...` additional arguments passed to `decompose` routines
Details

See Golyandina N. and Shlemov A. (2015) and Section 2.4 in Golyanina et al (2018) for full details in the 1D case and p.250-252 from the same book for an example in the 2D case.

Briefly, Iterative Oblique SSA (IOSSA) is an iterative (EM-like) method for improving separability in SSA. In particular, it serves for separation of mixed components, which are not orthogonal, e.g., of sinusoids with close frequencies or for trend separation for short series. IOSSA performs a new decomposition of a part of the ssa-object, which is given by a set of eigentriples. Note that eigentriples that do not belong to the chosen set are not changed.

Oblique SSA can make many series orthogonal by the choice of inner product. Iterative O-SSA find the separating inner products by iterations that are hopefully converges to a stationary point. See References for more details.

Sigma-correction procedure does the renormalization of new inner products. This prevents the mixing of the components during the next iteration. Such approach makes the whole procedure more stable and can solve the problem of lack of strong separability.

Details of the used algorithms can be found in Golyandina et al (2018), Algorithms 2.7 and 2.8.

Value

Object of ‘ossa’ class. In addition to usual ‘ssa’ class fields, it also contains the following fields:

ossa.result object of ‘ossa.result’ class, a list which contains algorithm parameters, condition numbers, separability measures, the number of iterations and convergence status (see `ossa.result`)

ossa.groups list of groups within the nested decomposition; numbers of components correspond to their numbers in the full decomposition

ossa.groups.all list, describes cumulative grouping after after sequential Iterative O-SSA decompositions in the case of non-intersecting nested.groups. Otherwise, `ossa.groups.all` coincides with `ossa.groups`

ossa.set vector of the indices of elementary components used in Iterative O-SSA (that is, used in nested.groups)

References

See Also

`Rssa` for an overview of the package, as well as, `ssa-object`, `fossa`, `owcor`, `ossa.result`.

Examples

```r
# Separate three non-separable sine series with different amplitudes
N <- 150
L <- 70
```
omega1 <- 0.05
omega2 <- 0.06
omega3 <- 0.07

F <- 4*sin(2*pi*omega1 * (1:N)) + 2*sin(2*pi*omega2 * (1:N)) + sin(2*pi*omega3 * (1:N))
s <- ssa(F, L)
ios <- iossa(s, nested.groups = list(1:2, 3:4, 5:6), kappa = NULL, maxiter = 100, tol = 1e-3)

plot(reconstruct(ios, groups = ios$iossa.groups))
summary(ios)

Separate two non-separable sines with equal amplitudes
N <- 200
L <- 100
omega1 <- 0.07
omega2 <- 0.06

F <- sin(2*pi*omega1 * (1:N)) + sin(2*pi*omega2 * (1:N))
s <- ssa(F, L)

Apply FOSSA and then IOSSA
fs <- fossa(s, nested.groups = 1:4)
ios <- iossa(fs, nested.groups = list(1:2, 3:4), maxiter = 100)
summary(ios)

opar <- par(mfrow = c(3, 1))
plot(reconstruct(s, groups = list(1:2, 3:4)))
plot(reconstruct(fs, groups = list(1:2, 3:4)))
plot(reconstruct(ios, groups = ios$iossa.groups))
par(opar)

wo <- plot(wcor(ios, groups = 1:4))
gwo <- plot(owcor(ios, groups = 1:4))
plot(wo, split = c(1, 1, 2, 1), more = TRUE)
plot(gwo, split = c(2, 1, 2, 1), more = FALSE)

data(USUnemployment)
unempl.male <- USUnemployment[, "MALE"]

s <- ssa(unempl.male)
ios <- iossa(s, nested.groups = list(c(1:4, 7:11), c(5:6, 12:13)))
summary(ios)

Comparison of reconstructions
rec <- reconstruct(s, groups = list(c(1:4, 7:11), c(5:6, 12:13)))
iores <- reconstruct(ios, groups <- ios$iossa.groups)

Trends
matplot(data.frame(iores$F1, rec$F1, unempl.male), type='l',
 col=c("red","blue","black"), lty=c(1,1,2))
Seasonalities
matplot(data.frame(iorec$F2, rec$F2), type='l', col=c("red","blue"), lty=c(1,1))

W-cor matrix before IOSSA and w-cor matrix after it
ws <- plot(wcor(s, groups = 1:30), grid = 14)
wios <- plot(wcor(ios, groups = 1:30), grid = 14)
plot(ws, split = c(1, 1, 2, 1), more = TRUE)
plot(wios, split = c(2, 1, 2, 1), more = FALSE)

Eigenvectors before and after Iterative O-SSA
plot(s, type = "vectors", idx = 1:13)
plot(ios, type = "vectors", idx = 1:13)

2D plots of periodic eigenvectors before and after Iterative O-SSA
plot(s, type = "paired", idx = c(5, 12))
plot(ios, type = "paired", idx = c(10, 12), plot.contrib = FALSE)

data(AustralianWine)
Fortified <- AustralianWine[, "Fortified"]
s <- ssa(window(Fortified, start = 1982 + 5/12, end = 1986 + 5/12), L = 18)
ios <- iossa(s, nested.groups = list(trend = 1, 2:7),
 kappa = NULL,
 maxIter = 1)
fs <- fossa(s, nested.groups = 1:7, gamma = 1000)
rec.ssa <- reconstruct(s, groups = list(trend = 1, 2:7))
rec.iossa <- reconstruct(ios, groups = ios$iossa.groups);
rec.fossa <- reconstruct(fs, groups = list(trend = 7, 1:6))

Fort <- cbind('Basic SSA trend' = rec.ssa$trend,
 'Iterative O-SSA trend' = rec.iossa$trend,
 'DerivSSA trend' = rec.fossa$trend,
 'Full series' = Fortified)

library(lattice)
xyplot(Fort, superpose = TRUE, col = c("red", "blue", "green4", "black"))

Shaped 2D I. O-SSA separates finite rank fields exactly
mx1 <- outer(1:50, 1:50,
 function(i, j) exp(i/25 - j/20))
mx2 <- outer(1:50, 1:50,
 function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7))

mask <- matrix(TRUE, 50, 50)
mask[23:25, 23:27] <- FALSE
mask[1:2, 1] <- FALSE
mask[50:49, 1] <- FALSE
mask[1:2, 50] <- FALSE
mx1[!mask] <- mx2[!mask] <- NA
s <- ssa(mx1 + mx2, kind = "2d-ssa", L = c(10, 10))
plot(reconstruct(s, groups = list(1, 2:5)))

ios <- iossa(s, nested.groups = list(1, 2:5), kappa = NULL)
plot(reconstruct(ios, groups = ios$iossa.groups))

I. O-SSA for MSSA
N.A <- 150
N.B <- 120
L <- 40

omegal <- 0.05
omegala <- 0.055

tt.A <- 1:N.A
tt.B <- 1:N.B
F1 <- list(A = 2 * sin(2*pi * omegal * tt.A), B = cos(2*pi * omegal * tt.B))
F2 <- list(A = 1 * sin(2*pi * omegala * tt.A), B = cos(2*pi * omegala * tt.B))

F <- list(A = F1$A + F2$A, B = F1$B + F2$B)

s <- ssa(F, kind = "mssa")
plot(reconstruct(s, groups = list(1:2, 3:4)), plot.method = "xyplot")

ios <- iossa(s, nested.groups = list(1:2, 3:4), kappa = NULL)
plot(reconstruct(ios, groups = ios$iossa.groups), plot.method = "xyplot")

iossa.result

Summary of Iterative O-SSA results

Description

Various routines to print Iterative Oblique SSA results

Usage

```
## S3 method for class 'iossa.result'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'iossa.result'
summary(object, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

- `x, object`
 object of class ‘iossa.result’ or ‘ossa’

- `digits`
 integer, used for number formatting

- `...`
 further arguments passed to method
Details

An object of class ‘iossa.result’ is a list with the following fields:

- **converged** logical, whether algorithm has been converged
- **iter** the number of OSSA iterations
- **cond** numeric vector with two elements, condition numbers of the final column and row inner products
- **initial.tau** numeric vector, proportions of high rank components contribution for each of initial series (denotes how well the series is approximated by a series of finite rank)
- **tau** numeric vector, proportions of high rank components contribution for each of final series
- **initial.wcor** W-correlation matrix of the initial nested decomposition
- **wcor** W-correlations matrix of the final nested decomposition
- **owcor** oblique W-correlation matrix (see owcor) of the final nested decomposition
- **initial.rec** list of initial series (reconstructed initial nested decomposition)
- **kappa, maxiter, tol** Iterative O-SSA procedure parameters

References

See Also

Rssa for an overview of the package, as well as, iossa, owcor, summary.ssa.

Examples

```r
# Separate three non-separable sines with different amplitudes
N <- 150
L <- 70
omega1 <- 0.05
omega2 <- 0.06
omega3 <- 0.07
F <- 4*sin(2*pi*omega1 * (1:N)) + 2*sin(2*pi*omega2 * (1:N)) + sin(2*pi*omega3 * (1:N))
s <- ssa(F, L)
ios <- iossa(s, nested.groups = list(1:2, 3:4, 5:6), kappa = NULL, maxiter = 100, tol = 1e-3)
print(ios)
print(ios$iossa.result)
```
Description

Calculates the min-norm Linear Recurrence Relation given the one-dimensional 'ssa' object.

Usage

S3 method for class '1d.ssa'
\texttt{lrr(x, groups, reverse = \text{FALSE}, ..., drop = \text{TRUE})}

S3 method for class 'toeplitz.ssa'
\texttt{lrr(x, groups, reverse = \text{FALSE}, ..., drop = \text{TRUE})}

Default S3 method:
\texttt{lrr(x, eps = \text{sqrt(\.Machine\$double.eps)},
 reversing = \text{FALSE}, ..., orthonormalize = \text{TRUE})}

S3 method for class 'lrr'
\texttt{roots(x, ..., method = \text{c("companion", "polyroot")})}

S3 method for class 'lrr'
\texttt{plot(x, ..., raw = \text{FALSE})}

Arguments

\begin{itemize}
 \item \texttt{x} SSA object holding the decomposition or matrix containing the basis vectors in columns for \texttt{lrr} call or \texttt{lrr} object itself for other function calls
 \item \texttt{groups} list, the grouping of eigentriples used to derive the LRR
 \item \texttt{reverse} logical, if 'TRUE', then LRR is assumed to go back
 \item \texttt{...} further arguments to be passed to \texttt{decompose} or \texttt{plot} call, if necessary
 \item \texttt{drop} logical, if 'TRUE' then the result is coerced to \texttt{lrr} object itself, when possible (length of 'groups' is one)
 \item \texttt{eps} Tolerance for verticality checking
 \item \texttt{method} methods used for calculation of the polynomial roots: via eigenvalues of companion matrix or R's standard \texttt{polyroot} routine
 \item \texttt{raw} logical, if 'TRUE' then \texttt{plot} routine will not add any additional plot components (e.g. unit circle)
 \item \texttt{orthonormalize} logical, if 'FALSE' then the basis is assumed orthonormal. Otherwise, orthonormalization is performed
\end{itemize}

Details

Produces the min-norm linear recurrence relation from the series. The default implementation works as follows.
Denote by U_i the columns of matrix x. Denote by \tilde{U}_i the same vector U_i but without the last coordinate. Denote the last coordinate of U_i by π_i. The returned value is

$$R = \frac{1}{1 - \nu^2} \sum_{i=1}^{d} \pi_i \tilde{U}_i,$$

where

$$\nu^2 = \pi_1^2 + \ldots + \pi_d^2.$$

For `lrr.ssa` case the matrix U used is the matrix of basis vector corresponding to the selected elementary series.

For `reverse = 'TRUE'` everything is the same, besides the last coordinate substituted for the first coordinate.

Details of the used algorithm see in Golyandina et al (2018), Algorithms 3.1 and 3.2.

Value

Named list of object of class 'lrr' for `lrr` function call, where elements have the same names as elements of `groups` (if group is unnamed, corresponding component gets name 'Fn', where 'n' is its index in `groups` list). Or the object itself if 'drop = TRUE' and `groups` has length one.

Vector with the roots of the of the characteristic polynomial of the LRR for `roots` function call. Roots are ordered by moduli decreasing.

References

See Also

`Rssa` for an overview of the package, as well as, `ssa`, `parestimate`,

Examples

```r
# Decompose 'co2' series with default parameters
s <- ssa(co2, L = 24)
# Calculate the LRR out of first 3 eigentriples
l <- lrr(s, groups = list(1:3))
# Calculate the roots of the LRR
r <- roots(l)
# Moduli of the roots
Mod(r)
# Periods of three roots with maximal moduli
2*pi/Arg(r)[1:3]
# Plot the roots
plot(l)
```
Mars

Webcam image of Mars

Description

Image of Mars obtained by a webcam. 258 x 275, grayscale, from 0 to 255.

Usage

```r
data(Mars)
```

Format

A double matrix with integer values.

Source

MotorVehicle

Total U.S. Domestic and Foreign Car Sales

Description

Monthly series containing total domestic and foreign car sales in the USA in thousands, from 1967 till 2010.

Usage

```r
data(MotorVehicle)
```

Format

A time series of length 541.

Source

U.S. Bureau of Economic Analysis. Table 7.2.5S. Auto and Truck Unit Sales Production Inventories Expenditures and Price, 2010.
Calculate generalized (oblique) W-correlation matrix

Description

Function calculates oblique W-correlation matrix for the series.

Usage

```r
owcor(x, groups, ..., cache = TRUE)
```

Arguments

- `x` the input object of 'ossa' class
- `groups` list of numeric vectors, indices of elementary components used for reconstruction. The elementary components must belong to the current OSSA component set
- `...` further arguments passed to `reconstruct` routine
- `cache` logical, if 'TRUE' then intermediate results will be cached in 'ssa' object.

Details

Matrix of oblique weighted correlations will be computed. For two series, oblique W-covariation is defined as follows:

\[
\text{owcov}(F_1, F_2) = \langle L^\dagger X_1(R^\dagger)^T, L^\dagger X_2(R^\dagger)^T \rangle_F,
\]

where \(X_1, X_2\) denotes the trajectory matrices of series \(F_1, F_2\) correspondingly, \(L = [U_{b_1}: \ldots: U_{b_r}], R = [V_{b_1}: \ldots: V_{b_r}]\), where \(\{b_1, \ldots, b_r\}\) is current OSSA component set (see description of ‘ossa.set’ field of ‘ossa’ object), ‘\(\langle \cdot, \cdot \rangle_F\)’ denotes Frobenius matrix inner product and ‘\(^\dagger\)’ denotes Moore-Penrose pseudo-inverse matrix.

And oblique W-correlation is defined the following way:

\[
\text{owcor}(F_1, F_2) = \frac{\text{owcov}(F_1, F_2)}{\sqrt{\text{owcov}(F_1, F_1) \cdot \text{owcov}(F_2, F_2)}}
\]

Oblique W-correlation is an OSSA analogue of W-correlation, that is, a measure of series separability. If I-OSSA procedure separates series exactly, their oblique W-correlation will be equal to zero.

Value

Object of class ‘wcor.matrix’
References

See Also
Rssa for an overview of the package, as well as, wcor, iossa, fossa.

Examples
Separate two non-separable sines
N <- 150
L <- 70
omega1 <- 0.06
omega2 <- 0.065
F <- 4*sin(2*pi*omega1 * (1:N)) + sin(2*pi*omega2 * (1:N))
s <- ssa(F, L)
ios <- iossa(s, nested.groups = list(1:2, 3:4), kappa = NULL, maxIter = 200, tol = 1e-8)
p.wcor <- plot(wcor(ios, groups = list(1:2, 3:4)))
p.owcor <- plot(owcor(ios, groups = list(1:2, 3:4)), main = "OW-correlation matrix")
print(p.wcor, split = c(1, 1, 2, 1), more = TRUE)
print(p.owcor, split = c(2, 1, 2, 1))

pareestimate

Estimate periods from (set of) eigenvectors

Description
Function to estimate the parameters (frequencies and rates) given a set of SSA eigenvectors.

Usage
S3 method for class '1d.ssa'
pareestimate(x, groups, method = c("esprit", "pairs"),
 subspace = c("column", "row"),
 normalize.roots = NULL,
 dimensions = NULL,
 solve.method = c("ls", "tls"),
 ...,
 drop = TRUE)
S3 method for class 'toeplitz.ssa'
pareestimate(x, groups, method = c("esprit", "pairs"),
 subspace = c("column", "row"),
 normalize.roots = NULL,
parestimate

dimensions = NULL,
solve.method = c("ls", "tls"),
...
drop = TRUE)
S3 method for class 'mssa'
parestimate(x, groups, method = c("esprit", "pairs"),
 subspace = c("column", "row"),
 normalize.roots = NULL,
 dimensions = NULL,
solve.method = c("ls", "tls"),
...
drop = TRUE)
S3 method for class 'cssa'
parestimate(x, groups, method = c("esprit", "pairs"),
 subspace = c("column", "row"),
 normalize.roots = NULL,
 dimensions = NULL,
solve.method = c("ls", "tls"),
...
drop = TRUE)
S3 method for class 'nd.ssa'
parestimate(x, groups,
 method = c("esprit"),
 subspace = c("column", "row"),
 normalize.roots = NULL,
 dimensions = NULL,
solve.method = c("ls", "tls"),
pairing.method = c("diag", "memp"),
 beta = 8,
...
drop = TRUE)

Arguments

x SSA object

groups list of indices of eigenvectors to estimate from
...
... further arguments passed to 'decompose' routine, if necessary

drop logical, if 'TRUE' then the result is coerced to lowest dimension, when possible
(length of groups is one)

dimensions a vector of dimension indices to perform ESPRIT along. 'NULL' means all
dimensions.

method For 1D-SSA, Toeplitz SSA, and MSSA: parameter estimation method, 'esprit'
for 1D-ESPRIT (Algorithm 3.3 in Golyandina et al (2018)), 'pairs' for rough
estimation based on pair of eigenvectors (Algorithm 3.4 in Golyandina et al
(2018)). For nD-SSA: parameter estimation method. For now only 'esprit' is
supported (Algorithm 5.6 in Golyandina et al (2018)).

solve.method approximate matrix equation solving method, 'ls' for least-squares, 'tls' for
total-least-squares.
pairing.method method for esprit roots pairing, 'diag' for '2D-ESPRIT diagonalization', 'memp' for “MEMP with an improved pairing step”

subspace which subspace will be used for parameter estimation

normalize.roots logical vector or 'NULL', force signal roots to lie on unit circle. 'NULL' means automatic selection: normalize iff circular topology OR Toeplitz SSA used

beta In nD-ESPRIT, coefficient(s) in convex linear combination of shifted matrices. The length of beta should be \(\text{ndim} - 1 \), where \(\text{ndim} \) is the number of independent dimensions. If only one value is passed, it is expanded to a geometric progression.

Details

See Sections 3.1 and 5.3 in Golyandina et al (2018) for full details.

Briefly, the time series is assumed to satisfy the model

\[
x_n = \sum_k C_k\mu_k^n
\]

for complex \(\mu_k \) or, alternatively,

\[
x_n = \sum_k A_k\rho_k^n \sin(2\pi\omega_k n + \phi_k).
\]

The return value are the estimated moduli and arguments of complex \(\mu_k \), more precisely, \(\rho_k \) ('moduli') and \(T_k = 1/\omega_k \) ('periods').

For images, the model

\[
x_{ij} = \sum_k C_k\lambda_k^i\mu_k^j
\]

is considered.

Also ‘print’ and ‘plot’ methods are implemented for classes ‘fdimpars.1d’ and ‘fdimpars.nd’.

Value

For 1D-SSA (and Toeplitz), a list of objects of S3-class ‘fdimpars.1d’. Each object is a list with 5 components:

- **roots** complex roots of minimal LRR characteristic polynomial
- **periods** periods of dumped sinusoids
- **frequencies** frequencies of dumped sinusoids
- **moduli** moduli of roots
- **rates** rates of exponential trend (rates == \log(\text{moduli}))

For ‘method’ = ‘pairs’ all moduli are set equal to 1 and all rates equal to 0.

For nD-SSA, a list of objects of S3-class ‘fdimpars.nd’. Each object is named list of n ‘fdimpars.1d’ objects, each for corresponding spatial coordinate.

In all cases elements of the list have the same names as elements of groups. If group is unnamed, corresponding component gets name ‘Fn’, where ‘n’ is its index in groups list.

If ‘drop = TRUE’ and length of ‘groups’ is one, then corresponding list of estimated parameters is returned.
References

See Also

Rssa for an overview of the package, as well as, ssa, lrr.

Examples

Decompose 'co2' series with default parameters
s <- ssa(co2, neig = 20)
Estimate the periods from 2nd and 3rd eigenvectors using 'pairs' method
print(parestimate(s, groups = list(c(2, 3)), method = "pairs"))
Estimate the periods from 2nd, 3rd, 5th and 6th eigenvectors using ESPRIT
pe <- parestimate(s, groups = list(c(2, 3, 5, 6)), method = "esprit")
print(pe)
plot(pe)

Artificial image for 2D SSA
mx <- outer(1:50, 1:50,
 function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7) + exp(i/25 - j/20)) +
 rnorm(50^2, sd = 0.1)
Decompose 'mx' with default parameters
s <- ssa(mx, kind = "2d-ssa")
Estimate parameters
pe <- parestimate(s, groups = list(1:5))
print(pe)
plot(pe, col = c("green", "red", "blue"))

Real example: Mars photo
data(Mars)
Decompose only Mars image (without background)
s <- ssa(Mars, mask = Mars != 0, wmask = circle(50), kind = "2d-ssa")
Reconstruct and plot texture pattern
plot(reconstruct(s, groups = list(c(13,14, 17, 18))))
Estimate pattern parameters
pe <- parestimate(s, groups = list(c(13,14, 17, 18)))
print(pe)
plot(pe, col = c("green", "red", "blue", "black"))

plot
Plot SSA object

Description

This function plots various sorts of figures related to the SSA method.

Usage

```r
## S3 method for class 'ssa'
plot(x,  
  type = c("values", "vectors", "paired", "series", "wcor"),  
  ...,  
  vectors = c("eigen", "factor"),  
  plot.contrib = TRUE,  
  numvalues = nsigma(x),  
  numvectors = min(nsigma(x), 10),  
  idx = 1:numvectors,  
  idy,  
  groups)
```

Arguments

- **x**
 SSA object holding the decomposition
- **type**
 Type of the plot (see 'Details' for more information)
- **...**
 Arguments to be passed to methods, such as graphical parameters
- **vectors**
 For type = 'vectors', choose the vectors to plot
- **plot.contrib**
 logical. If 'TRUE' (the default), the contribution of the component to the total variance is plotted. For 'ossa' class, Frobenius orthogonality checking of elementary matrices is performed. If not all matrices are orthogonal, corresponding warning is risen
- **numvalues**
 Number of eigenvalues to plot (for type = 'values')
- **numvectors**
 Total number of eigenvectors to plot (for type = 'vectors')
- **idx**
 Indices of eigenvectors to plot (for type = 'vectors')
- **idy**
 Second set of indices of eigenvectors to plot (for type = 'paired')
- **groups**
 Grouping used for the decomposition (see *reconstruct*)
Details

This function is the single entry to various plots of SSA objects. Right now this includes:

- **values**: plot the graph of the component norms.
- **vectors**: plot the eigenvectors.
- **paired**: plot the pairs of eigenvectors (useful for the detection of periodic components).
- **series**: plot the reconstructed series.
- **wcor**: plot the W-correlation matrix for the reconstructed objects.

Additional (non-standard) graphical parameters which can be transferred via . . . :

- **plot.type**: lattice plot type. This argument will be transferred as type argument to function `panel.xyplot`.
- **ref**: logical. Whether to plot zero-level lines in series-plot, eigenvectors-plot and paired-plot. Zero-level isolines will be plotted for 2d-eigenvectors-plot.
- **symmetric**: logical. Whether to use symmetric scales in series-plot, eigenvectors-plot and paired-plot.
- **useRaster**: logical. For 2d-eigenvector-plot and wcor-plot, indicating whether raster representations should be used. 'TRUE' by default.
- **col**: color vector for colorscale (for 2d- and wcor-plots), given by two or more colors, the first color corresponds to the minimal value, while the last one corresponds to the maximal value (will be interpolated by `colorRamp`)
- **zlim**: for 2d-plot, range of displayed values
- **at**: for 2d-eigenvectors-plot, a numeric vector giving breakpoints along the range of z, a list of such vectors or a character string. If a list is given, corresponding list element (with recycling) will be used for each plot panel. For character strings, values 'free' and 'same' are allowed: 'free' means special breakpoints' vectors (will be evaluated automatically, see description of `cuts` argument in 'Details') for each component. 'same' means one breakpoints' vector for all component (will be evaluated automatically too)
- **cuts**: for 2d-reconstruction-plot, the number of levels the range of z would be divided into.
- **fill.color**: color or 'NULL'. Defines background color for shaped 2d-eigenvectors plot. If 'NULL', standard white background will be used.

See Also

- `ssa-object`, `ssa.plot.reconstruction`

Examples

```r
# Decompose 'co2' series with default parameters
s <- ssa(co2)
# Plot the eigenvalues
plot(s, type = "values")
# Plot W-cor matrix for first 10 reconstructed components
plot(s, type = "wcor", groups = 1:10)
# Plot the paired plot for first 6 eigenvectors
```
plot(s, type = "paired", idx = 1:6)
Plot eigenvectors for first 6 components
plot(s, type = "vectors", idx = 1:6)
Plot the first 4 reconstructed components
plot(s, type = "series", groups = list(1:4))
Plot the eigenvalues by points only
plot(s, type = "values", plot.type = "p")

Artificial image for 2dSSA
mx <- outer(1:50, 1:50,
 function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7) + exp(i/25 - j/20)) +
 rnorm(50^2, sd = 0.1)
Decompose 'mx' with default parameters
s <- ssa(mx, kind = "2d-ssa")
Plot the eigenvalues
plot(s, type = "values")
Plot eigenvectors for first 6 components
plot(s, type = "vectors", idx = 1:6,
 ref = TRUE, at = "same", cuts = 50,
 plot.contrib = TRUE, symmetric = TRUE)
Plot factor vectors for first 6 components
plot(s, type = "vectors", vectors = "factor", idx = 1:6,
 ref = TRUE, at = "same", cuts = 50,
 plot.contrib = TRUE, symmetric = TRUE)
Plot wcor for first 12 components
plot(s, type = "wcor", groups = 1:12, grid = c(2, 6))

3D-SSA example (2D-MSSA)
data(Barbara)
s <- ssa(Barbara, L = c(50, 50, 1))
plot(s, type = "values")
plot(s, type = "vectors", idx = 1:12, slice = list(k = 1),
 cuts = 50, plot.contrib = TRUE)
plot(s, type = "vectors", idx = 1:12, slice = list(k = 1, i = 1))
plot(s, type = "vectors", vectors = "factor", idx = 1:12, slice = list(k = 3),
 cuts = 50, plot.contrib = FALSE)
plot(s, type = "series", groups = 1:12, slice = list(k = 1))
plot(s, type = "series", groups = 1:12, slice = list(k = 1, i = 1))
plot(s, plot.method = "xyplot", type = "series", groups = 1:12, slice = list(k = 1, i = 1))
Usage

S3 method for class '1d.ssa.reconstruction'
plot(x, ...,
 type = c("raw", "cumsum"),
 plot.method = c("native", "matplot", "xyplot"),
 base.series = NULL,
 add.original = TRUE,
 add.residuals = TRUE)

S3 method for class 'toeplitz.ssa.reconstruction'
plot(x, ...,
 type = c("raw", "cumsum"),
 plot.method = c("native", "matplot", "xyplot"),
 base.series = NULL,
 add.original = TRUE,
 add.residuals = TRUE)

S3 method for class 'mssa.reconstruction'
plot(x,
 slice = list(),
 ...
 type = c("raw", "cumsum"),
 plot.method = c("native", "matplot", "xyplot"),
 na.pad = c("left", "right"),
 base.series = NULL,
 add.original = TRUE,
 add.residuals = TRUE)

S3 method for class '2d.ssa.reconstruction'
plot(x, ...,
 type = c("raw", "cumsum"),
 base.series = NULL,
 add.original = TRUE,
 add.residuals = TRUE,
 add.ranges,
 col = grey(c(0, 1)),
 zlim,
 at)

S3 method for class 'nd.ssa.reconstruction'
plot(x, slice, ...)

Arguments

x

SSA object holding the decomposition

slice

for 'mssa': list with elements named 'series' and 'components'; for 'nd.ssa':
list with elements named 'i', 'j', 'k' or 'x', 'y', 'z', 't' or 'd1', 'd2', ... or '1',
'2', ...; works like '['-operator, allows one to select which components from the
reconstruction of multivariate time series or which subarray from reconstruction
of multidimensional array to draw.

type

Type of the plot (see 'Details' for more information)
... Arguments to be passed to methods, such as graphical parameters

plot.method Plotting method to use: either ordinary all-in-one via matplot or xyplot, or native plotting method of the input time series

na.pad select how to pad the series of unequal length with NA’s

base.series another SSA reconstruction object, the series of which should be considered as an original. Useful for plotting the results of sequential SSA

add.original logical, if ‘TRUE’ then the original series are added to the plot

add.residuals logical, if ‘TRUE’ then the residuals are added to the plot

col color vector for colorscale, given by two or more colors, the first color corresponds to the minimal value, while the last one corresponds to the maximal value (will be interpolated by colorRamp)

zlim for 2d-plot, range of displayed values

at for 2d-eigenvectors-plot, a numeric vector giving breakpoints along the range of z, a list of such vectors or a character string. If a list is given, corresponding list element (with recycling) will be used for each plot panel. For character strings, values ‘free’ and ‘same’ are allowed: ‘free’ means special breakpoints’ vectors (will be evaluated automatically, see description of cuts argument in ‘Details’) for each component. ‘same’ means one breakpoints’ vector for all component (will be evaluated automatically too)

add.ranges logical, if ‘TRUE’, the range of the components values will be printed in panels captions

Details

Additional (non-standard) graphical parameters applicable to 2D SSA plots can be transferred via ...

cuts the number of levels the range of image would be divided into.

ref logical, whether to plot zero-level isolines

symmetric logical, whether to use symmetric image range scale

useRaster logical, indicates whether raster representations should be used. ‘TRUE’ by default.

fill.uncovered single number, matrix, one of the following strings: ‘mean’, ‘original’, ‘void’ or a list of such objects. For shaped 2d-reconstruction-plot this argument defines filling method for uncovered by window array elements on components and residuals plots. If number, all uncovered elements will be replaced by it. If matrix, all uncovered elements will be replaced by corresponding matrix elements. If ‘mean’, they will be replaced by mean value of current component. If ‘original’, they will be replaced by corresponding elements of original array. ‘void’ (by default) means no filling. If list is given, corresponding list element (with recycling) will be used for each plot panel.

fill.color color or ‘NULL’. Defines background color for shaped 2d-reconstruction plot. If ‘NULL’, standard white background will be used.

See Also

ssa-object, ssa reconstruct, plot,
Examples

Decompose 'co2' series with default parameters
s <- ssa(co2)
r <- reconstruct(s, groups = list(c(1, 4), c(2, 3), c(5, 6)))
Plot full 'co2' reconstruction into trend, periodic components and noise
plot(r)

Artificial image for 2dSSA
mx <- outer(1:50, 1:50,
 function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7) + exp(i/25 - j/20)) +
 rnorm(50^2, sd = 0.1)
Decompose 'mx' with default parameters
s <- ssa(mx, kind = "2d-ssa")
Reconstruct
r <- reconstruct(s, groups = list(1, 2:5))
Plot components, original image and residuals
plot(r)
Plot cumulative sum of components only
plot(r, type = "cumsum", add.residuals = FALSE, add.original = FALSE)

Real example: Mars photo
data(Mars)
Decompose only Mars image (without background)
s <- ssa(Mars, mask = Mars != 0, wmask = circle(50), kind = "2d-ssa")
Reconstruct and plot trend
plot(reconstruct(s, 1), fill.uncovered = "original")
Reconstruct and plot texture pattern
plot(reconstruct(s, groups = list(c(13, 14, 17, 18))))

Decompose 'EuStockMarkets' series with default parameters
s <- ssa(EuStockMarkets, kind = "mssa")
r <- reconstruct(s, groups = list(Trend = 1:2))
Plot original series, trend and residuals superimposed
plot(r, plot.method = "xyplot", superpose = TRUE,
 auto.key = list(columns = 3),
 col = c("blue", "green", "red", "violet"),
 lty = c(rep(1, 4), rep(2, 4), rep(3, 4)))
Plot the series separately
plot(r, plot.method = "xyplot", add.residuals = FALSE,
 screens = list(colnames(EuStockMarkets)),
 col = c("blue", "green", "red", "violet"),
 lty = c(rep(1, 4), rep(2, 4), rep(3, 4)))

3D-SSA example (2D-MSSA)
data(Barbara)
ss <- ssa(Barbara, L = c(50, 50, 1))
plot(reconstruct(ss, groups = 1), slice = list(k = 1))
Precache

Calculates and caches elementary components inside SSA object.

Description

Calculates all the elementary series and saves inside SSA object. After this the grouping procedure can be performed much faster.

Usage

precache(x, n, ...)

Arguments

x SSA object
n integer, number of series to calculate and save
... further arguments passed to the reconstruction routines

Note

In most cases it is not necessary to call this routine directly. By default functions from the package collect all elementary series they encounter during the calculations.

See Also

reconstruct

Examples

Decompose 'co2' series with default parameters
s <- ssa(co2)
summary(s)
Precache the stuff
precache(s)
summary(s)

Reconstruct

Perform a series reconstruction.

Description

Reconstruct the data given the SSA decomposition and the desired grouping of the elementary components.
Usage

```r
## S3 method for class 'ssa'
reconstruct(x, groups, ..., drop.attributes = FALSE, cache = TRUE)
```

Arguments

- `x` SSA object
- `groups` list of numeric vectors, indices of elementary components used for reconstruction, the entries of the list can be named, see 'Value' for more information
- `...` further arguments passed to routines (e.g. to decompose routine if the continuation is desired).
- `drop.attributes` logical, if 'TRUE' then the attributes of the input objects are not copied to the reconstructed ones.
- `cache` logical, if 'TRUE' then intermediate results will be cached in the SSA object.

Details

Reconstruction is performed in a common form for different types of input objects. See Section 1.1.2.6 in Golyandina et al (2018) for the explanation. Formal algorithms are described in this book in Algorithm 2.2 for 1D-SSA, Algorithm 4.3 for MSSA, Algorithm 5.2 for 2D-SSA and Algorithm 5.6 for Shaped 2D-SSA.

Fast implementation of reconstruction with the help of FFT is described in Korobeynikov (2010) for the 1D case and in Section 6.2 (Rank-one quasi-hankelization) of Golyandina et al (2015) for the general case.

Value

List of reconstructed objects. Elements of the list have the same names as elements of groups. If the group is unnamed, then corresponding component will obtain name ‘Fn’, where ‘n’ is its index in groups list.

Note

By default (argument drop.attributes) the routine tries to preserve all the attributes of the input object. This way, for example, the reconstruction result of 'ts' object is the 'ts' object with the same time scale.

References

See Also

Rssa for an overview of the package, as well as, ssa-input, ssa, plot.reconstruction.

Examples

Decompose 'co2' series with default parameters
s <- ssa(co2)
Reconstruct the series, grouping elementary series.
r <- reconstruct(s, groups = list(Trend = c(1, 4), Season1 = c(2,3), Season2 = c(5, 6)))
plot(r)
'groups' argument might contain duplicate entries as well
r <- reconstruct(s, groups = list(1, 1:4, 1:6))
plot(r)

Real example: Mars photo
data(Mars)
Decompose only Mars image (without background)
s <- ssa(Mars, mask = Mars != 0, wmask = circle(50), kind = "2d-ssa")
Reconstruct and plot trend
plot(reconstruct(s, 1), fill.uncovered = "original")
Reconstruct and plot texture pattern
plot(reconstruct(s, groups = list(c(13, 14, 17, 18))))

Decompose 'EuStockMarkets' series with default parameters
s <- ssa(EuStockMarkets, kind = "mssa")
r <- reconstruct(s, groups = list(Trend = 1:2))
Plot original series, trend and residuals superimposed
plot(r, plot.method = "xyplot", superpose = TRUE,
 auto.key = list(columns = 3),
 col = c("blue", "green", "red", "violet"),
 lty = c(rep(1, 4), rep(2, 4), rep(3, 4)))

residuals

Obtain the residuals from SSA reconstruction

Description

Obtain the residuals from SSA reconstruction

Usage

S3 method for class 'ssa'
residuals(object, groups, ..., cache = TRUE)
S3 method for class 'ssa.reconstruction'
residuals(object, ...)
Arguments

- **object**: input object
- **groups**: list of numeric vectors, indices of elementary components used for reconstruction, the entries of the list can be named.
- **...**: further arguments passed to reconstruct routine
- **cache**: logical, if 'TRUE' then intermediate results will be cached in the SSA object.

Details

This function calculates the residuals either from SSA object corresponding to reconstruction using groups arguments, or just extracts the residuals from reconstruction object.

Value

residuals object

See Also

Rssa for an overview of the package, as well as, reconstruct.

Examples

```r
# Decompose 'co2' series with default parameters
s <- ssa(co2)
# Reconstruct the series, grouping elementary series.
r <- reconstruct(s, groups = list(c(1, 4), c(2,3), c(5, 6)))
print(residuals(r))

# If there are several groups, then the residuals are calculated as
# residuals for the model corresponding to the combined model.
r <- reconstruct(s, groups = list(c(6, 7), c(6,7), c(8, 9)))
r1 <- reconstruct(s, groups = list(6:9))
max(abs(residuals(r) - residuals(r1))) # 0
max(abs(co2 - (r1$F1 + residuals(r1)))) # 0
```

rforecast

Perform recurrent SSA forecasting of the series

Description

Perform recurrent SSA forecasting of the series.
Usage

```r
## S3 method for class '1d.ssa'
rfcast(x, groups, len = 1, base = c("reconstructed", "original"),
only.new = TRUE, reverse = FALSE, ..., drop = TRUE, drop.attributes = FALSE, cache = TRUE)
## S3 method for class 'toeplitz.ssa'
rfcast(x, groups, len = 1, base = c("reconstructed", "original"),
only.new = TRUE, reverse = FALSE, ..., drop = TRUE, drop.attributes = FALSE, cache = TRUE)
## S3 method for class 'mssa'
rfcast(x, groups, len = 1, base = c("reconstructed", "original"),
direction = c("row", "column"), only.new = TRUE, ..., drop = TRUE, drop.attributes = FALSE, cache = TRUE)
## S3 method for class 'cssa'
rfcast(x, groups, len = 1, base = c("reconstructed", "original"),
only.new = TRUE, reverse = FALSE, ..., drop = TRUE, drop.attributes = FALSE, cache = TRUE)
## S3 method for class 'pssa.1d.ssa'
rfcast(x, groups, len = 1, base = c("reconstructed", "original"),
only.new = TRUE, reverse = FALSE, ..., drop = TRUE, drop.attributes = FALSE, cache = TRUE)
```

Arguments

- **x**: SSA object holding the decomposition
- **groups**: list, the grouping of eigentriples to be used in the forecast
- **len**: integer, the desired length of the forecasted series
- **base**: series used as a 'seed' of forecast: original or reconstructed according to the value of `groups` argument
- **direction**: direction of forecast in multichannel SSA case, "column" stands for so-called L-forecast and "row" stands for K-forecast
- **only.new**: logical, if 'TRUE' then only forecasted values are returned, whole series otherwise
- **reverse**: logical, direction of forecast in 1D SSA case, 'FALSE' (default) means that the forecast moves forward in the time and 'TRUE' means the opposite
- **...**: additional arguments passed to `reconstruct` routines
- **drop**: logical, if 'TRUE' then the result is coerced to series itself, when possible (length of 'groups' is one)
- **drop.attributes**: logical, if 'TRUE' then the attributes of the input series are not copied to the reconstructed ones.
- **cache**: logical, if 'TRUE' then intermediate results will be cached in the SSA object.
Details

The routines apply the recurrent SSA forecasting algorithm to produce the new series which is expected to 'continue' the current series on the basis of a given decomposition. The algorithm sequentially projects the incomplete embedding vectors (from either the original or the reconstructed series) onto the subspace spanned by the selected eigentriples of the decomposition to derive the missed (last) values of the such vectors. Then the filled value in such a way the forecasting elements are produced on one-by-one basis.

It is shown in Golyandina et al (2001) that this approach corresponds to application of a linear recurrence formula (the same formula as described in \texttt{lrr}) to initial data taken from either the original or the reconstructed series.

In particular, the \(m\)-th step of the forecast is calculated by means of linear recurrence relation (see \texttt{lrr}) as

\[y_{n+m} = \sum_{k=1}^{L-1} a_k y_{n+m-k} \]

where the starting points \(y_{n-(L-2)}, \ldots, y_n\) are taken from the reconstructed time series (base="reconstructed") or from the initial (base="initial") time series.

For multichannel SSA the column forecast is obtained via applying the LRR to each series separately. The row forecast is more complicated and is based on a multivariate LRR. Forecast uses the formulae from Golyandina and Stepanov (2005) and Golyandina et.al (2015).

For details of 1D-SSA recurrent forecasting, see Section 3.2.1.2 and Algorithm 3.5 in Golyandina et al (2018). For details of MSSA recurrent forecasting, see Section 4.3.1.2 and Algorithm 4.4 (column forecasting).

Value

List of forecasted objects. Elements of the list have the same names as elements of groups. If group is unnamed, corresponding component gets name ‘Fn’, where ‘n’ is its index in groups list.

Or, the forecasted object itself, if length of groups is one and 'drop = TRUE'.

References

See Also

\texttt{Rssa} for an overview of the package, as well as, \texttt{forecast}, \texttt{vforecast}, \texttt{bforecast}.

Examples

```r
# Decompose 'co2' series with default parameters
s <- ssa(co2)
```
Produce 24 forecasted values of the series using different sets of eigentriples
as a base space for the forecast.

```r
rfor <- rforecast(s, groups = list(c(1,4), 1:4), len = 24, only.new=FALSE)
matplot(data.frame(c(co2, rep(NA, 24)), rfor), type = "l")
```

Forecast `co2' trend by SSA with projections

```r
s <- ssa(co2, column.projector = 2, row.projector = 2)
len <- 100
rfor <- rforecast(s, groups = list(trend = seq_len(nspecial(s))), len = len, only.new = FALSE)
matplot(data.frame(c(co2, rep(NA, len)), rfor), type = "l")
```

Forecast finite rank series with polynomial component by SSA with projections

```r
v <- 5000 * sin(2*pi / 13 * (1:100)) + (1:100)^2 + 10000
s <- ssa(v, row.projector = 2, column.projector = 2)
plot(rforecast(s, groups = list(all = 1:6), len = 100, only.new = FALSE), type = "l")
```

ssa

Create a new SSA object

Description

Set up the SSA object and perform the decomposition, if necessary.

Usage

```r
ssa(x,
   L = (N + 1) %/% 2,
   neig = NULL,
   mask = NULL,
   wmask = NULL,
   column.projector = "none",
   row.projector = "none",
   column.oblique = "identity",
   row.oblique = "identity",
   ...
   kind = c("1d-ssa", "2d-ssa", "nd-ssa", "toeplitz-ssa", "mssa", "cssa"),
   circular = FALSE,
   svd.method = c("auto", "nutrlan", "propack", "svd", "eigen", "rspectra", "primme"),
   force.decompose = TRUE)
```

Arguments

- **x**: object to be decomposed. See `ssa-input` for more information
- **L**: integer, window length. Fixed to half of the series length by default. Should be vector of length 2 for 2d SSA
- **neig**: integer, number of desired eigentriples. If `NULL`, then sane default value will be used, see 'Details'
mask for shaped 2d SSA case only. Logical matrix with same dimension as \(x \). Specifies form of decomposed array. If ‘NULL’, then all non-NA elements will be used.

wmask for shaped 2d SSA case only. Logical matrix which specifies window form. See ‘Details’ for more information about the window shape selection.

... further arguments passed to \texttt{decompose}.

kind SSA method. This includes ordinary 1d SSA, 2d SSA, Toeplitz variant of 1d SSA, multichannel variant of SSA and complex SSA.

circular logical vector of one or two elements, describes series topology for 1d SSA and Toeplitz SSA or field topology for 2d SSA. ‘TRUE’ means series circularity for 1d case or circularity by a corresponding coordinate for 2d case. See Shlemov and Golyandina (2014) for more information.

svd.method singular value decomposition method. See ‘Details’ for more information.

column.projector, row.projector column and row signal subspaces projectors for SSA with projection. See ‘Details’ for information about methods of projectors specification.

column.oblique, row.oblique column and row matrix weights for Weighted Oblique SSA. See ‘Details’ for information about how to use this feature.

force.decompose logical, if ‘TRUE’ then the decomposition is performed before return.

Details

This is the main entry point to the package. This routine constructs the SSA object filling all necessary internal structures and performing the decomposition if necessary. For the comprehensive description of SSA modifications and their algorithms see Golyandina et al (2018).

Variants of SSA: The following implementations of the SSA method are supported (corresponds to different values of \texttt{kind} argument):

1d-ssa Basic 1d SSA as described in Chapter 1 of Golyandina et al (2001). This is also known as Broomhead-King variant of SSA or BK-SSA, see Broomhead and King (1986).

toeplitz-ssa Toeplitz variant of 1d SSA. See Section 1.7.2 in Golyandina et al (2001). This is also known as Vautard-Ghil variant of SSA or VG-SSA for analysis of stationary time series, see Vautard and Ghil (1989).

mssa Multichannel SSA for simultaneous decomposition of several time series (possible of unequal length). See Golyandina and Stepanov (2005).

cssa Complex variant of 1d SSA.

nd-ssa Multidimensional SSA decomposition for arrays (tensors).

Window shape selection (for shaped 2d SSA): Window shape may be specified by argument \texttt{wmask}. If \texttt{wmask} is ‘NULL’, then standard rectangular window (specified by \(L \)) will be used. Also in \texttt{wmask} one may use following functions:

circle(\(R \)) circular mask of radius \(R \).
triangle(side) mask in form of isosceles right-angled triangle with cathetus side. Right angle lay on topleft corner of container square matrix.

These functions are not exported, they defined only for \(wmask \) expression. If one has objects with the same names and wants to use them rather than these functions, one should use special wrapper function \(I() \) (see 'Examples').

Projectors specification for SSA with projection: Projectors are specified by means of \(\text{column.projector} \) and \(\text{row.projector} \) arguments (see Golyandina and Shlemov (2017)). Each may be a matrix of orthonormal (otherwise QR orthonormalization process will be perfomed) basis of projection subspace, or single integer, which will be interpreted as dimension of orthogonal polynomial basis (note that the dimension equals to degree plus 1, e.g. quadratic basis has dimension 3), or one of following character strings (or unique prefix): 'none', 'constant' (or 'centering'), 'linear', 'quadratic' or 'qubic' for orthonormal bases of the corresponding functions.

Here is the the list of the most used options:

- **both projectors are 'none'** corresponds to ordinary 1D SSA,
- **column.projector='centering'** corresponds to 1D SSA with centering,
- **column.projector='centering' and row.projector='centering'** corresponds to 1D SSA with double centering.

SSA with centering and double centering may improve the separation of linear trend (see Golyandina et.al (2001) for more information).

Weighted Oblique SSA: Corresponding matrix norm weights may be specified for ordinary 1D SSA case by means of \(\text{column.oblique} \) and \(\text{row.oblique} \) arguments. These arguments should be either 'identical' or positive numeric vectors of length \(L \) and \(N - L + 1 \) for \(\text{column.oblique} \) and \(\text{row.oblique} \) respectively.

Weighted Oblique SSA inside Cadzow iterations may improve finite-rank estimation of signal (see e.g. Cadzow(alpha) iterations in Zvonarev and Golyandina (2017) for more information).

SVD methods: The main step of the SSA method is the singular decomposition of the so-called series trajectory matrix. Package provides several implementations of this procedure (corresponds to different values of \(\text{svd.method} \) argument):

- **auto** Automatic method selection depending on the series length, window length, SSA kind and number of eigenvalues requested.
- **nutrlan** Thick-restart Lanczos eigensolver which operates on cross-product matrix. This methods exploits the Hankel structure of the trajectory matrix efficiently and is really fast. The method allows the truncated SVD (only specified amount of eigentriples to be computed) and the continuation of the decomposition. See Korobeynikov (2010) for more information.
- **propack** SVD via implicitly restarted Lanczos bidiagonalization with partial reorthogonalization. This methods exploits the Hankel structure of the trajectory matrix efficiently and is really fast. This is the 'proper' SVD implementation (the matrix of factor vectors are calculated), thus the memory requirements of the methods are higher than for nu-TRLAN. Usually the method is slightly faster that nu-TRLAN and more numerically stable. The method allows the truncated SVD (only specified amount of eigentriples to be computed). See Korobeynikov (2010) for more information.
- **svd** Full SVD as provided by LAPACK DGESDD routine. Neither continuation of the decomposition nor the truncated SVD is supported. The method does not assume anything special about the trajectory matrix and thus is slow.
eigen Full SVD via eigendecomposition of the cross-product matrix. In many cases faster than previous method, but still really slow for more or less non-trivial matrix sizes.

rspectra SVD via svds function from Rspectra package (if installed)

primme SVD via svds function from PRIMME package (if installed)

Usually the ssa function tries to provide the best SVD implementation for given series length and the window size. In particular, for small series and window sizes it is better to use generic black-box routines (as provided by ’svd’ and ’eigen’ methods). For long series special-purpose routines are to be used.

Value

Object of class ‘ssa’. The precise layout of the object is mostly meant opaque and subject to change in different version of the package. See **ssa-object** for details.

References

See Also

svd, ssa-object, ssa-input, ssa.capabilities, decompose, reconstruct, plot, forecast

Examples

```r
# Decompose 'co2' series with default parameters
s <- ssa(co2)
# Show the summary
summary(s)
# Reconstruct the series, with suitable grouping
r <- reconstruct(s, groups = list(c(1, 4), c(2, 3), c(5, 6)))
plot(r)

# Decompose 'EuStockMarkets' series with default parameters
s <- ssa(EuStockMarkets, kind = "mssa")
r <- reconstruct(s, groups = list(Trend = 1:2))
# Plot original series, trend and residuals superimposed
plot(r, plot.method = "xyplot", superpose = TRUE,
     auto.key = list(columns = 3),
     col = c("blue", "green", "red", "violet"),
     lty = c(rep(1, 4), rep(2, 4), rep(3, 4)))

# Artificial image for 2dSSA
mx <- outer(1:50, 1:50,
            function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7) + exp(i/25 - j/20)) +
        rnorm(50^2, sd = 0.1)
# Decompose 'mx' with circular window
s <- ssa(mx, kind = "2d-ssa", wmask = circle(5), neig = 10)
# Reconstruct
r <- reconstruct(s, groups = list(1, 2:5))
# Plot components, original image and residuals
plot(r)

# Real example: Mars photo
data(Mars)
# Decompose only Mars image (without background)
s <- ssa(Mars, mask = Mars != 0, wmask = circle(50), kind = "2d-ssa")
```

Plot eigenarrays
plot(s, type = "vectors", idx = 1:25)

Plot factor arrays
plot(s, type = "vectors", vectors = "factor", idx = 1:25)

Reconstruct and plot trend
plot(reconstruct(s, 1), fill.uncovered = "original")

Reconstruct and plot texture pattern
plot(reconstruct(s, groups = list(c(13,14, 17, 18))))

I()-wrapper demo
circle <- 50
s <- ssa(Mars, wmask = circle(R = I(circle)))

CSSA-based trend extraction
s <- ssa(EuStockMarkets[, 1] + 1.0i*EuStockMarkets[, 2], kind = "cssa")
r <- reconstruct(s, groups = list(Trend = 1:2))
plot(r)

'co2' decomposition with double projection to linear functions
s <- ssa(co2, column.projector = "centering", row.projector = "centering")
plot(reconstruct(s, groups = list(trend = seq_len(nspecial(s)))))

Artificial 2d example with double projection
ii <- matrix(1:100, 100, 100); jj <- t(ii)
x <- ii + 2 * jj
s <- ssa(x, column.projector = "centering", row.projector = "centering")
plot(s)
plot(reconstruct(s, groups = list(trend = seq_len(nspecial(s)))))

3D-SSA example (2D-MSSA)
data(Barbara)
Barbara.noised <- Barbara

Corrupt image by regular noise
noise <- outer(seq_len(dim(Barbara)[1]),
 seq_len(dim(Barbara)[2]),
 function(i, j) sin(2*pi * (i/13 + j/23)))
Barbara.noised[, , 1] <- Barbara.noised[, , 1] + 10 * noise
Barbara.noised[, , 2] <- Barbara.noised[, , 2] + 30 * noise
Barbara.noised[, , 3] <- Barbara.noised[, , 3] + 5 * noise

Normalize image for plotting
Barbara.noised <- (Barbara.noised - min(Barbara.noised)) / diff(range(Barbara.noised))
plot(c(0, 1), c(0, 1), type = "n", xlab = "", ylab = "")
rasterImage(Barbara.noised, 0, 0, 1, 1, interpolate = FALSE)

Multichannel 2D-SSA
ss <- ssa(Barbara.noised, L = c(50, 50, 1))
plot(ss, type = "series", groups = 1:18, slice = list(k = 1))
plot(ss, type = "vectors", idx = 1:12, slice = list(k = 1))
plot(ss, type = "vectors", vectors = "factor", idx = 1:12, slice = list(k = 3))
Denoise image
Barbara.rec <- residuals(ss, groups = 5:6)
plot(c(0, 1), c(0, 1), type = "n", xlab = "", ylab = "")
rasterImage(Barbara.rec, 0, 0, 1, 1, interpolate = FALSE)

Input Data Formats Used by SSA Routines

Description

The inputs of SSA can be quite different depending on the kind of SSA used. However, there is a common of all the variants of SSA and all the routines. The package tries hard to preserve the specifics of input object as much as possible. This means, that all the attributes, etc. are copied back to the reconstructed objects. This way, the result of the SSA decomposition of a ‘ts’ object is a ‘ts’ object as well.

For forecasting, it is not possible in general to preserve the attributes of the input objects. However, Rssa knows about some common time series classes (e.g. ‘ts’) and tries to infer the time scales for forecasted objects as well.

The input formats are as follows:

1d SSA and Toeplitz SSA: Input is assumed to be a simple vector, or vector-like object (e.g. univariable ‘ts’ or ‘zooreg’ object). Everything else is coerced to vector.

2d SSA: Input assumed to be a matrix. If there are any NA’s then the shaped variant of 2d SSA will be used. All non-NA elements will be used as a mask.

nd SSA: Input assumed to be an array of arbitrary dimension. If there are any NA’s then the shaped variant will be used.

MSSA: While the representation of a one dimensional time series in R is pretty obvious, there are multiple possible ways of defining the multivariate time series. Let us outline some common choices.

- Matrix with separate series in the columns. Optionally, additional time structure like in ‘mts’ objects, can be embedded.
- Matrix-like (e.g. a ’data.frame’) object with series in the columns. In particular, ’data.frame’ would be a result of reading the series from the file via ‘read.table’ function.
- List of separate time series objects (e.g. a ’list’ of ’ts’ or ’zoo’ objects).

Also, the time scales of the individual time series can be normalized via head or tail padding with NA (for example, as a result of the ts.union call), or specified via time series attributes. Or, everything can be mixed all together.

The ssa routine with ‘kind = mssa’ allows one to provide any of the outlined multivariate series formats. As usual, all the attributes, names of the series, NA padding, etc. is carefully preserved.

CSSA: Complex vectors are assumed at the input.
See Also

ssa

Examples

s <- ssa(co2) # Perform the decomposition using the default window length
r <- reconstruct(s, groups = list(Trend = c(1, 4),
 Seasonality = c(2, 3))) # Reconstruct into 2 series
class(r$Trend) # Result is 'ts' object

Simultaneous trend extraction using MSSA
s <- ssa(EuStockMarkets, kind = "mssa")
r <- reconstruct(s, groups = list(Trend = c(1,2)))
class(r$Trend) # Result is 'mts' object

Trend forecast
f <- rforecast(s, groups = list(Trend = c(1, 2)), len = 50, only.new = FALSE)
class(f) # For 'ts' objects the time scales are inferred automatically

Artificial image for 2dSSA
mx <- outer(1:50, 1:50,
 function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7) + exp(i/25 - j/20)) +
 rnorm(50^2, sd = 0.1)
Decompose 'mx' with circular window
s <- ssa(mx, kind = "2d-ssa", wmask = circle(5), neig = 10)
Reconstruct
r <- reconstruct(s, groups = list(1, 2:5))
Plot components, original image and residuals
plot(r)

3D-SSA example (2D-MSSA)
data(Barbara)

ss <- ssa(Barbara, L = c(50, 50, 1))
plot(ss)

ssa-object

Properties of SSA object

Description

Functions to access various fields of SSA object, query for number of singular values, eigenvectors, factor vectors and ‘special’ decomposition triples (now, ProjectionSSA triples) in the SSA object and other miscellaneous info. See Chapter I in Golyandina et al (2018) for explanation.
Usage

```r	nsigma(x)
nu(x)
nv(x)
## S3 method for class 'ssa'
nspecial(x)
## S3 method for class 'ssa'
summary(object, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'ssa'
x$name
```

Arguments

- `x` SSA object to query
- `object` an object for which a summary is desired
- `digits` integer, used for number formatting
- `...` additional arguments affecting the summary produced
- `name` field of SSA object to extract. See 'Details' for list of the fields

Details

The internals of SSA object is inherently opaque, because depending on the selected SVD method and other conditions it might contains different fields.

However, it is possible to extract some fields out of it using the operator $, in particular, the following values of argument name are supported:

- **sigma** Vector of singular values
- **U** The matrix of eigenvectors
- **V** The matrix of factor vectors. Might not exist depending on the selected SVD method

If SSA with projections is being performed, then the eigentriples are ordered as follows: at first, row projection triples, then column projection triples and then SVD-triples. Non-SVD triples (like projection triples) are called 'special triples'. The number of special triples can be obtained by calling nspecial method. Also, one can use the following fields of the SSA object:

- **nPR** the number of row projection triples, may be NULL
- **nPL** the number of column projection triples, may be NULL

Value

- an 'integer' of length 1 for nu, nv, nsigma, nspecial routines, matrix or vector for $ operator.

About decompositions

The result of Decomposition step of SSA and its modifications can be written down in the following form:

\[
(*) \quad X = \sum_i X_i, \quad X_i = \sigma_i U_i V_i^T,
\]
Decompositions for different SSA modifications

Basic SSA the SVD, consistent, minimal, bi-orthogonal and therefore F-orthogonal decomposition. Implemented in ssa with kind='1d-ssa'

FOSSA consistent, minimal F-orthogonal decomposition. Implemented in fossa

IOSSA consistent, minimal oblique decomposition. Implemented in iossa

SSA with projections non-consistent if at least one basis vector used for the projection does not belong to the column (row) trajectory space, F-orthogonal decomposition. The components, which are obtained by projections, are located at the beginning of the decomposition and have numbers 1, ..., n_{special}. Implemented in ssa with kind='1d-ssa' and non-NULL row.projector or column.projector arguments

Toeplitz SSA generally, non-consistent, non-minimal F-orthogonal decomposition. Implemented in ssa with kind='toeplitz-ssa'

Note

For nsigma, nu, nv, $ routines, the values returned solely depend on used singular value decomposition method and parameters of this method (e.g. 'neig' argument for 'propack' and 'nutrlan' SVD methods).
References

See Also
Rssa for an overview of the package, as well as, ssa, calc.v, iossa, fossa.

Examples
Decompose 'co2' series with default parameters
s <- ssa(co2, neig = 20)
Show the number of eigentriples saved in the 's'
print(nsigma(s))
Show the summary
summary(s)
Show the set of singular values
print(s$sigma)
Show the first eigenvector
print(s$U[, 1])

Decompose 'co2' series with polynomial projections
s <- ssa(co2, row.projector = 1, column.projector = 2)
print(nspecial(s))
print(c(snPL, snPR))
Reconstruct a polynomial trend
plot(reconstruct(s, groups = list(trend = seq.len(nspecial(s)))))

description
Not all SSA algorithms and methods could be applied to SSA objects of any kind (e.g. gapfilling requires shaped SSA object, one cannot forecast for 3D-SSA and so on). This function allows one to determine a set of methods allowed to be applied to a particular SSA object

Usage
ssa.capabilities(x)

Arguments
x SSA object holding the decomposition

Value
Logical vector, indicating which methods are allowed
summarize.gaps

Examples

```r
# Decompose 'co2' series with default parameters
s <- ssa(co2)
# Since this is 1d SSA object, everything should be supported except
# gapfilling
print(ssa.capabilities(s))
```

summarize.gaps
Summarize Gaps in a Series

Description

Provide a summary about the gaps in a series given desired window length, namely whether the gap is internal or not, whether it is sparse or dense, etc.

Usage

```r
## S3 method for class '1d.ssa'
summarize.gaps(x, L = NULL)
## S3 method for class 'toeplitz.ssa'
summarize.gaps(x, L = NULL)
## S3 method for class 'cssa'
summarize.gaps(x, L = NULL)
## Default S3 method:
summarize.gaps(x, L)
```

Arguments

- `x`
 SSA object

- `L`
 vector of window lengths, if missing or NULL, then all viable window lengths are considered

Value

Object of type 'ssa.gaps': a list with entries which correspond to every window length. For each window length, entry is a list of gaps with their descriptions.

See Also

* [Rssa](#) for an overview of the package, as well as, [gapfill](#), [igapfill](#), [clplot](#).
Examples

```r
# Produce series with gaps
F <- co2; F[c(12, 100:200, 250)] <- NA
# Summarize the gaps
s <- ssa(F, L = 72)
g <- summarize.gaps(s, L = c(36, 72, 144))
# Print the results
print(g)
# Plot the proportion of complete lag-vectors
plot(g)
```

tmat

Toeplitz matrices operations.

Description

A set of routines to operate on Toeplitz matrices stored in compact FFT-based form.

Usage

```r
new.tmat(F, L = (N + 1) %/% 2, circular = FALSE, fft.plan = NULL)
is.tmat(t)
tcols(t)
trows(t)
tmatmul(tmat, v, transposed = FALSE)
```

Arguments

- **F** series to construct the Toeplitz version of \(L \times L \) autocovariance matrix.
- **fft.plan** internal hint argument, should be NULL in most cases
- **L** the window length.
- **circular** logical vector of one element, describes series topology. ‘TRUE’ means series circularity.
- **tmat** matrix to operate on.
- **transposed** logical, if ‘TRUE’ the multiplication is performed with the transposed matrix.
- **v** vector to multiply with.

Details

Fast Fourier Transform provides a very efficient matrix-vector multiplication routine for Toeplitz matrices. See the paper in ‘References’ for the details of the algorithm.

References

USUnemployment

See Also

Rssa for an overview of the package, as well as, ssa,

Examples

```r
# Construct the Toeplitz version of the autocovariance matrix for 'co2' series
h <- new.tmat(co2, L = 10)
# Print the number of columns and rows
print(trows(h)); print(tcols(h))
```

USUnemployment
U.S. unemployment figures

Description

Monthly U.S. male (16-19 years and from 20 years) and female (16-19 years and from 20 years) unemployment figures in thousands from 1948 till 1981.

Usage

data(USUnemployment)

Format

A multivariate time series with 408 observations on 4 variables. The object is of class 'mts'.

Source

vforecast
Perform vector SSA forecasting of the series

Description

Perform vector SSA forecasting of the series.
Usage

```r
## S3 method for class '1d.ssa'
vforecast(x, groups, len = 1, only.new = TRUE, ..., 
drop = TRUE, drop.attributes = FALSE)
## S3 method for class 'toeplitz.ssa'
vforecast(x, groups, len = 1, only.new = TRUE, ..., 
drop = TRUE, drop.attributes = FALSE)
## S3 method for class 'toeplitz.ssa'
vforecast(x, groups, len = 1, only.new = TRUE, ..., 
drop = TRUE, drop.attributes = FALSE)
## S3 method for class 'mssa'
vforecast(x, groups, len = 1, 
  direction = c("row", "column"),
  only.new = TRUE, ..., 
drop = TRUE, drop.attributes = FALSE)
## S3 method for class 'cssa'
vforecast(x, groups, len = 1, only.new = TRUE, ..., 
drop = TRUE, drop.attributes = FALSE)
## S3 method for class 'pssa.1d.ssa'
vforecast(x, groups, len = 1, only.new = TRUE, ..., 
drop = TRUE, drop.attributes = FALSE)
```

Arguments

- `x` SSA object holding the decomposition
- `groups` list, the grouping of eigentriples to be used in the forecast
- `len` integer, the desired length of the forecasted series
- `direction` direction of forecast in multichannel SSA case, "column" stands for so-called L-forecast and "row" stands for K-forecast
- `only.new` logical, if 'TRUE' then only forecasted values are returned, whole series otherwise
- `...` additional arguments passed to `decompose` routines
- `drop` logical, if 'TRUE' then the result is coerced to series itself, when possible (length of 'groups' is one)
- `drop.attributes` logical, if 'TRUE' then the attributes of the input series are not copied to the reconstructed ones.

Details

The routines applies the vector SSA forecasting algorithm to produce the new series which is expected to 'continue' the current series on the basis of a given decomposition. Vector forecast differs from recurrent forecast in such a way that it continues the set of vectors in the subspace spanning the chosen eigenvectors (the same formula as described in `lrr` is used for constructing of the last components of the new vectors) and then derives the series out of this extended set of vectors.
For multichannel SSA, forecast can be constructed in two versions, row and column ones; it uses the formulae from Golyandina et al (2015).

For details of 1D-SSA recurrent forecasting, see Section 3.2.1.3 and Algorithm 3.6 in Golyandina et al (2018). For details of MSSA recurrent forecasting, see Section 4.3.1.3 and Algorithm 4.5 (column forecasting).

Value

List of forecasted objects. Elements of the list have the same names as elements of groups. If group is unnamed, corresponding component gets name ‘Fn’, where ‘n’ is its index in groups list.

Or, the forecasted object itself, if length of groups is one and ‘drop = TRUE’.

References

See Also

Rssa for an overview of the package, as well as, rforecast, bforecast, forecast.

Examples

Decompose 'co2' series with default parameters
s <- ssa(co2)
Produce 24 forecasted values of the series using different sets of eigentriples
as a base space for the forecast.
vfor <- vforecast(s, groups = list(c(1,4), 1:4), len = 24, only.new=FALSE)
matplot(data.frame(c(co2, rep(NA, 24)), vfor), type="l")

Forecast 'co2' trend by SSA with projections
s <- ssa(co2, column.projector = 2, row.projector = 2)
len <- 100
vfor <- vforecast(s, groups = list(trend = seq_len(nspecial(s))), len = len, only.new = FALSE)
matplot(data.frame(c(co2, rep(NA, len)), vfor), type="l")

Forecast finite rank series with polynomial component by SSA with projections
v <- 5000 * sin(2*pi / 13 * (1:100)) + (1:100)^2 + 10000
s <- ssa(v, row.projector = 2, column.projector = 2)
plot(vforecast(s, groups = list(all = 1:6), len = 100, only.new = FALSE), type = "l")
Calculate the W-correlation matrix

Description

Function calculates the W-correlation matrix for the series.

Usage

```r
## S3 method for class 'ssa'
wcor(x, groups, Fs, ..., cache = TRUE)
## S3 method for class 'ossa'
wcor(x, groups, Fs, ..., cache = TRUE)
## Default S3 method:
wcor(x, L = (N + 1) %/% 2, ..., weights = NULL)
## S3 method for class 'wcor.matrix'
plot(x,
    grid = c(),
    ...,
    col = grey(c(1, 0)),
    cuts = 20,
    zlim = range(abs(x), 0, 1),
    at)
```

Arguments

- `x`: the input object. This might be ssa object for ssa method, or just a matrix with elementary series in columns for default implementation.
- `L`: window length.
- `weights`: additional weights
- `groups`: list of numeric vectors, indices of elementary components used for reconstruction.
- `Fs`: list of series (e.g. 'ssa.reconstruction' object) for W-cor computation. If missing, reconstructed series from the input 'ssa' object `x` will be used.
- `...`: further arguments passed to reconstruct routine for wcor or to plot for plot.wcor.matrix
- `cache`: logical, if 'TRUE' then intermediate results will be cached in 'ssa' object.
- `grid`: numeric vector, indices of matrix blocks (groups) which will be separated by grid line. Lines will be drawn on the left of and under noted blocks. Also this argument can be list of two numeric vectors with names 'x' and 'y', for control vertical and horizontal grid lines separately.
- `col`: color vector for colorscale, given by two or more colors, the first color corresponds to the minimal value, while the last one corresponds to the maximal value (will be interpolated by colorRamp)
- `cuts`: integer, the number of levels the range of W-cor values will be divided into.
wcor

zlim range of displayed W-cor values.

at A numeric vector giving breakpoints along the range of the image. if missing, will be evaluated automatically (see description of the cuts argument).

Details

W-correlation matrix is a standard way of checking for weak separability between the elementary components. In particular, the strongly correlated elementary components should be placed into the same group. The function calculates such a matrix either directly from 'ssa' object or from the matrix of elementary series.

For plotting additional (non-standard) graphical parameters which can be passed via . . .:

useRaster logical, indicates whether raster plot should be used. 'FALSE' by default

For class 'ossa', checking of Frobenius orthogonality is performed. If there are reconstructed matrices, which are not F-orthogonal (it is a usual case for Oblique SSA), the warning about possible irrelevancy will be shown, since then weighted correlations do not indicate weak separability properly. In such a case, the use of owcor is preferred.

Value

Object of type 'wcor.matrix'.

References

See Also

reconstruct owcor.

Examples

Decompose co2 series with default parameters
s <- ssa(co2)
Calculate the w-correlation matrix between first 20 series
for a guess for grouping
w <- wcor(s, groups = 1:20)
plot(w, grid = c(2,4, 5,7))
Calculate the w-correlation matrix for the chosen groups
to check separability
w <- wcor(s, groups = list(c(1,4), c(2,3), c(5,6)))

Artificial image for 2D SSA
mx <- outer(1:50, 1:50,
 function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7) + exp(i/25 - j/20)) +
 rnorm(50^2, sd = 0.1)
Decompose 'mx' with default parameters
s <- ssa(mx, kind = "2d-ssa")
Plot wcor for first 12 components
plot(wcor(s, groups = 1:12), grid = c(2, 6))

Real example: Mars photo
data(Mars)
Decompose only Mars image (without background)
s <- ssa(Mars, mask = Mars != 0, wmask = circle(50), kind = "2d-ssa")
Plot wcor for the first 25 components
plot(wcor(s, groups = 1:25), grid = c(13, 15, 17, 19))

wnorm

Function: Calculate Weighted Norm of series

Description

Function calculates the W-norm for input objects or for objects stored in input ssa object.

Usage

```r
## S3 method for class '1d.ssa'
wnorm(x, ...)
## S3 method for class 'nd.ssa'
wnorm(x, ...)
## S3 method for class 'toeplitz.ssa'
wnorm(x, ...)
## S3 method for class 'mssa'
wnorm(x, ...)
## Default S3 method:
wnorm(x, L = (N + 1) %/% 2, ...)
## S3 method for class 'complex'
wnorm(x, L = (N + 1) %/% 2, ...)
```

Arguments

- `x`: the input object. This might be ssa object for `ssa` method, or just a series.
- `L`: window length.
- `...`: arguments to be passed to methods.

Details

L-weighted norm of series is Frobenius norm of its L-trajectory matrix. So, if `x` is vector (series), the result of `wnorm(x, L)` is equal to `sqrt(sum(hankel(x, L)^2))`, but in fact is calculated much more efficiently. For 1d SSA and Toeplitz SSA `wnorm(x)` calculates weighted norm for stored original input series and stored window length.

L-weighted norm of 2d array is Frobenius norm of its L[1] * L[2]-trajectory hankel-block-hankel matrix. For 2d SSA this method calculates weighted norm for stored original input array and stored 2d-window lengths.
References

See Also

`ssa-input`, `hankel`, `wcor`

Examples

```r
wnorm(co2, 20)
# Construct ssa-object for 'co2' with default parameters but don't decompose
ss <- ssa(co2, force.decompose = FALSE)
wnorm(ss)

# Artificial image for 2D SSA
mx <- outer(1:50, 1:50,
    function(i, j) sin(2*pi * i/17) * cos(2*pi * j/7) + exp(i/25 - j/20)) +
    rnorm(50*2, sd = 0.1)
# Construct ssa-object for 'mx' with default parameters but don't decompose
s <- ssa(mx, kind = "2d-ssa", force.decompose = FALSE)
wnorm(s)
```
Index

* **algebra**
 - calc.v, 9

* **datasets**
 - AustralianWine, 4
 - Barbara, 5
 - Mars, 44
 - MotorVehicle, 44
 - USUnemployment, 75

* **package**
 - Rssa-package, 3
 - $.ssa (ssa-object), 69

 AustralianWine, 4
 - Barbara, 5
 - bforecast, 5, 18, 61, 77
 - Cadzow, 64
 - cadzow, 7
 - calc.v, 9, 72
 - cleanup, 10
 - clone, 10
 - clplot, 11, 26, 35, 73
 - contributions (ssa-object), 69

 - decompose, 4, 9, 12, 13, 19, 32, 36, 63, 66, 76
 - eossa, 13
 - ESPRIT, 14

 - forecast, 3, 4, 6, 16, 61, 66, 77
 - fossa, 3, 4, 14, 18, 37, 46, 71, 72
 - frobenius.cor, 22

 - gapfill, 3, 12, 24, 35, 73
 - grouping.auto, 3, 26
 - grouping.auto.pgram, 27, 27
 - grouping.auto.wcor, 27, 29

 - hankel, 81
 - hankel (hmat), 31

 - hbhankel (hbhmat), 30
 - hbbcols (hbhmat), 30
 - hbhmat, 30
 - hbhmatmul (hbhmat), 30
 - hhbrows (hbhmat), 30
 - hclust, 14, 30
 - hcols (hmat), 31
 - hmat, 31
 - hmatmul (hmat), 31
 - hmatr, 32
 - hrows (hmat), 31

 - igapfill, 3, 12, 26, 34, 73
 - iossa, 3, 4, 14, 20, 23, 36, 41, 46, 71, 72
 - iossa.result, 14, 37, 40
 - is.hbhmat (hbhmat), 30
 - is.hmat (hmat), 31
 - is.tmat (tmat), 74

 - lrr, 42, 49, 61, 76

 - Mars, 44
 - MotorVehicle, 44

 - new.hbhmat (hbhmat), 30
 - new.hmat (hmat), 31
 - new.ssa (ssa), 62
 - new.tmat (tmat), 74
 - nlambda (ssa-object), 69
 - nsigma (ssa-object), 69
 - nspecial (ssa-object), 69
 - nu (ssa-object), 69
 - nv (ssa-object), 69

 - owcor, 14, 23, 37, 41, 45, 79
 - owcor., 79

 - parestimate, 3, 4, 14, 28, 43, 46
 - plot, 3, 4, 50, 54, 66
 - plot.1d.ssa.reconstruction
 (plot.reconstruction), 52
INDEX

plot.2d.ssa.reconstruction
 (plot.reconstruction), 52
plot.grouping.auto.pgram
 (grouping.auto.pgram), 27
plot.hmatr (hmatr), 32
plot.lrr (lrr), 42
plot.mssa.reconstruction
 (plot.reconstruction), 52
plot.nd.ssa.reconstruction
 (plot.reconstruction), 52
plot.reconstruction
 (plot.reconstruction), 51, 52, 58
plot.ssa.reconstruction
 (plot.reconstruction), 52
plot.toeplitz.ssa.reconstruction
 (plot.reconstruction), 52
plot.wcor.matrix (wcor), 78
precache, 56
predict.1d.ssa (forecast), 16
predict.mssa (forecast), 16
predict.ssa (forecast), 16
predict.toeplitz.ssa (forecast), 16
print.iossa.result (iossa.result), 40
reconstruct, 3, 4, 8, 25, 27, 28, 35, 50, 54,
 56, 56, 59, 60, 66, 79
residuals, 58
rforecast, 3, 4, 6, 18, 28, 61, 75
roots (lrr), 42
Rssa, 6, 8, 9, 12–14, 18, 20, 26, 28, 32, 35, 37,
 41, 43, 46, 49, 58, 59, 61, 72, 73, 75, 77
Rssa (Rssa-package), 3
Rssa-package, 3
ssa, 3, 4, 9, 12, 13, 30–32, 34, 43, 49, 51, 54,
 58, 62, 69, 71, 72, 75
ssa-input, 68
ssa-object, 69
ssa.capabilities, 66, 72
summarize.gaps, 12, 26, 35, 73
summary.iossa.result (iossa.result), 40
summary.ssa, 41
summary.ssa (ssa-object), 69
svd, 13, 66
tcols (tmat), 74
tmat, 74
tmatmul (tmat), 74
trows (tmat), 74

USUnemployment, 75

vforecast, 3, 4, 6, 18, 28, 61, 75
wcor, 3, 4, 23, 30, 46, 78, 81
wnorm, 80
xyplot, 27