Package ‘SAGMM’

October 12, 2022

Type Package

Title Clustering via Stochastic Approximation and Gaussian Mixture Models

Version 0.2.4

Date 2019-06-29

Author Andrew T. Jones, Hien D. Nguyen

Maintainer Andrew T. Jones <andrewthomasjones@gmail.com>

Description Computes clustering by fitting Gaussian mixture models (GMM) via stochastic approximation following the methods of Nguyen and Jones (2018) <doi:10.1201/9780429446177>. It also provides some test data generation and plotting functionality to assist with this process.

License GPL-3

Encoding UTF-8

Imports Rcpp (>= 0.12.13), MixSim, mclust, stats, lowmemtkmeans

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 6.1.1

Suggests testthat, ggplot2

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-06-29 05:50:12 UTC

R topics documented:

gainFactors ... 2
generateSimData ... 2
SAGMM ... 3
SAGMMFit ... 3

Index 5
gainFactors

Return Gamma, a sequence of gain factors

Description
Generate a series of gain factors.

Usage
gainFactors(Number, Burnin)

Arguments
Number Number of values required.
Burnin Number of 'Burnin' values at the beginning of sequence.

Value
Gamma, a vector of gain factors.

Examples
g<-gainFactors(10^4, 2*10^3)

generateSimData
Generate data for simulations to test the SAGMM package.

Description
This function is primarily a convienence wrapper for MixSim.

Usage
generateSimData(ngroups = 5, Dimensions = 5, Number = 10^4)

Arguments
ngroups Number of mixture components. Default 5.
Dimensions number of Dimensions. Default 5.
Number number of samples. Default 10^4.

Value
List of results: X, Y, simobject.
Examples

```r
sims<-generateSimData(ngroups=10, Dimensions=10, Number=10^4)
sims<-generateSimData()
```

Description

The SAGMM package allows for computation of gaussian mixture models using stochastic approximation to increase efficiency with large data sets. The primary function `SAGMMFit` allows this to be performed in a relative flexible manner.

Author(s)

Andrew T. Jones and Hien D. Nguyen

References

SAGMMFit

Description

Fit a GMM via Stochastic Approximation. See Reference.

Usage

```r
SAGMMFit(X, Y = NULL, Burnin = 5, ngroups = 5, kstart = 10,
plot = FALSE)
```

Arguments

- **X**: numeric matrix of the data.
- **Y**: Group membership (if known). Where groups are integers in 1:ngroups. If provided ngroups can
- **Burnin**: Ratio of observations to use as a burn in before algorithm begins.
- **ngroups**: Number of mixture components. If Y is provided, and groups is not then is overridden by Y.
- **kstart**: number of kmeans starts to initialise.
- **plot**: If TRUE generates a plot of the clustering.
Value

A list containing

- Cluster: The clustering of each observation.
- plot: A plot of the clustering (if requested).
- l2: Estimate of Lambda^2
- AR1: Adjusted Rand Index 1 - using k-means
- AR2: Adjusted Rand Index 2 - using GMM Clusters
- AR3: Adjusted Rand Index 3 - using initialization k-means
- KM: Initial K-means clustering of the data.
- pi: The cluster proportions (vector of length ngroups)
- tau: tau matrix of conditional probabilities.
- fit: Full output details from inner C++ loop.

Author(s)

Andrew T. Jones and Hien D. Nguyen

References

Examples

```r
sims <- generateSimData(ngroups=10, Dimensions=10, Number=10^4)
res1 <- SAGMMFit(sims$X, sims$Y)
res2 <- SAGMMFit(sims$X, ngroups=5)
```
Index

gainFactors, 2
generateSimData, 2

SAGMM, 3
SAGMM-package (SAGMM), 3
SAGMMFit, 3