Package ‘SCGLR’

September 28, 2018

Type Package

Title Supervised Component Generalized Linear Regression

Description An extension of the Fisher Scoring Algorithm to combine PLS regression with GLM estimation in the multivariate context. Covariates can also be grouped in themes.

Version 3.0

Date 2018-09-24

License CeCILL-2 | GPL-2

URL https://scnext.github.io/SCGLR, https://github.com/SCnext/SCGLR,
https://cran.r-project.org/package=SCGLR

BugReports https://github.com/SCnext/SCGLR/issues

Depends R (>= 3.0.0)

Imports Matrix,Formula,expm,graphics,ggplot2,grid,pROC,ade4

Suggests parallel,gridExtra

LazyData yes

RoxygenNote 6.1.0

Encoding UTF-8

NeedsCompilation no

Author Guillaume Cornu [aut, cre] (<https://orcid.org/0000-0002-7523-5176>),
Frederic Mortier [aut],
Catherine Trottier [aut],
Xavier Bry [aut],
Sylvie Gourlet-Fleury [dct] (<https://orcid.org/0000-0002-1136-4307>,
http://www.coforchange.eu/),
Claude Garcia [dct] (<https://orcid.org/0000-0002-7351-0226>,
http://www.cofortips.org/)

Maintainer Guillaume Cornu <gcornu@cirad.fr>

Repository CRAN

Date/Publication 2018-09-28 09:30:03 UTC
R topics documented:

- critConvergence ... 2
- customize ... 3
- genus .. 4
- methodSR .. 5
- multivariateFormula ... 6
- pairs.SCGLR .. 7
- plot.SCGLR .. 7
- plot.SCGLRTHM .. 9
- scglr .. 9
- scglrCrossVal ... 11
- scglrTheme ... 13
- scglrThemeBackward ... 15
- screeplot.SCGLR ... 17
- screeplot.SCGLRTHM 17

Index .. 18

critConvergence

Auxiliary function for controlling SCGLR fitting

Description

Auxiliary function for `scglr` fitting used to construct a convergence control argument.

Usage

```r
critConvergence(tol = 1e-06, maxit = 50)
```

Arguments

- **tol**
 positive convergence threshold.

- **maxit**
 integer, maximum number of iterations.

Value

a list containing elements named as the arguments.

Plot customization

Description

Parameters used to choose what to plot and how. These parameters are given to `plot.SCGLR` and `pairs.SCGLR`.

Details

Parameter name can be abbreviated (e.g. `pred.col` will be understood as `predictors.color`).
Options can be set globally using `optionsHBplotSCGLRBI`. It will then provide default values that can be further overriden by giving explicit parameter value.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Type (default value)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>title</td>
<td>string (NULL)</td>
<td>Main title of plot (override built-in).</td>
</tr>
<tr>
<td>labels.auto</td>
<td>logical (TRUE)</td>
<td>Should covariate or predictor labels be aligned with arrows.</td>
</tr>
<tr>
<td>labels.offset</td>
<td>numeric (0.01)</td>
<td>Offset by which labels should be moved from tip of arrows.</td>
</tr>
<tr>
<td>labels.size</td>
<td>numeric (1)</td>
<td>Relative size for labels. Use it to globally alter label size.</td>
</tr>
<tr>
<td>expand</td>
<td>numeric (1)</td>
<td>Expand factor for windows size. Use it for example to make room for clipped labels.</td>
</tr>
<tr>
<td>threshold</td>
<td>numeric</td>
<td>Should we draw observations.</td>
</tr>
<tr>
<td>observations.size</td>
<td>numeric (1)</td>
<td>Point size.</td>
</tr>
<tr>
<td>observations.color</td>
<td>character ("black")</td>
<td>Point color.</td>
</tr>
<tr>
<td>observations.alpha</td>
<td>numeric (1)</td>
<td>Point transparency.</td>
</tr>
<tr>
<td>observations.factor</td>
<td>logical (FALSE)</td>
<td>Paint observations according to factor (specify factor).</td>
</tr>
<tr>
<td>predictors</td>
<td>logical or array of characters (TRUE)</td>
<td>Should we draw predictors and optionally which one (TRUE means all).</td>
</tr>
<tr>
<td>predictors.color</td>
<td>string ("red")</td>
<td>Base color used to draw predictors.</td>
</tr>
<tr>
<td>predictors.alpha</td>
<td>numeric (1)</td>
<td>Overall transparency for predictors (0 is transparent, 1 is opaque).</td>
</tr>
<tr>
<td>predictors.arrows</td>
<td>logical (TRUE)</td>
<td>Should we draw arrows for predictors.</td>
</tr>
<tr>
<td>predictors.arrows.color</td>
<td>string (predictors.color)</td>
<td>Specific color for predictor arrows.</td>
</tr>
<tr>
<td>predictors.arrows.alpha</td>
<td>numeric (predictors.alpha)</td>
<td>Transparency for predictor arrows.</td>
</tr>
<tr>
<td>predictors.labels</td>
<td>logical (TRUE)</td>
<td>Should we draw labels for predictors.</td>
</tr>
<tr>
<td>predictors.labels.color</td>
<td>string (predictors.color)</td>
<td>Specific color for predictor labels.</td>
</tr>
<tr>
<td>predictors.labels.alpha</td>
<td>numeric (predictors.alpha)</td>
<td>Transparency for predictor labels.</td>
</tr>
<tr>
<td>predictors.labels.size</td>
<td>numeric (labels.size)</td>
<td>Specific size for predictor labels.</td>
</tr>
<tr>
<td>predictors.labels.auto</td>
<td>logical (labels.auto)</td>
<td>Should predictor labels be aligned with arrows.</td>
</tr>
<tr>
<td>covariates</td>
<td>logical or array of characters (TRUE)</td>
<td>Should we draw covariates and optionally which one (TRUE means all).</td>
</tr>
<tr>
<td>covariates.color</td>
<td>string ("black")</td>
<td>Base color used to draw covariates.</td>
</tr>
<tr>
<td>covariates.alpha</td>
<td>numeric (1)</td>
<td>Overall transparency for covariates (0 is transparent, 1 is opaque).</td>
</tr>
<tr>
<td>covariates.arrows</td>
<td>logical (TRUE)</td>
<td>Should we draw arrows for covariates.</td>
</tr>
<tr>
<td>covariates.arrows.color</td>
<td>string (covariates.color)</td>
<td>Specific color for covariate arrows.</td>
</tr>
<tr>
<td>covariates.arrows.alpha</td>
<td>numeric (covariates.alpha)</td>
<td>Transparency for covariate arrows.</td>
</tr>
<tr>
<td>covariates.labels</td>
<td>logical (TRUE)</td>
<td>Should we draw labels for covariates.</td>
</tr>
<tr>
<td>covariates.labels.color</td>
<td>string (covariates.color)</td>
<td>Specific color for predictor labels.</td>
</tr>
<tr>
<td>covariates.labels.alpha</td>
<td>numeric (covariates.alpha)</td>
<td>Transparency for covariate labels.</td>
</tr>
<tr>
<td>covariates.labels.size</td>
<td>numeric (labels.size)</td>
<td>Specific size for covariate labels.</td>
</tr>
</tbody>
</table>
genus

Sample dataset of abundance of genera in tropical moist forest

Description

Genus gives the abundance of 27 common tree genera in the tropical moist forest of the Congo-Basin and 40 geo-referenced environmental variables on one thousand 8 by 8 km plots (observations). Each plot’s data was obtained by aggregating the data measured on a variable number of previously sampled 0.5 ha sub-plots. Geo-referenced environmental variables were used to describe the physical factors as well as vegetation characteristics. 14 physical factors were used pertaining the description of topography, geology and rainfall of each plot. Vegetation is characterized through 16-days enhanced vegetation index (EVI) data.

Format

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gen1 to gen27</td>
<td>abundance of the 27 common genera.</td>
</tr>
<tr>
<td>altitude</td>
<td>above-sea level in meters.</td>
</tr>
<tr>
<td>pluvio_yr</td>
<td>mean annual rainfall.</td>
</tr>
<tr>
<td>forest</td>
<td>classified into seven classes.</td>
</tr>
<tr>
<td>pluvio_1 to pluvio_12</td>
<td>monthly rainfalls.</td>
</tr>
</tbody>
</table>
methodSR

geology 5-level geological substrate.
evi_1 to evi_23 16-days enhanced vegetation indexes.
lon and lat position of the plot centers.
surface sampled area.

Note
The use of this dataset for publication must make reference to the CoForChange project.

Author(s)
CoForChange project

References

<table>
<thead>
<tr>
<th>methodSR</th>
<th>Regularization criterion types</th>
</tr>
</thead>
</table>

Description
Regularization criterion types

Usage

methodSR(phi = "vpi", l = 1, s = 1/2, maxiter = 1000, epsilon = 1e-06, bailout = 10)

Arguments

phi character string describing structura relevance used in the regularization process. Allowed values are "vpi" for Variable Powered Inertia and "cv" for Component Variance. Default to "vpi".
l is an integer argument (>1) tuning the importance of variable bundle locality.
s is a numeric argument (in [0,1]) tuning the strength of structural relevance with respect to goodness of fit.
maxiter integer for maximum number of iterations of SR function
epsilon positive convergence threshold
bailout integer argument
multivariateFormula
Formula construction

Description

Helper function for building multivariate scglr formula.

NOTE: Interactions involving factors are not allowed for now. For interactions between two quantitative variables, use `I(x*y)` as usual.

Usage

```r
multivariateFormula(Y, X = NULL, ..., A = NULL, additional = NULL, data = NULL)
```

Arguments

- `Y` a formula or a vector of character containing the names of the dependent variables.
- `X` a vector of character containing the names of the covariates (X) involved in the components or a list of it.
- `...` additional groups of covariates (theme)
- `A` a vector of character containing the names of the additional covariates.
- `additional` logical (if A is not provided, should we consider last X to be additional covariates)
- `data` a data frame against which formula's variable will be checked

Details

If `Y` is given as a formula, groups of covariates must be separated by `|` (pipes). To declare last group as additional covariates, one can use `||` (double pipes) as last group separator or set `additional` parameter as `TRUE`.

Value

an object of class `MultivariateFormula`, `Formula`, `formula` with additional attributes: `Y`, `X`, `A`, `X_vars`, `Y_vars`, `A_vars`, `XA_vars`, `YXA_vars`, `additional`

Examples

```r
## Not run:
# build multivariate formula
ny <- c("y1","y2")
nx1 <- c("x11","x12")
nx2 <- c("x21","x22")
nadd <- c("add1","add2")
form <- multivariateFormula(ny,nx1,nx2,nadd,additional=T)
```
pairs.SCGLR

Pairwise scglr plot on components

Description

Pairwise scglr plot on components

Usage

S3 method for class 'SCGLR'
pairs(x, ..., nrow = NULL, ncol = NULL,
components = NULL)

Arguments

- **x**: object of class 'SCGLR', usually a result of running `scglr`.
- **...**: optionally, further arguments forwarded to `plot.SCGLR`.
- **nrow**: number of rows of the grid layout.
- **ncol**: number of columns of the grid layout.
- **components**: vector of integers selecting components to plot (default is all components).

See Also

For pairs application see examples in `plot.SCGLR`

plot.SCGLR

SCGLR generic plot

Description

SCGLR generic plot

Usage

S3 method for class 'SCGLR'
plot(x, ..., style =getOption("plot.SCGLR"),
plane = c(1, 2))
Arguments

x an object from SCGLR class.

... optional arguments (see customize).

style named list of values used to customize the plot (see customize)

plane a size-2 vector (or comma separated string) indicating which components are
 plotted (eg: c(1,2) or "1,2").

Value

an object of class ggplot.

Examples

Not run:
library(SCGLR)

load sample data
data(genus)

get variable names from dataset
n <- names(genus)
y <- n[grep("^gen",n)] # Y <- names that begins with "gen"
x <- n[-grep("^gen",n)] # X <- remaining names

remove "geology" and "surface" from nx
as surface is offset and we want to use geology as additional covariate
nx <- nx[!nx%in%c("geology","surface")]

build multivariate formula
we also add "lat*lon" as computed covariate
form <- multivariateFormula(ny,c(nx,"I(lat*lon)"),c("geology"))

define family
fam <- rep("poisson",length(ny))

genus.scglr <- scglr(formula=form,data = genus,family=fam, K=4,
 offset=genus$surface)

summary(genus.scglr)

barplot(genus.scglr)

plot(genus.scglr)

plot(genus.scglr, predictors=TRUE, factor=TRUE)

pairs(genus.scglr)

End(Not run)
plot.SCGLRTHM

SCGLRTHM generic plot

Description

SCGLR generic plot for themes

Usage

```r
## S3 method for class 'SCGLRTHM'
plot(x, ...)
```

Arguments

- `x`: an object from SCGLRTHM class.
- `...`: see SCGLR plot method

Value

an object of class `ggplot`.

scglr

Function that fits the scglr model

Description

Calculates the components to predict all the dependent variables.

Usage

```r
scglr(formula, data, family, K = 1, size = NULL, weights = NULL, 
offset = NULL, subset = NULL, na.action = na.omit, crit = list(), 
method = methodSR())
```

Arguments

- `formula`: an object of class `MultivariateFormula` (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- `data`: a data frame to be modeled.
- `family`: a vector of character of the same length as the number of dependent variables: "bernoulli", "binomial", "poisson" or "gaussian" is allowed.
- `K`: number of components, default is one.
- `size`: describes the number of trials for the binomial dependent variables. A (number of statistical units * number of binomial dependent variables) matrix is expected.
weights weights on individuals (not available for now)
offset used for the poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected.
subset an optional vector specifying a subset of observations to be used in the fitting process.
na.action a function which indicates what should happen when the data contain NAs. The default is set to na.omit.
crit a list of two elements : maxit and tol, describing respectively the maximum number of iterations and the tolerance convergence criterion for the Fisher scoring algorithm. Default is set to 50 and 10e-6 respectively.
method structural relevance criterion. Object of class "method.SCGLR" built by methodSR for Structural Relevance.

Value an object of the SCGLR class.
The function summary (i.e., summary.SCGLR) can be used to obtain or print a summary of the results.
The generic accessor functions coef can be used to extract various useful features of the value returned by scglr.
An object of class "SCGLR" is a list containing following components:

- u matrix of size (number of regressors * number of components), contains the component-loadings, i.e. the coefficients of the regressors in the linear combination giving each component.
- comp matrix of size (number of statistical units * number of components) having the components as column vectors.
- compr matrix of size (number of statistical units * number of components) having the standardized components as column vectors.
- gamma list of length number of dependant variables. Each element is a matrix of coefficients, standard errors, z-values and p-values.
- beta matrix of size (number of regressors + 1 (intercept) * number of dependent variables), contains the coefficients of the regression on the original regressors X.
- lin.pred data.frame of size (number of statistical units * number of dependent variables), the fitted linear predictor.
- xFactors data.frame containing the nominal regressors.
- xNumeric data.frame containing the quantitative regressors.
- inertia matrix of size (number of components * 2), contains the percentage and cumulative percentage of the overall regressors’ variance, captured by each component.
- logLik vector of length (number of dependent variables), gives the likelihood of the model of each y_k’s GLM on the components.
- deviance.null vector of length (number of dependent variables), gives the deviance of the null model of each y_k’s GLM on the components.
- deviance.residual vector of length (number of dependent variables), gives the deviance of the model of each y_k’s GLM on the components.
References

Examples

```r
## Not run:
library(SCGLR)

# load sample data
data(genus)

# get variable names from dataset
n <- names(genus)
ny <- n[grep("gen",n)]  # Y <- names that begins with "gen"
rx <- n[-grep("gen",n)]  # X <- remaining names

# remove "geology" and "surface" from rx
# as surface is offset and we want to use geology as additional covariate
rx <- rx[-nx%in%c("geology","surface")]

# build multivariate formula
# we also add "lat*lon" as computed covariate
form <- multivariateFormula(ny,c(ny,"I(lat*lon)",A=c("geology")))

# define family
fam <- rep("poisson",length(ny))

genus.scglr <- scglr(formula=form, data = genus, family=fam, K=4,
                   offset=genus$surface)

summary(genus.scglr)

## End(Not run)
```

scglrCrossVal
Function that fits and selects the number of component by cross-validation.

Description
Function that fits and selects the number of component by cross-validation.

Usage
```r
scglrCrossVal(formula, data, family, K = 1, nfolds = 5,
              type = "mspe", size = NULL, offset = NULL, subset = NULL,
              na.action = na.omit, crit = list(), method = methodSR(),
              mc.cores = 1)
```
scglrCrossVal

Arguments

- **formula**: an object of class "Formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data**: the data frame to be modeled.
- **family**: a vector of character of length q specifying the distributions of the responses. Bernoulli, binomial, poisson and gaussian are allowed.
- **K**: number of components, default is one.
- **nfolds**: number of folds, default is 5. Although nfolds can be as large as the sample size (leave-one-out CV), it is not recommended for large datasets.
- **type**: loss function to use for cross-validation. Currently six options are available depending on whether the responses are of the same distribution family. If the responses are all bernoulli distributed, then the prediction performance may be measured through the area under the ROC curve: type = "auc". In any other case one can choose among the following five options ("likelihood","aic","aicc","bic","mspe").
- **size**: specifies the number of trials of the binomial variables included in the model. A (n*qb) matrix is expected for qb binomial variables.
- **offset**: used for the poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected.
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process.
- **na.action**: a function which indicates what should happen when the data contain NAs. The default is set to the na.omit.
- **crit**: a list of two elements : maxit and tol, describing respectively the maximum number of iterations and the tolerance convergence criterion for the Fisher scoring algorithm. Default is set to 50 and 10e-6 respectively.
- **method**: Regularization criterion type. Object of class "method.SCGLR" built by methodSR for Structural Relevance.
- **mc.cores**: max number of cores to use when using parallelization (Not available in windows yet and strongly discouraged if in interactive mode).

Value

A matrix containing the criterion values for each response (rows) and each number of components (columns).

References

Examples

```r
## Not run:
library(SCGLR)

data(genus)

n <- names(genus)
ny <- n[grepl("^gen\",n)]  # Y <- names that begins with "gen"
x <- n[-grepl("^gen\",n)]  # X <- remaining names

# remove "geology" and "surface" from nx
# as surface is offset and we want to use geology as additional covariate
nx <- nx[-match(c("geology","surface"),nx)]

# build multivariate formula
# we also add "lat*lon" as computed covariate
form <- formula(cbind(ny,cbind(nx,offset=genus$surface),A=c("geology")))

# define family
fam <- family(form)

# cross validation
genus.cv <- scglrCrossVal(formula=form, data=genus, family=fam, K=12,
                         offset=genus$surface)

# find best K
mean.crit <- colMeans(log(cv))

## End(Not run)
```

scglrTheme

Function that fits the theme model

Description

Calculates the components to predict all the dependent variables.

Usage

```r
scglrTheme(formula, data, H, family, size = NULL, weights = NULL,
           offset = NULL, subset = NULL, na.action = na.omit, crit = list(),
           method = methodSR(), st = FALSE)
```
Arguments

formula
an object of class "`MultivariateFormula`" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.

data
data frame.

H
vector of R integer. Number of components to keep for each theme

family
a vector of character of the same length as the number of dependent variables: "bernoulli", "binomial", "poisson" or "gaussian" is allowed.

size
describes the number of trials for the binomial dependent variables. A (number of statistical units * number of binomial dependent variables) matrix is expected.

weights
weights on individuals (not available for now)

offset
used for the poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected.

subset
an optional vector specifying a subset of observations to be used in the fitting process.

na.action
a function which indicates what should happen when the data contain NAs. The default is set to `na.omit`.

crit
a list of two elements : maxit and tol, describing respectively the maximum number of iterations and the tolerance convergence criterion for the Fisher scoring algorithm. Default is set to 50 and 10e-6 respectively.

method
structural relevance criterion. Object of class "method.SCGLR" built by `methodSR` for Structural Relevance.

st
logical (FALSE) theme build and fit order. TRUE means random, FALSE means sequential (T1, ..., Tr)

Details

Models for theme are specified symbolically. A model as the form response ~ terms where response is the numeric response vector and terms is a series of R themes composed of predictors. Themes are separated by "|" (pipe) and are composed. ... Y1+Y2+... ~ X11+X12+...+X1_ | X21+X22+... | ...+X1_+... | A1+A2+... See `multivariateFormula`.

Value

a list of SCGLRTHM class. Each element is a SCGLR object

Examples

```r
## Not run:
library(SCGLR)

# load sample data
data(genus)

# get variable names from dataset
n <- names(genus)
```
scglrThemeBackward

Description

Perform component selection by cross-validation backward approach

Usage

scglrThemeBackward(formula, data, H, family, size = NULL,
weights = NULL, offset = NULL, na.action = na.omit,
crit = list(), method = methodSR(), kFolds = 10, type = "mspe",
st = FALSE)

Arguments

formula an object of class "Formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.
data data frame.H vector of R integer. Number of components to keep for each theme.family a vector of character of the same length as the number of dependent variables: "bernoulli", "binomial", "poisson" or "gaussian" is allowed.size describes the number of trials for the binomial dependent variables. A (number of statistical units * number of binomial dependent variables) matrix is expected.weights weights on individuals (not available for now).offset used for the poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected.na.action a function which indicates what should happen when the data contain NAs. The default is set to na.omit.crit a list of two elements: maxit and tol, describing respectively the maximum number of iterations and the tolerance convergence criterion for the Fisher scoring algorithm. Default is set to 50 and 10e-6 respectively.
method structural relevance criterion. Object of class "method.SCGLR" built by methodSR for Structural Relevance.

k folds number of folds - default is 10. Although nfolds can be as large as the sample size (leave-one-out CV), it is not recommended for large datasets. Smallest value allowable is nfolds=2 Models for theme are specified symbolically. A model as the form response ~ terms where response is the numeric response vector and terms is a series of R themes composed of predictors. Themes are separated by "|" (pipe) and are composed.... Y1+Y2+... ~ X11+X12+...+X1_ | X21+X22+... | ...+X1_+... | A1+A2+... See multivariateFormula.

t type loss function to use for cross-validation. Currently six options are available depending on whether the responses are of the same distribution family. If the responses are all bernoulli distributed, then the prediction performance may be measured through the area under the ROC curve: type = "auc" In any other case one can choose among the following five options ("likelihood","aic","aicc","bic","mspe").

st logical (FALSE) theme build and fit order. TRUE means random, FALSE means sequential (T1, ..., Tr)

Value

a list containing the path followed along the selection process, the associated mean square predictor error and the best configuration.

Examples

```r
## Not run:
library(SCGLR)

# load sample data
data(genus)

# get variable names from dataset
n <- names(genus)
n <- n[!n%in%c("geology","surface","lon","lat","forest","altitude")]
ny <- n[grep("gen",n)]  # y <- names that begins with "gen"
xnx1 <- n[grep("evi",n)]  # x <- remaining names
nx2 <- n[-c(grep("evi",n),grep("gen",n))]

form <- multivariateFormula(ny,txn1,txn2,A=c("geology"))
fam <- rep("poisson",length(ny))
testcv <- scglrThemeBackward(form,data=genus,H=c(2,2),family=fam,offset = genus$surface,kfolds=2)
Cross-validation pathway
testcv$h_path
Plot criterion
plot(testcv$cv_path)
Best combination
testcv$h_best

## End(Not run)
```
Description

Screeplot of percent of overall X variance captured by component

Usage

```r
## S3 method for class 'SCGLR'
screepot(x, ...)
```

Arguments

- `x` object of class `SCGLR`, usually a result of running `scglr`.
- `...` optional arguments.

Value

an object of class ggplot.

See Also

For screeplot application see examples in `plot.SCGLR`.

Description

Screeplot of percent of overall X variance captured by component by theme

Usage

```r
## S3 method for class 'SCGLRTHM'
screepot(x, ...)
```

Arguments

- `x` object of class `SCGLRTHM`, usually a result of running `theme`.
- `...` optional arguments.

Value

an object of class ggplot.
Index

coeff, 10

critConvergence, 2

customize, 3, 8

Formula, 15

genus, 4

ggplot, 8, 9

methodSR, 5, 10, 12, 14, 16

MultivariateFormula, 14

multivariateFormula, 6, 14, 16

pairsSCGLR, 3, 7

plotSCGLR, 3, 7, 7, 17

plotSCGLRTHM, 9

SCGLR, 7, 9, 17

scglrCrossVal, 11

scglrTheme, 13

scglrThemeBackward, 15

screeplotSCGLR, 17

screeplotSCGLRTHM, 17

summary, 10

summarySCGLR, 10

theme, 17