Package ‘SAGMM’

June 29, 2019

Type Package
Title Clustering via Stochastic Approximation and Gaussian Mixture Models
Version 0.2.4
Date 2019-06-29
Author Andrew T. Jones, Hien D. Nguyen
Maintainer Andrew T. Jones <andrewthomasjones@gmail.com>
Description Computes clustering by fitting Gaussian mixture models (GMM) via stochastic approximation following the methods of Nguyen and Jones (2018) <doi:10.1201/9780429446177>. It also provides some test data generation and plotting functionality to assist with this process.
License GPL-3
Encoding UTF-8
Imports Rcpp (>= 0.12.13), MixSim, mclust, stats, lowmemtkmeans
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.1.1
Suggests testthat, ggplot2
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-06-29 05:50:12 UTC

R topics documented:

gainFactors .. 2
generateSimData ... 2
SAGMM ... 3
SAGMMFit .. 3

Index 5
generateSimData

Description
Generate data for simulations to test the SAGMM package.

Usage
generateSimData(ngroups = 5, Dimensions = 5, Number = 10^4)

Arguments
ngroups Number of mixture components. Default 5.
Dimensions number of Dimensions. Default 5.
Number number of samples. Default 10^4.

Value
List of results: X, Y, simobject.

gainFactors

Return Gamma, a sequence of gain factors

Description
Generate a series of gain factors.

Usage
gainFactors(Number, Burnin)

Arguments
Number Number of values required.
Burnin Number of 'Burnin' values at the beginning of sequence.

Value
Gamma, a vector of gain factors.

Examples
g<-gainFactors(10^4, 2*10^3)
Examples

sims <- generateSimData(ngroups=10L, Dimensions=10L, Number=10^4L)
sims <- generateSimData()

SAGMM: A package for Clustering via Stochastic Approximation and Gaussian Mixture Models.

Description

The SAGMM package allows for computation of gaussian mixture models using stochastic approximation to increase efficiency with large data sets. The primary function SAGMMFit allows this to be performed in a relative flexible manner.

Author(s)

Andrew T. Jones and Hien D. Nguyen

References

SAGMMFit

Clustering via Stochastic Approximation and Gaussian Mixture Models (GMM)

Description

Fit a GMM via Stochastic Approximation. See Reference.

Usage

SAGMMFit(X, Y = NULL, Burnin = 5, ngroups = 5, kstart = 10, plot = FALSE)

Arguments

X numeric matrix of the data.
Y Group membership (if known). Where groups are integers in 1:ngroups. If provided ngroups can
Burnin Ratio of observations to use as a burn in before algorithm begins.
ngroups Number of mixture components. If Y is provided, and groups is not then is overridden by Y.
kstart number of kmeans starts to initialise.
plot If TRUE generates a plot of the clustering.
Value
A list containing

Cluster The clustering of each observation.
plot A plot of the clustering (if requested).
l2 Estimate of Lambda^2
ARI1 Adjusted Rand Index 1 - using k-means
ARI2 Adjusted Rand Index 2 - using GMM Clusters
ARI3 Adjusted Rand Index 3 - using initialization k-means
RM Initial K-means clustering of the data.
pi The cluster proportions (vector of length ngroups)
tau tau matrix of conditional probabilities.
fit Full output details from inner C++ loop.

Author(s)
Andrew T. Jones and Hien D. Nguyen

References

Examples
sims<-generateSimData(ngroups=10L, Dimensions=10L, Number=10^4L)
res1<-SAGMFit(sims$X, sims$Y)
res2<-SAGMFit(sims$X, ngroups=5)
Index

gainFactors, 2
generateSimData, 2

SAGMM, 3
SAGMM-package (SAGMM), 3
SAGMMFit, 3