Package ‘SCRIP’

November 19, 2021

Type Package
Title An Accurate Simulator for Single-Cell RNA Sequencing Data
Version 1.0.0
Date 2021-11-15
Description We provide a comprehensive scheme that is capable of simulating Single Cell RNA Sequencing data for various parameters of Biological Coefficient of Variation, bursting kinetics, differential expression (DE), cell or sample groups, cell trajectory, batch effect and other experimental designs. ‘SCRIP’ proposed and compared two frameworks with Gamma-Poisson and Beta-Gamma-Poisson models for simulating Single Cell RNA Sequencing data. Other reference is available in Zappia et al. (2017) <https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1305-0>.

License GPL-3
LazyData TRUE
Depends R (>= 4.0)
Imports splatter(>= 1.16.1), S4Vectors(>= 0.30.0), SummarizedExperiment(>= 1.22.0), SingleCellExperiment(>= 1.14.1), edgeR(>= 3.34.0), methods, stats, mgcv, knitr, BiocManager, BiocGenerics, Seurat, crayon, fitdistrplus, checkmate (>= 2.0.0)

URL https://github.com/thecailab/SCRIP
RoxygenNote 7.1.1
VignetteBuilder knitr
Encoding UTF-8
Language en-GB
Suggests rmarkdown, testthat (>= 3.0.0)
NeedsCompilation no
Author Fei Qin [aut, cre, cph]
Maintainer Fei Qin <fqin@email.sc.edu>
Repository CRAN
Date/Publication 2021-11-19 07:50:02 UTC
R topics documented:

- acinar.data
- bridge
- bringItemsForward
- getLNormFactors
- getPathOrder
- logistic
- params_acinar
- SCRIPsimBatchCellMeans
- SCRIPsimBatchEffects
- SCRIPsimBCVMMeans
- SCRIPsimDropout
- SCRIPsimGeneMeans
- SCRIPsimGroupCellMeans
- SCRIPsimGroupDE
- SCRIPsimLibSizes
- SCRIPsimPathCellMeans
- SCRIPsimPathDE
- SCRIPsimSingleCellMeans
- SCRIPsimTrueCounts
- SCRIPsimu
- simu.VEGs
- simu_cluster
- simu_DE

Index

| acinar.data | parameter files estimated from acinar.data using splatEstimate |

Description

parameter files estimated from acinar.data using splatEstimate

Usage

acinar.data

Format

parameters estimated using splatEstimate
bridge

Brownian bridge

Description
Calculate a smoothed Brownian bridge between two points. A Brownian bridge is a random walk with fixed end points.

Usage
bridge(x = 0, y = 0, N = 5, n = 100, sigma.fac = 0.8)

Arguments
- **x**
 starting value.
- **y**
 end value.
- **N**
 number of steps in random walk.
- **n**
 number of points in smoothed bridge.
- **sigma.fac**
 multiplier specifying how extreme each step can be.

Value
Vector of length n following a path from x to y.

bringItemsForward

Bring items forward

Description
Move selected items to the start of a list.

Usage
bringItemsForward(ll, items)

Arguments
- **ll**
 list to adjust item order.
- **items**
 vector of items to bring to the front. Any not in the list will be ignored.

Value
list with selected items first
getLNormFactors
Get log-normal factors

Description
Randomly generate multiplication factors from a log-normal distribution.

Usage
getLNormFactors(n.facs, sel.prob, neg.prob, fac.loc, fac.scale)

Arguments
- `n.facs`: Number of factors to generate.
- `sel.prob`: Probability that a factor will be selected to be different from 1.
- `neg.prob`: Probability that a selected factor is less than one.
- `fac.loc`: Location parameter for the log-normal distribution.
- `fac.scale`: Scale factor for the log-normal distribution.

Value
Vector containing generated factors.

getPathOrder
Get path order

Description
Identify the correct order to process paths so that preceding paths have already been simulated.

Usage
gethPathOrder(path.from)

Arguments
- `path.from`: vector giving the path endpoints that each path originates from.

Value
Vector giving the order to process paths in.
logistic

**Logistic function**

Description

Implementation of the logistic function

Usage

`logistic(x, x0, k)`

Arguments

- `x` value to apply the function to.
- `x0` midpoint parameter. Gives the centre of the function.
- `k` shape parameter. Gives the slope of the function.

Value

Value of logistic function with given parameters

params_acinar

A data frame with 1000 genes and 80 cells

Description

A data frame with 1000 genes and 80 cells

Usage

`params_acinar`

Format

A data frame with 1000 genes and 80 cells
SCRIPsimBatchCellMeans

Simulate batch means

Description

Simulate a mean for each gene in each cell incorporating batch effect factors.

Usage

```r
SCRIPsimBatchCellMeans(sim, params)
```

Arguments

- `sim` SingleCellExperiment to add batch means to.
- `params` SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated batch means.

SCRIPsimBatchEffects

Simulate batch effects

Description

Simulate batch effects. Batch effect factors for each batch are produced using `getLNormFactors` and these are added along with updated means for each batch.

Usage

```r
SCRIPsimBatchEffects(sim, params)
```

Arguments

- `sim` SingleCellExperiment to add batch effects to.
- `params` SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated batch effects.
SCRIPsimBCVMeans
Simulate BCV means

Description
Simulate means for each gene in each cell that are adjusted to follow a mean-variance trend using Biological Coefficient of Variation taken from and inverse gamma distribution.

Usage
```
SCRIPsimBCVMeans(data, sim, params)
```

Arguments
- **data**
 data are used to fit the mean-BCV trend for simulation
- **sim**
 SingleCellExperiment to add BCV means to.
- **params**
 SplatParams object with simulation parameters.

Value
SingleCellExperiment with simulated BCV means.

SCRIPsimDropout
Simulate dropout

Description
A logistic function is used to form a relationship between the expression level of a gene and the probability of dropout, giving a probability for each gene in each cell. These probabilities are used in a Bernoulli distribution to decide which counts should be dropped.

Usage
```
SCRIPsimDropout(sim, params)
```

Arguments
- **sim**
 SingleCellExperiment to add dropout to.
- **params**
 SplatParams object with simulation parameters.

Value
SingleCellExperiment with simulated dropout and observed counts.
SCRIPsimGeneMeans
Simulate gene means

Description
Simulate gene means from a gamma distribution. Also simulates outlier expression factors. Genes with an outlier factor not equal to 1 are replaced with the median mean expression multiplied by the outlier factor.

Usage
SCRIPsimGeneMeans(data, sim, params)

Arguments
- **data**: raw dataset.
- **sim**: SingleCellExperiment to add gene means to.
- **params**: SplatParams object with simulation parameters.

Value
SingleCellExperiment with simulated gene means.

SCRIPsimGroupCellMeans
Simulate Group CellMeans

Description
Simulate group cell means

Usage
SCRIPsimGroupCellMeans(sim, params)

Arguments
- **sim**: SingleCellExperiment to add cell means to.
- **params**: SplatParams object with simulation parameters.

Value
SingleCellExperiment with added cell means.
SCRIPsimGroupDE \hspace{1cm} \textit{Simulate group differential expression}

\textbf{Description}

Simulate differential expression. Differential expression factors for each group are produced using \texttt{getLNormFactors} and these are added along with updated means for each group. For paths care is taken to make sure they are simulated in the correct order.

\textbf{Usage}

\texttt{SCRIPsimGroupDE(sim, params)}

\textbf{Arguments}

- \texttt{sim} \hspace{1cm} \texttt{SingleCellExperiment} to add differential expression to.
- \texttt{params} \hspace{1cm} \texttt{splatParams} object with simulation parameters.

\textbf{Value}

\texttt{SingleCellExperiment} with simulated differential expression.

\textbf{SCRIPsimLibSizes \hspace{1cm} Simulate library sizes}

\textbf{Description}

Simulate expected library sizes. Typically a log-normal distribution is used but there is also the option to use a normal distribution. In this case any negative values are set to half the minimum non-zero value.

\textbf{Usage}

\texttt{SCRIPsimLibSizes(sim, params, libsize)}

\textbf{Arguments}

- \texttt{sim} \hspace{1cm} \texttt{SingleCellExperiment} to add library size to.
- \texttt{params} \hspace{1cm} \texttt{SplatParams} object with simulation parameters.
- \texttt{libsize} \hspace{1cm} Provide the library size directly instead of using parameters to estimate

\textbf{Value}

\texttt{SingleCellExperiment} with simulated library sizes.
SCRIPsimPathCellMeans

sim *PathCellMeans*

Description

simulate cell means for path

Usage

SCRIPsimPathCellMeans(sim, params)

Arguments

sim SingleCellExperiment to add dropout to.
params SplatParams object with simulation parameters.

Value

SingleCellExperiment with cell means for path simulation.

SCRIPsimPathDE

Sim *PathDE*

Description

simulate DE factors for path

Usage

SCRIPsimPathDE(sim, params)

Arguments

sim SingleCellExperiment to add dropout to.
params SplatParams object with simulation parameters.

Value

SingleCellExperiment with DE for path simulation.
SCRIPsimSingleCellMeans

Simulate cell means

Description

Simulate a gene by cell matrix giving the mean expression for each gene in each cell. Cells start with the mean expression for the group they belong to (when simulating groups) or cells are assigned the mean expression from a random position on the appropriate path (when simulating paths). The selected means are adjusted for each cell’s expected library size.

Usage

```r
SCRIPsimSingleCellMeans(sim, params)
```

Arguments

- `sim` SingleCellExperiment to add cell means to.
- `params` SplatParams object with simulation parameters.

Value

SingleCellExperiment with added cell means.

SCRIPsimTrueCounts

Simulate true counts

Description

Simulate a true counts matrix. Counts are simulated from a poisson distribution where each gene in each cell has its own mean based on the group (or path position), expected library size and BCV.

Usage

```r
SCRIPsimTrueCounts(sim, params)
```

Arguments

- `sim` SingleCellExperiment to add true counts to.
- `params` SplatParams object with simulation parameters.

Value

SingleCellExperiment with simulated true counts.
Description

Simulate count data for single cell RNA-sequencing using SCIRP method

Usage

SCRIPsimu(
 data,
 params,
 method = "single",
 base_allcellmeans_SC = NULL,
 pre.bcv.df = NULL,
 libsize = NULL,
 bcv.shrink = 1,
 Dropout_rate = NULL,
 mode = "GP-trendedBCV",
 de.prob = NULL,
 de.downProb = NULL,
 de.facLoc = NULL,
 de.facScale = NULL,
 path.skew = NULL,
 batch.facLoc = NULL,
 batch.facScale = NULL,
 path.nSteps = NULL,
 ...
)

Arguments

data data matrix required to fit the mean-BCV trend for simulation
params SplatParams object containing parameters for the simulation
method "single", "groups" or "paths"
base_allcellmeans_SC base mean vector provided to help setting DE analysis
pre.bcv.df BCV.df enables us to change the variation of BCV values
libsize library size can be provided directly
bcv.shrink factor to control the BCV levels
Dropout_rate factor to control the dropout rate directly
mode "GP-commonBCV", "BP-commonBCV", "BP", "BGP-commonBCV" and "BGP-trendedBCV"
de.prob the proportion of DE genes
simu.VEGs

- `de.downProb`: the proportion of down-regulated DE genes
- `de.facLoc`: DE location factor
- `de.facScale`: DE scale factor
- `path.skew`: Controls how likely cells are from the start or end point of the path
- `batch.facLoc`: DE location factor in batch
- `batch.facScale`: DE scale factor in batch
- `path.nSteps`: number of steps between the start point and end point for each path
- `...`: Other parameters

Value

SingleCellExperiment file

Examples

```r
data(params_acinar)
data(acinar.data)
sim_trend = SCRIPsimu(data=acinar.data, params=params_acinar, mode="GP-trendedBCV")
```

simu.VEGs

SCRIP simulation for clustering analysis

Description

Simulate count data for clustering analysis by preserving variably expressed genes

Usage

```r
simu.VEGs(
  counts.matrix,
  params = params,
  base_allcellmeans,
  mode = "GP-trendedBCV",
  nCells,
  nfeatures = 1000
)
```

Arguments

- `counts.matrix`: data matrix required for simulation
- `params`: SplatParams object containing parameters for the simulation
- `base_allcellmeans`: base cell means specified directly for simulating counts
- `mode`: "GP-commonBCV", "BP-commonBCV", "BP", "BGP-commonBCV" and "BGP-trendedBCV"
- `nCells`: number of cells simulated
- `nfeatures`: parameter required for FinalVariable function in Seurat package
simu_cluster

SCRIP simulation for clustering analysis with multiple cell types

Description

Simulate count data for clustering analysis by preserving variably expressed genes with multiple cell types

Usage

```
simu_cluster(expre_data, pheno_data, CTlist, mode, nfeatures, seed = 2021)
```

Arguments

- `expre_data` : data matrix required for simulation
- `pheno_data` : phenotype data information
- `CTlist` : cell types used for simulation
- `mode` : "GP-commonBCV", "BP-commonBCV", "BP", "BGP-commonBCV" and "BGP-trendedBCV"
- `nfeatures` : parameter required for FinalVariable function in Seurat package
- `seed` : seed used for simulation

Value

simulated read counts data with cell type information

simu_DE

SCRIP simulation for differential expression

Description

Simulate count data for differential expression analysis using SCRIP
Usage

```
simu_DE(
  expr_data,
  params,
  nGenes = NULL,
  nDE,
  ncells = NULL,
  FC,
  Dropout_rate = NULL,
  libsize = NULL,
  pre.bcv.df = NULL,
  bcv.shrink = 1,
  seed = 2021
)
```

Arguments

- `expre_data`: data matrix required for simulation
- `params`: SplatParams object containing parameters for the simulation
- `nGenes`: number of genes simulated
- `nDE`: number of differentially expressed genes simulated
- `ncells`: number of cells simulated
- `FC`: fold change rate simulated between two groups
- `Dropout_rate`: factor to control the dropout rate directly
- `libsize`: library size used for simulation
- `pre.bcv.df`: BCV.df enables us to change the variation of BCV values
- `bcv.shrink`: factor to control the BCV levels
- `seed`: seed for simulation

Value

SummarizedExperiment files from both groups for DE analysis and DE genes index
Index

* datasets
 acinar.data, 2
 params_acinar, 5
acinar.data, 2
bridge, 3
bringItemsForward, 3
getLNormFactors, 4, 6, 9
getPathOrder, 4
logistic, 5
params_acinar, 5
SCRIPsimBatchCellMeans, 6
SCRIPsimBatchEffects, 6
SCRIPsimBCVMeans, 7
SCRIPsimDropdownout, 7
SCRIPsimGeneMeans, 8
SCRIPsimGroupCellMeans, 8
SCRIPsimGroupDE, 9
SCRIPsimLibSizes, 9
SCRIPsimPathCellMeans, 10
SCRIPsimPathDE, 10
SCRIPsimSingleCellMeans, 11
SCRIPsimTrueCounts, 11
SCRIPsimu, 12
simu.VEGs, 13
simu_cluster, 14
simu_DE, 14