Package ‘SCpubr’

January 18, 2023

Type Package

Title Generate Publication Ready Visualizations of Single Cell Transcriptomics Data

Version 1.1.2

Description A system that provides a streamlined way of generating publication ready plots for known Single-Cell transcriptomics data in a “publication ready” format. This is, the goal is to automatically generate plots with the highest quality possible, that can be used right away or with minimal modifications for a research article.

License GPL-3

Encoding UTF-8

LazyData true

LazyDataCompression xz

Depends R (>= 4.0.0)

RoxygenNote 7.2.1

URL https://github.com/enblacar/SCpubr/,

BugReports https://github.com/enblacar/SCpubr/issues/

Suggests assertthat, circlize, colorspace, covr, ComplexHeatmap, dplyr, ggbeeswarm, ggdist, ggExtra, ggplot2 (>= 3.4.0), ggplotify, ggrastr, ggrepel, ggridges, ggsignif, graphics, magrittr, Nebulosa, patchwork, pheatmap, plyr, rlang, scales, scattermore, Seurat, tibble, tidyr, forcats, infercnv, knitr, Matrix, purrr, qpdf, rgdal, rjags, rmarkdown, stringr, svglite, ggalluvial, testthat (>= 3.0.0), viridis, UCell, AUCell, clusterProfiler, enrichplot, ggnewscale, AnnotationDbi, org.Hs.eg.db

VignetteBuilder knitr

Config/testthat/edition 3

biocViews Software, SingleCell, Visualization

NeedsCompilation no
Author Enrique Blanco-Carmona [cre, aut]
(https://orcid.org/0000-0002-1208-1691)

Maintainer Enrique Blanco-Carmona <scpubr@gmail.com>

Repository CRAN

Date/Publication 2023-01-18 12:20:02 UTC

R topics documented:

do_AlluvialPlot .. 3

do_AzimuthAnalysisPlot .. 6

do_BarPlot .. 9

do_BeeSwarmPlot .. 11

do_BoxPlot ... 15

do_CellularStatesPlot .. 19

do_ChordDiagramPlot .. 24

do_ColorPalette .. 26

do_CopyNumberVariantPlot .. 29

do_CorrelationPlot ... 32

do_DimPlot ... 34

do_DotPlot .. 39

do_EnrichmentHeatmap .. 43

do_ExpressionHeatmap .. 48

do_FeaturePlot .. 50

do_FunctionalAnnotationPlot .. 55

do_GeyserPlot .. 59

do_GroupedGOTermPlot ... 63

do_GroupwiseDEPlot ... 65

do_NebulosaPlot .. 67

do_PathwayActivityPlot .. 70

do_RidgePlot .. 74

do_TermEnrichmentPlot ... 78

do_TFActivityPlot .. 81

do_ViolinPlot ... 84

do_VolcanoPlot .. 87

human_chr_locations .. 89

state_dependencies ... 90

Index 91
do_AlluvialPlot

Generate Alluvial plots.

Description

This function is based on the ggalluvial package. It allows you to generate alluvial plots from a given Seurat object.

Usage

```r
do_AlluvialPlot(
  sample,
  first_group,
  last_group,
  middle_groups = NULL,
  colors.use = NULL,
  plot.title = NULL,
  plot.subtitle = NULL,
  plot.caption = NULL,
  font.size = 14,
  font.type = "sans",
  xlab = NULL,
  ylab = "Number of cells",
  repel = FALSE,
  fill.by = last_group,
  use_labels = FALSE,
  stratum.color = "black",
  stratum.fill = "white",
  stratum.width = 1/3,
  stratum.fill.conditional = FALSE,
  use_geom_flow = FALSE,
  alluvium.color = "white",
  flow.color = "white",
  flip = FALSE,
  label.color = "black",
  curve_type = "sigmoid",
  use_viridis = FALSE,
  viridis.color_map = "G",
  viridis_direction = -1,
  plot.grid = FALSE,
  grid.color = "grey75",
  grid.type = "dashed",
  na.value = "white",
  legend.position = "right",
  legend.title = NULL
)
```
Arguments

- **sample**: Seurat | A Seurat object, generated by CreateSeuratObject.
- **first_group**: character | Categorical metadata variable. First group of nodes of the alluvial plot.
- **last_group**: character | Categorical metadata variable. Last group of nodes of the alluvial plot.
- **middle_groups**: character | Categorical metadata variable. Vector of groups of nodes of the alluvial plot.
- **colors.use**: character | Named list of colors corresponding to the unique values in fill.by (which defaults to last_group).
- **plot.title, plot.subtitle, plot.caption**: character | Title, subtitle or caption to use in the plot.
- **font.size**: numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.
- **font.type**: character | Base font family for the plot. One of:
 - mono: Mono spaced font.
 - serif: Serif font family.
 - sans: Default font family.
- **xlab, ylab**: character | Titles for the X and Y axis.
- **repel**: logical | Whether to repel the text labels.
- **fill.by**: character | One of first_group, middle_groups (one of the values, if multiple mid_groups) or last_group. These values will be used to color the alluvium/flow.
- **use_labels**: logical | Whether to use labels instead of text for the stratum.
- **stratum.color, alluvium.color, flow.color**: character | Color for the border of the alluvium (and flow) and stratum.
- **stratum.fill**: character | Color to fill the stratum.
- **stratum.width**: logical | Width of the stratum.
- **stratum.fill.conditional**: logical | Whether to fill the stratum with the same colors as the alluvium/flow.
- **use_geom_flow**: logical | Whether to use geom_flow instead of geom_alluvium. Visual results might differ.
- **flip**: logical | Whether to invert the axis of the displayed plot.
- **label.color**: character | Color for the text labels.
- **curve_type**: character | Type of curve used in geom_alluvium. One of:
 - linear.
 - cubic.
 - quintic.
 - sine.
 - arctangent.
 - sigmoid.
 - xspline.
do_AlluvialPlot

use_viridis logical | Whether to use viridis color scales.

viridis_color_map character | A capital letter from A to H or the scale name as in scale_fill_viridis.

viridis_direction numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.

plot.grid logical | Whether to plot grid lines.

grid.color character | Color of the grid in the panels.

grid.type character | One of the possible linetype options:

- blank.
- solid.
- dashed.
- dotted.
- dotdash.
- longdashed.
- twodash.

na.value character | Color value for NA.

legend.position character | Position of the legend in the plot. One of:

- top: Top of the figure.
- bottom: Bottom of the figure.
- left: Left of the figure.
- right: Right of the figure.
- none: No legend is displayed.

legend.title character | Title for the legend.

Value

A ggplot2 object.

Examples

Check Suggests.
value <- SCpubr::check_suggests(function_name = "do_AlluvialPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://emblacar.github.io/SCpubr-book/

 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Generate a more fine-grained clustering.
sample$annotation <- ifelse(sample$seurat_clusters %in% c("0", "3"), "A", "B")

 # Compute basic sankey plot.
p <- SCpubr::do_AlluvialPlot(sample = sample,
do_AzimuthAnalysisPlot

Generate a report from a Seurat object that has been mapped to a reference using Azimuth.

Description

This function takes as input a Seurat object that has undergone reference mapping using Azimuth and generates a set of visualizations and a combined output from the results of such mapping. The user can also provide the reference object used for the mapping (if available) to produce a more complete output.

Usage

do_AzimuthAnalysisPlot(
 sample,
 annotation.labels,
 annotation.scoring,
 mapping.scoring = "mapping.score",
 annotation.cutoff = 0.75,
 mapping.cutoff = 0,
 group.by = NULL,
 ref.obj = NULL,
 ref.reduction = "ref.umap",
 raster = FALSE,
 pt.size = if (isTRUE(raster)) {
 4
 } else {
 1
 },
 raster.dpi = 2048,
 border.size = if (isTRUE(raster)) {
 1.25
 } else {
 1.5
 },
 border.color = "black",
 na.value = "grey75")
do_AzimuthAnalysisPlot

```r
font.size = 14,
font.type = "sans",
colors.use = NULL,
label = TRUE,
legend.position = "bottom",
viridis_color_map = "G",
viridis_direction = 1
)
```

Arguments

- **sample** (`Seurat`): A Seurat object, generated by `CreateSeuratObject`.
- **annotation.labels** (`character`): Metadata column that stores the inferred annotation from Azimuth.
- **annotation.scoring** (`character`): Metadata column that stores the annotation scoring from Azimuth.
- **mapping.scoring** (`character`): Metadata column that stores the mapping scoring from Azimuth.
- **annotation.cutoff** (`numeric`): Value from 0 to 1 to use as cutoff to assign the labels to the object. This is used in conjunction with mapping.cutoff.
- **mapping.cutoff** (`numeric`): Value from 0 to 1 to use as cutoff to assign the labels to the object. This is used in conjunction with annotation.cutoff.
- **group.by** (`character`): Metadata variable to group the output by. Has to be a character of factor column.
- **ref.obj** (`Seurat`): Seurat object used for reference mapping. Providing this object will add an extra plot with the UMAP of the reference and add its silhouette to the UMAP in which the original cells are showed in the context of the UMAP embedding of the reference object.
- **ref.reduction** (`character`): Name of the reduction embedding used to plot the UMAP in the reference object.
- **raster** (`logical`): Whether to raster the resulting plot. This is recommendable if plotting a lot of cells.
- **pt.size** (`numeric`): Size of the dots.
- **raster.dpi** (`numeric`): Pixel resolution for rasterized plots. Defaults to 1024. Only activates on Seurat versions higher or equal than 4.1.0.
- **border.size** (`numeric`): Width of the border of the cells.
- **border.color** (`character`): Color to use for the border of the cells.
- **na.value** (`character`): Color value for NA.
- **font.size** (`numeric`): Overall font size of the plot. All plot elements will have a size relationship with this font size.
- **font.type** (`character`): Base font family for the plot. One of:
 * `mono`: Mono spaced font.
 * `serif`: Serif font family.
do_AzimuthAnalysisPlot

- sans: Default font family.

colors.use named_vector | Named vector of valid color representations (either name of HEX codes) with as many named colors as unique values of group.by. If group.by is not provided, defaults to the unique values of Idents. If not provided, a color scale will be set by default.

label logical | Whether to plot the cluster labels in the UMAP. The cluster labels will have the same color as the cluster colors.

legend.position character | Position of the legend in the plot. One of:
- top: Top of the figure.
- bottom: Bottom of the figure.
- left: Left of the figure.
- right: Right of the figure.
- none: No legend is displayed.

viridis_color_map character | A capital letter from A to H or the scale name as in scale_fill_viridis.

viridis_direction numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.

Value

A list containing multiple plots.

Examples

```r
# Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_AzimuthAnalysisPlot", passive = TRUE)

if (isTRUE(value)){
  # Consult the full documentation in https://enblacar.github.io/SCpubr-book/
  
  # Define your Seurat object that has undergone Azimuth mapping.
  sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))
  
  # Generate an Azimuth report.
  out <- SCpubr::do_AzimuthAnalysisPlot(sample = sample,
                                       annotation.labels = "annotation",
                                       annotation.scoring = "annotation.score",
                                       font.size = 18)

} else if (isFALSE(value)){
  message("This function can not be used without its suggested packages.")
  message("Check out which ones are needed using \"SCpubr::state_dependencies\".")
}
```
do_BarPlot Create Bar Plots.

Description
Create Bar Plots.

Usage

```r
do_BarPlot(
  sample,
  group.by,
  order = TRUE,
  split.by = NULL,
  position = "stack",
  font.size = 14,
  font.type = "sans",
  legend.position = "bottom",
  legend.title = NULL,
  legend.ncol = NULL,
  legend.nrow = NULL,
  legend.byrow = FALSE,
  rotate_x_axis_labels = 45,
  xlab = NULL,
  ylab = NULL,
  colors.use = NULL,
  flip = FALSE,
  plot.title = NULL,
  plot.subtitle = NULL,
  plot.caption = NULL,
  plot.grid = TRUE,
  grid.color = "grey75",
  grid.type = "dashed"
)
```

Arguments

- **sample**
 Seurat | A Seurat object, generated by `CreateSeuratObject`.

- **group.by**
 character | Metadata column to compute the counts of. Has to be either a character or factor column.

- **order**
 logical | Whether to order the results in descending order of counts.

- **split.by**
 character | Metadata column to split the values of group.by by. If not used, defaults to the active idents.

- **position**
 character | Position function from `ggplot2`. One of:

 - **stack**: Set the bars side by side, displaying the total number of counts. Uses `position_stack`.
do_BarPlot

• fill: Set the bars on top of each other, displaying the proportion of counts from the total that each group represents. Uses position_fill.

font.size numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.

font.type character | Base font family for the plot. One of:
• mono: Mono spaced font.
• serif: Serif font family.
• sans: Default font family.

legend.position character | Position of the legend in the plot. One of:
• top: Top of the figure.
• bottom: Bottom of the figure.
• left: Left of the figure.
• right: Right of the figure.
• none: No legend is displayed.

legend.title character | Title for the legend.

legend.ncol numeric | Number of columns in the legend.

legend.nrow numeric | Number of rows in the legend.

legend.byrow logical | Whether the legend is filled by row or not.

rotate_x_axis_labels numeric | Degree to rotate the X labels. One of: 0, 45, 90.

xlab, ylab character | Titles for the X and Y axis.

colors.use named_vector | Named vector of valid color representations (either name of HEX codes) with as many named colors as unique values of group.by. If group.by is not provided, defaults to the unique values of Idents. If not provided, a color scale will be set by default.

flip logical | Whether to invert the axis of the displayed plot.

plot.title, plot.subtitle, plot.caption character | Title, subtitle or caption to use in the plot.

plot.grid logical | Whether to plot grid lines.

grid.color character | Color of the grid in the panels.

grid.type character | One of the possible linetype options:
• blank.
• solid.
• dashed.
• dotted.
• dotdash.
• longdash.
• twodash.

Value

A ggplot2 object containing a Bar plot.
Examples

Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_BarPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Basic bar plot, horizontal.
p1 <- SCpubr::do_BarPlot(sample = sample,
 group.by = "seurat_clusters",
 legend.position = "none",
 plot.title = "Number of cells per cluster")

 # Split by a second variable.
sample$modified_orig.ident <- sample(x = c("Sample_A", "Sample_B", "Sample_C"),
 size = ncol(sample),
 replace = TRUE,
 prob = c(0.2, 0.7, 0.1))

 p <- SCpubr::do_BarPlot(sample,
 group.by = "seurat_clusters",
 split.by = "modified_orig.ident",
 plot.title = "Number of cells per cluster in each sample",
 position = "stack")
}
else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using "SCpubr::state_dependencies()".")
}

do_BeeSwarmPlot BeeSwarm plot.

Description

BeeSwarm plot.

Usage

do_BeeSwarmPlot(
 sample,
 feature_to_rank,
 group.by = NULL,
Arguments

sample | `Seurat` | A Seurat object, generated by `CreateSeuratObject`.

feature_to_rank | `character` | Feature for which the cells are going to be ranked. Ideal case is that
this feature is stored as a metadata column.

group.by \(\texttt{character}\) | Metadata variable to group the output by. Has to be a character of
factor column.

assay \(\texttt{character}\) | Assay to use. Defaults to the current assay.

reduction \(\texttt{character}\) | Reduction to use. Can be the canonical ones such as "umap", "pca",
or any custom ones, such as "diffusion". If you are unsure about which re-
ductions you have, use `Seurat::Reductions(sample)`. Defaults to "umap" if
present or to the last computed reduction if the argument is not provided.

slot \(\texttt{character}\) | Data slot to use. Only one of: counts, data, scale.data. Defaults to
"data".

continuous_feature \(\texttt{logical}\) | Is the feature to rank and color for continuous? I.e: an enrichment
score.

colors.use \(\texttt{named_vector}\) | Named vector of valid color representations (either name of
HEX codes) with as many named colors as unique values of group.by. If group.by
is not provided, defaults to the unique values of Idents. If not provided, a color
scale will be set by default.

legend.title \(\texttt{character}\) | Title for the legend.

legend.type \(\texttt{character}\) | Type of legend to display. One of:
 - normal: Default legend displayed by `ggplot2`.
 - colorbar: Redefined colorbar legend, using `guide_colorbar`.
 - colorsteps: Redefined legend with colors going by range, in steps, using
 `guide_colorsteps`.

legend.position \(\texttt{character}\) | Position of the legend in the plot. One of:
 - top: Top of the figure.
 - bottom: Bottom of the figure.
 - left: Left of the figure.
 - right: Right of the figure.
 - none: No legend is displayed.

legend.framewidth, legend.tickwidth \(\texttt{numeric}\) | Width of the lines of the box in the legend.

legend.length, legend.width \(\texttt{numeric}\) | Length and width of the legend. Will adjust automatically depending
on legend side.

legend.framecolor \(\texttt{character}\) | Color of the lines of the box in the legend.

legend.tickcolor \(\texttt{character}\) | Color of the ticks of the box in the legend.

legend.ncol \(\texttt{numeric}\) | Number of columns in the legend.

legend.icon.size \(\texttt{numeric}\) | Size of the icons in legend.
do_BeeSwarmPlot

plot.title, plot.subtitle, plot.caption
 character | Title, subtitle or caption to use in the plot.

xlab, ylab
 character | Titles for the X and Y axis.

font.size
 numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.

font.type
 character | Base font family for the plot. One of:
 • mono: Mono spaced font.
 • serif: Serif font family.
 • sans: Default font family.

remove_x_axis, remove_y_axis
 logical | Remove X axis labels and ticks from the plot.

flip
 logical | Whether to invert the axis of the displayed plot.

viridis_color_map
 character | A capital letter from A to H or the scale name as in `scale_fill_viridis`.

viridis_direction
 numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.

verbose
 logical | Whether to show extra comments, warnings, etc.

raster
 logical | Whether to raster the resulting plot. This is recommendable if plotting a lot of cells.

raster.dpi
 numeric | Pixel resolution for rasterized plots. Defaults to 1024. Only activates on Seurat versions higher or equal than 4.1.0.

plot_cell_borders
 logical | Whether to plot border around cells.

border.size
 numeric | Width of the border of the cells.

border.color
 character | Color to use for the border of the cells.

pt.size
 numeric | Size of the dots.

min.cutoff, max.cutoff
 numeric | Set the min/max ends of the color scale. Any cell/group with a value lower than min.cutoff will turn into min.cutoff and any cell with a value higher than max.cutoff will turn into max.cutoff. In FeaturePlots, provide as many values as features. Use NAs to skip a feature.

Value

A ggplot2 object containing a Bee Swarm plot.

Examples

Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_BeeSwarmPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/
Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

Basic Bee Swarm plot - categorical coloring.
This will color based on the unique values of seurat_clusters.
p <- SCpubr::do_BeeSwarmPlot(sample = sample,
 feature_to_rank = "PC_1",
 group.by = "seurat_clusters",
 continuous_feature = FALSE)

Basic Bee Swarm plot - continuous coloring.
This will color based on the PC_1 values.
p <- SCpubr::do_BeeSwarmPlot(sample = sample,
 feature_to_rank = "PC_1",
 group.by = "seurat_clusters",
 continuous_feature = TRUE)

}

else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using "SCpubr::state_dependencies()".")
}

do_BoxPlot

Generate Box Plots.

Description

Generate Box Plots.

Usage

do_BoxPlot(
 sample,
 feature,
 group.by = NULL,
 split.by = NULL,
 assay = NULL,
 slot = "data",
 font.size = 14,
 font.type = "sans",
 rotate_x_axis_labels = 45,
 colors.use = NULL,
 na.value = "grey75",
 plot.title = NULL,
 plot.subtitle = NULL,
 plot.caption = NULL,
 xlab = NULL,
 ylab = NULL,
 ...)
```r
legend.title = if (is.null(split.by)) {
    if (is.null(group.by)) {

        "Groups"
    } else {
        group.by
    }
} else {
    split.by
},
legend.title.position = "top",
legend.position = if (is.null(split.by)) {
    "none"
} else {
    "bottom"
},
boxplot.line.color = "black",
outlier.color = "black",
outlier.alpha = 0.5,
boxplot.linewidth = 1,
boxplot.width = NULL,
plot.grid = TRUE,
grid.color = "grey75",
grid.type = "dashed",
flip = FALSE,
order = FALSE,
use_silhouette = FALSE,
use_test = FALSE,
comparisons = NULL,
test = "wilcox.test",
map_signif_level = TRUE
}
```

Arguments

- **sample**
 - `Seurat` | A Seurat object, generated by `CreateSeuratObject`.
- **feature**
 - character | Feature to represent.
- **group.by**
 - character | Metadata variable to group the output by. Has to be a character of factor column.
- **split.by**
 - character | Secondary metadata variable to further group (split) the output by. Has to be a character of factor column.
- **assay**
 - character | Assay to use. Defaults to the current assay.
- **slot**
 - character | Data slot to use. Only one of: counts, data, scale.data. Defaults to "data".
- **font.size**
 - numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.
font.type | character | Base font family for the plot. One of:
- mono: Mono spaced font.
- serif: Serif font family.
- sans: Default font family.

rotate_x_axis_labels | numeric | Degree to rotate the X labels. One of: 0, 45, 90.

colors.use | named_vector | Named vector of valid color representations (either name of HEX codes) with as many named colors as unique values of group.by. If group.by is not provided, defaults to the unique values of Idents. If not provided, a color scale will be set by default.

na.value | character | Color value for NA.

plot.title, plot.subtitle, plot.caption | character | Title, subtitle or caption to use in the plot.

xlab, ylab | character | Titles for the X and Y axis.

legend.title | character | Title for the legend.

legend.title.position | character | Position for the title of the legend. One of:
- top: Top of the legend.
- bottom: Bottom of the legend.
- left: Left of the legend.
- right: Right of the legend.

legend.position | character | Position of the legend in the plot. One of:
- top: Top of the figure.
- bottom: Bottom of the figure.
- left: Left of the figure.
- right: Right of the figure.
- none: No legend is displayed.

boxplot.line.color | character | Color of the borders of the boxplots if use_silhouette is FALSE.

outlier.color | character | Color of the outlier dots.

outlier.alpha | numeric | Alpha applied to the outliers.

boxplot.linewidth | numeric | Width of the lines in the boxplots. Also controls the lines of the tests applied if use_test is set to true.

boxplot.width | numeric | Width of the boxplots.

plot.grid | logical | Whether to plot grid lines.

grid.color | character | Color of the grid in the panels.

grid.type | character | One of the possible linetype options:
- blank.
- solid.
do_BoxPlot

- dashed.
- dotted.
- dotdash.
- longdash.
- twodash.

flip logical | Whether to invert the axis of the displayed plot.

order logical | Whether to order the boxplots by average values. Can not be used alongside split.by.

use_silhouette logical | Whether to color the borders of the boxplots instead of the inside area.

use_test logical | Whether to apply a statistical test to a given pair of elements. Can not be used alongside split.by.

comparisons A list of length-2 vectors. The entries in the vector are either the names of 2 values on the x-axis or the 2 integers that correspond to the index of the columns of interest.

test the name of the statistical test that is applied to the values of the 2 columns (e.g. t.test, wilcox.test etc.). If you implement a custom test make sure that it returns a list that has an entry called p.value.

map_signif_level Boolean value, if the p-value are directly written as annotation or asterisks are used instead. Alternatively one can provide a named numeric vector to create custom mappings from p-values to annotation: For example: c("***"=0.001, "**"=0.01, "+"=0.05). Alternatively, one can provide a function that takes a numeric argument (the p-value) and returns a string.

Value

A ggplot2 object.

Examples

```r
# Check Suggests.
value <- SCpubr::check_suggests(function_name = "do_BoxPlot", passive = TRUE)

if (isTRUE(value)){
  # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

  # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

  # Basic box plot.
p <- SCpubr::do_BoxPlot(sample = sample,
                          feature = "nCount_RNA")

  p

  # Use silhouette style.
p <- SCpubr::do_BoxPlot(sample = sample,
                          feature = "nCount_RNA",
                          use_silhouette = TRUE)
```


do_CellularStatesPlot

```
use_silhouette = TRUE)

# Order by mean values.
p <- SCpubr::do_BoxPlot(sample = sample,
feature = "nCount_RNA",
order = TRUE)

# Apply second grouping.
sample$orig.ident <- ifelse(sample$seurat_clusters %in% c("0", "1", "2", "3"), "A", "B")
p <- SCpubr::do_BoxPlot(sample = sample,
feature = "nCount_RNA",
split.by = "orig.ident")

# Apply statistical tests.
p <- SCpubr::do_BoxPlot(sample = sample,
feature = "nCount_RNA",
group.by = "orig.ident",
use_test = TRUE,
comparisons = list(c("A", "B")))
```

) else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using `SCpubr::state_dependencies()`.")
}

do_CellularStatesPlot
Cellular States plot.

Description

This plot aims to show the relationships between distinct enrichment scores. If 3 variables are provided, the relationship is between the Y axis and the dual X axis. If 4 variables are provided, each corner of the plot represents how enriched the cells are in that given list. How to interpret this?

In a 3-variable plot, the Y axis just means one variable. The higher the cells are in the Y axis the more enriched they are in that given variable. The X axis is a dual parameter one. Cells falling into each extreme of the axis are highly enriched for either x1 or x2, while cells falling in between are not enriched for any of the two. In a 4-variable plot, each corner shows the enrichment for one of the 4 given features. Cells will tend to locate in either of the four corners, but there will be cases of cells locating mid-way between two given corners (enriched in both features) or in the middle of the plot (not enriched for any).

Usage

```
do_CellularStatesPlot(
```
sample,
input_gene_list,
x1,
y1,
x2 = NULL,
y2 = NULL,
group.by = NULL,
colors.use = NULL,
legend.position = "bottom",
legend.icon.size = 4,
legend.ncol = NULL,
legend.nrow = NULL,
legend.byrow = FALSE,
plot.title = NULL,
plot.subtitle = NULL,
plot.caption = NULL,
font.size = 14,
font.type = "sans",
xlab = NULL,
ylab = NULL,
axis.ticks = TRUE,
axis.text = TRUE,
verbose = FALSE,
enforce_symmetry = FALSE,
plot_marginal_distributions = FALSE,
marginal.type = "density",
marginal.size = 5,
marginal.group = TRUE,
plot_cell_borders = TRUE,
plot_enrichment_scores = FALSE,
border.size = 2,
border.color = "black",
pt.size = 2,
raster = FALSE,
raster.dpi = 1024,
plot_features = FALSE,
features = NULL,
viridis_color_map = "G",
viridis_direction = 1,
nbin = 24,
ctrl = 100
)

Arguments

sample
Seurat | A Seurat object, generated by CreateSeuratObject.

input_gene_list
named_list | Named list of lists of genes to be used as input.
x1 character | A name of a list from input_gene_list. First feature in the X axis. Will go on the right side of the X axis if y2 is not provided and top-right quadrant if provided.

y1 character | A name of a list from input_gene_list. First feature on the Y axis. Will become the Y axis if y2 is not provided and bottom-right quadrant if provided.

x2 character | A name of a list from input_gene_list. Second feature on the X axis. Will go on the left side of the X axis if y2 is not provided and top-left quadrant if provided.

y2 character | A name of a list from input_gene_list. Second feature on the Y axis. Will become the bottom-left quadrant if provided.

group.by character | Metadata variable to group the output by. Has to be a character of factor column.

colors.use named_vector | Named vector of valid color representations (either name of HEX codes) with as many named colors as unique values of group.by. If group.by is not provided, defaults to the unique values of Idents. If not provided, a color scale will be set by default.

legend.position character | Position of the legend in the plot. One of:
• top: Top of the figure.
• bottom: Bottom of the figure.
• left: Left of the figure.
• right: Right of the figure.
• none: No legend is displayed.

legend.icon.size numeric | Size of the icons in legend.

legend.ncol numeric | Number of columns in the legend.

legend.nrow numeric | Number of rows in the legend.

legend.byrow logical | Whether the legend is filled by row or not.

plot.title, plot.subtitle, plot.caption character | Title, subtitle or caption to use in the plot.

font.size numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.

font.type character | Base font family for the plot. One of:
• mono: Mono spaced font.
• serif: Serif font family.
• sans: Default font family.

xlab, ylab character | Titles for the X and Y axis.

axis.ticks logical | Whether to show axis ticks.

axis.text logical | Whether to show axis text.

verbose logical | Whether to show extra comments, warnings, etc.
enforce_symmetry

logical | Whether to enforce the plot to follow a symmetry (3 variables, the X axis has 0 as center, 4 variables, all axis have the same range and the plot is squared).

plot_marginal_distributions

logical | Whether to plot marginal distributions on the figure or not.

marginal.type

character | One of:

- **density**: Compute density plots on the margins.
- **histogram**: Compute histograms on the margins.
- **boxplot**: Compute boxplot on the margins.
- **violin**: Compute violin plots on the margins.
- **densigram**: Compute densigram plots on the margins.

marginal.size

numeric | Size ratio between the main and marginal plots. A value of 5 means that the main plot is 5 times bigger than the marginal plots.

marginal.group

logical | Whether to group the marginal distribution by group.by or current identities.

plot_cell_borders

logical | Whether to plot border around cells.

plot_enrichment_scores

logical | Whether to report enrichment scores for the input lists as plots.

border.size

numeric | Width of the border of the cells.

border.color

character | Color to use for the border of the cells.

pt.size

numeric | Size of the dots.

raster

logical | Whether to raster the resulting plot. This is recommendable if plotting a lot of cells.

raster.dpi

numeric | Pixel resolution for rasterized plots. Defaults to 1024. Only activates on Seurat versions higher or equal than 4.1.0.

plot_features

logical | Whether to also report any other feature onto the primary plot.

features

character | Additional features to plot.

viridis_color_map

character | A capital letter from A to H or the scale name as in `scale_fill_viridis`.

viridis_direction

numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.

nbin

numeric | Number of bins to use in `AddModuleScore`.

ctrl

numeric | Number of genes in the control set to use in `AddModuleScore`.

Details

This plots are based on the following publications:

do_CellularStatesPlot

Value

A ggplot2 object containing a butterfly plot.

Examples

```r
# Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_CellularStatesPlot", passive = TRUE)

if (isTRUE(value)){
  # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

  # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

  # Define some gene sets to query. It has to be a named list.
gene_set <- list("A" = rownames(sample)[1:10],
                   "B" = rownames(sample)[11:20],
                   "C" = rownames(sample)[21:30],
                   "D" = rownames(sample)[31:40])

  # Using two variables: A scatter plot X vs Y.
p <- SCpubr::do_CellularStatesPlot(sample = sample,
                                  input_gene_list = gene_set,
                                  x1 = "A",
                                  y1 = "B",
                                  nbin = 1,
                                  ctrl = 10)

  p

  # Using three variables. Figure from: https://www.nature.com/articles/nature20123.
p <- SCpubr::do_CellularStatesPlot(sample = sample,
                                  input_gene_list = gene_set,
                                  x1 = "A",
                                  y1 = "B",
                                  x2 = "C",
                                  nbin = 1,
                                  ctrl = 10)

  p

  # Using four variables. Figure from: https://pubmed.ncbi.nlm.nih.gov/31327527/
p <- SCpubr::do_CellularStatesPlot(sample = sample,
                                  input_gene_list = gene_set,
                                  x1 = "A",
                                  y1 = "C",
                                  x2 = "B",
                                  y2 = "D",
                                  nbin = 1,
                                  ctrl = 10)

  p
```
do_ChordDiagramPlot

Generate a Chord diagram.

Usage

do_ChordDiagramPlot(
 sample = NULL,
 from = NULL,
 to = NULL,
 colors.from = NULL,
 colors.to = NULL,
 big.gap = 10,
 small.gap = 1,
 link.border.color = NA,
 link.border.width = 1,
 highlight_group = NULL,
 alpha.highlight = 25,
 link.sort = NULL,
 link.decreasing = TRUE,
 z_index = FALSE,
 self.link = 1,
 symmetric = FALSE,
 directional = 1,
 direction.type = c("diffHeight", "arrows"),
 link.arr.type = "big.arrow",
 scale = FALSE,
 alignment = "default",
 annotationTrack = c("grid", "axis"),
 padding_labels = 4,
 ...
)

Arguments

 sample | Seurat | A Seurat object, generated by CreateSeuratObject.
 from, to | character | Categorical metadata variable to be used as origin and end points of the interactions.
colors.from, colors.to
 named_vector | Named vector of colors corresponding to the unique values of
 "from" and "to".
big.gap numeric | Space between the groups in "from" and "to".
small.gap numeric | Space within the groups.
link.border.color
 character | Color for the border of the links. NA = no color.
link.border.width
 numeric | Width of the border line of the links.
highlight_group
 character | A value from from that will be used to highlight only the links
 coming from it.
alpha.highlight
 numeric | A value between 00 (double digits) and 99 to depict the alpha of the
 highlighted links. No transparency needs "FF"
link.sort
 pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.decreasing
 pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
z_index logical | Whether to bring the bigger links to the top.
sel_flink
 numeric | Behavior of the links. One of:
 • 1: Prevents self linking.
 • 2: Allows self linking.
symmetric
 pass to chordDiagramFromMatrix
directional
 numeric | Set the direction of the links. One of:
 • 0: Non-directional data.
 • 1: Links go from "from" to "to".
 • -1: Links go from "to" to "from".
 • 2: Links go in both directions.
direction.type
 character | How to display the directions. One of:
 • diffHeight: Sets a line at the origin of the group showing to how
 many groups and in which proportion this group is linked to.
 • arrows: Sets the connection as arrows.
 • both: Sets up both behaviors. Use as: c("diffHeight", "arrows").
link.arr.type
 character | Sets the appearance of the arrows. One of:
 • triangle: Arrow with a triangle tip at the end displayed on top of the link.
 • big.arrow: The link itself ends in a triangle shape.
scale
 logical | Whether to put all nodes the same width.
alignment
 character | How to align the diagram. One of:
 • default: Allows circlize to set up the plot as it sees fit.
 • horizontal: Sets the break between "from" and "to" groups on the hori-
 zontal axis.
do_ColorPalette

- vertical: Sets the break between "from" and "to" groups on the vertical axis.

annotationTrack

pass to chordDiagramFromMatrix or chordDiagramFromDataFrame

padding_labels numeric | Number of extra padding (white spaces) of the labels so that they do not overlap with the scales.

... For internal use only.

Value

A circlize plot.

Examples

Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_ChordDiagramPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Basic chord diagram.
sample$assignment <- ifelse(sample$seurat_clusters %in% c("0", "4", "7"), "A", "B")
sample$assignment[sample$seurat_clusters %in% c("1", "2")] <- "C"
sample$assignment[sample$seurat_clusters %in% c("10", "5")]<- "D"
sample$assignment[sample$seurat_clusters %in% c("8", "9")]<- "E"

 p <- SCpubr::do_ChordDiagramPlot(sample = sample,
 from = "seurat_clusters",
 to = "assignment")

 p
}

} else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using "SCpubr::state_dependencies()"")
}

do_ColorPalette Generate color scales based on a value.
do_ColorPalette

Description

This function is an adaptation of colortools package. As the package was removed from CRAN on 23-06-2022, this utility function came to existence in order to cover the gap. It is, on its basis, an adaptation of the package into a single function. Original code, developed by Gaston Sanchez, can be found in: https://github.com/gastonstat/colortools

Usage

```r
do_ColorPalette(
  colors.use,  # One color upon which generate the color scale. Can be a name or a HEX code.
  n = 12,      # Number of colors to include in the color wheel. Use it when all other options are FALSE, otherwise, it becomes 12.
  opposite = FALSE,  # Return the opposing color to the one provided.
  adjacent = FALSE,  # Return the adjacent colors to the one provided.
  triadic = FALSE,  # Return the triadic combination of colors to the one provided.
  split_complementary = FALSE,  # Return the split complementary combination of colors to the one provided.
  tetradic = FALSE,  # Return the tetradic combination of colors to the one provided.
  square = FALSE,  # Return the square combination of colors to the one provided.
  complete_output = FALSE,  # Runs all the previous options and returns all the outputs as a list that contains all color vectors, all plots and a combined plot with everything.
  plot = FALSE,  # Whether to also return a plot displaying the values instead of a vector with the color.
  font.size = 14,  # Overall font size of the plot. All plot elements will have a size relationship with this font size.
  font.type = "sans"  # Base font family for the plot. One of:
)
```

Arguments

- `colors.use` character | One color upon which generate the color scale. Can be a name or a HEX code.
- `n` numeric | Number of colors to include in the color wheel. Use it when all other options are FALSE, otherwise, it becomes 12.
- `opposite` logical | Return the opposing color to the one provided.
- `adjacent` logical | Return the adjacent colors to the one provided.
- `triadic` logical | Return the triadic combination of colors to the one provided.
- `split_complementary` logical | Return the split complementary combination of colors to the one provided.
- `tetradic` logical | Return the tetradic combination of colors to the one provided.
- `square` logical | Return the square combination of colors to the one provided.
- `complete_output` logical | Runs all the previous options and returns all the outputs as a list that contains all color vectors, all plots and a combined plot with everything.
- `plot` logical | Whether to also return a plot displaying the values instead of a vector with the color.
- `font.size` numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.
- `font.type` character | Base font family for the plot. One of:
• mono: Mono spaced font.
• serif: Serif font family.
• sans: Default font family.

Value
A character vector with the desired color scale.

Examples

```r
# Check Suggests.
value <- scpubr:::check_suggests(function_name = "do_ColorPalette", passive = TRUE)

if (isTRUE(value)){
  # Generate a color wheel based on a single value.
  colors <- scpubr::do_ColorPalette(colors.use = "steelblue")
  p <- scpubr::do_ColorPalette(colors.use = "steelblue",
                               plot = TRUE)

  # Generate a pair of opposite colors based on a given one.
  colors <- scpubr::do_ColorPalette(colors.use = "steelblue",
                                     opposite = TRUE)
  p <- scpubr::do_ColorPalette(colors.use = "steelblue",
                                opposite = TRUE,
                                plot = TRUE)

  # Generate a trio of adjacent colors based on a given one.
  colors <- scpubr::do_ColorPalette(colors.use = "steelblue",
                                     adjacent = TRUE)
  p <- scpubr::do_ColorPalette(colors.use = "steelblue",
                                adjacent = TRUE,
                                plot = TRUE)

  # Generate a trio of triadic colors based on a given one.
  colors <- scpubr::do_ColorPalette(colors.use = "steelblue",
                                     triadic = TRUE)
  p <- scpubr::do_ColorPalette(colors.use = "steelblue",
                                triadic = TRUE,
                                plot = TRUE)

  # Generate a trio of split complementary colors based on a given one.
  colors <- scpubr::do_ColorPalette(colors.use = "steelblue",
                                     split_complementary = TRUE)
  p <- scpubr::do_ColorPalette(colors.use = "steelblue",
                                split_complementary = TRUE,
                                plot = TRUE)

  # Generate a group of tetradic colors based on a given one.
  colors <- scpubr::do_ColorPalette(colors.use = "steelblue",
                                     tetradic = TRUE)
  p <- scpubr::do_ColorPalette(colors.use = "steelblue",
                                tetradic = TRUE,
                                plot = TRUE)
```
Generate a group of square colors based on a given one.
colors <- do_ColorPalette(colors.use = "steelblue", square = TRUE)

Generate a plot of those colors.
p <- do_ColorPalette(colors.use = "steelblue", square = TRUE, plot = TRUE)

Retrieve the output of all options.
out <- do_ColorPalette(colors.use = "steelblue", complete_output = TRUE)

Retrieve the colors.
colors <- out$colors

Retrieve the plots.
plots <- out$plots

Retrieve a combined plot with all the options.
p <- out$combined_plot

} else if (isFALSE(value)) {
 message("This function can not be used without its suggested packages.
 Check out which ones are needed using 'SCpubr::state_dependencies()'.")
}

do_CopyNumberVariantPlot

Display CNV scores from inferCNV as Feature Plots.

Description

Display CNV scores from inferCNV as Feature Plots.

Usage

do_CopyNumberVariantPlot(
sample,
infercnv_object,
chromosome_locations,
group.by = NULL,
using_metacells = FALSE,
metacell_mapping = NULL,
chromosome_focus = NULL,
legend.type = "colorbar",
legend.position = "bottom",
legend.length = 20,
legend.width = 1,
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.framecolor = "grey50"),
```r
legend.tickcolor = "white",
font.size = 14,
pt.size = 1,
font.type = "sans",
border.size = 2,
border.color = "black",
rotate_x_axis_labels = 45,
plot_cell_borders = TRUE,
enforce_symmetry = TRUE,
legend.title = NULL,
na.value = "grey75",
viridis_color_map = "G",
viridis_direction = 1,
verbose = FALSE,
min.cutoff = NULL,
max.cutoff = NULL
)

Arguments

- **sample** • *Seurat* | A Seurat object, generated by `CreateSeuratObject`.
- **infercnv_object** • *infercnv* | Output inferCNV object run on the same Seurat object.
- **chromosome_locations** • *tibble* | Tibble containing the chromosome regions to use. Can be obtained using `utils::data("human_chr_locations", package = "SCpubr")`.
- **group.by** • *character* | Metadata variable to group the output by. Has to be a character of factor column.
- **using_metacells** • *logical* | Whether inferCNV was run using metacells or not.
- **metacell_mapping** • *named_vector* | Vector or cell - metacell mapping.
- **chromosome_focus** • *character* | Region stating which chromosome to plot. Eg: 1p, 19q. NULL will plot all regions.
- **legend.type** • *character* | Type of legend to display. One of:
  - `normal`: Default legend displayed by `ggplot2`.
  - `colorbar`: Redefined colorbar legend, using `guide_colorbar`.
  - `colorsteps`: Redefined legend with colors going by range, in steps, using `guide_colorsteps`.
- **legend.position** • *character* | Position of the legend in the plot. One of:
  - `top`: Top of the figure.
  - `bottom`: Bottom of the figure.
  - `left`: Left of the figure.
  - `right`: Right of the figure.
```
Value

A list containing Feature Plots for different chromosome regions and corresponding dot plots by groups.
Examples

Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_CopyNumberVariantPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/
 # This function expects that you have run inferCNV on your
 # own and you have access to the output object.
 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Define your inferCNV object.
infercnv_object <- readRDS(system.file("extdata/infercnv_object_example.rds", package = "SCpubr"))

 # Get human chromosome locations.
 chromosome_locations = SCpubr::human_chr_locations

 # Compute for a single chromosome.
 out <- SCpubr::do_CopyNumberVariantPlot(sample = sample,
 infercnv_object = infercnv_object,
 using_metacells = FALSE,
 chromosome_locations = chromosome_locations,
 chromosome_focus = "1")

 # Retrieve the UMAP for 1p region.
 out$'1p_umap'
 # Retrieve the dot plot for 1p region.
 out$'1p_dotplot'
} else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using "SCpubr::state_dependencies()")
}

do_CorrelationPlot Create correlation matrix heatmaps.

Description

Create correlation matrix heatmaps.

Usage

do_CorrelationPlot(
do_CorrelationPlot

```r
do_CorrelationPlot(sample,
    mode = "hvg",
    assay = NULL,
    group.by = NULL,
    column_title = "",
    row_title = "",
    cluster_cols = TRUE,
    cluster_rows = TRUE,
    legend.title = "Pearson coef.",
    row_names_rot = 0,
    column_names_rot = 0,
    viridis_color_map = "G",
    viridis_direction = 1,
    cell_size = 8,
    na.value = "grey75",
    legend.position = "bottom",
    legend.length = 75,
    legend.width = 5,
    legend.framecolor = "black"
)
```

Arguments

- `sample`
 A Seurat object, generated by `CreateSeuratObject`.
 - `mode`
 Different types of correlation matrices can be computed. Right now, the only possible value is "hvg", standing for Highly Variable Genes. The sample is subset for the HVG and the data is re-scaled. Scale data is used for the correlation.
 - `assay`
 Assay to use. Defaults to the current assay.
 - `group.by`
 Metadata variable to group the output by. Has to be a character of factor column.
 - `column_title`
 Title for the columns of the heatmaps. Only works with single heatmaps.
 - `row_title`
 Title for the rows of the heatmaps. Only works with single heatmaps.
 - `cluster_cols`
 Cluster the columns or rows of the heatmaps.
 - `cluster_rows`
 Cluster the rows or rows of the heatmaps.
 - `legend.title`
 Title for the legend.
 - `row_names_rot`
 Degree in which to rotate the row labels.
 - `column_names_rot`
 Degree in which to rotate the column labels.
 - `viridis_color_map`
 A capital letter from A to H or the scale name as in `scale_fill_viridis`.
 - `viridis_direction`
 Either 1 or -1. Controls how the gradient of viridis scale is formed.
 - `cell_size`
 Size of each cell in the heatmap.
do_DimPlot

Wrapper for DimPlot.

Description

Wrapper for DimPlot.

na.value character | Color value for NA.
legend.position character | Position of the legend in the plot. One of:
 • top: Top of the figure.
 • bottom: Bottom of the figure.
 • left: Left of the figure.
 • right: Right of the figure.
 • none: No legend is displayed.
legend.length, legend.width numeric | Length and width of the legend. Will adjust automatically depending on legend side.
legend.framecolor character | Color of the lines of the box in the legend.

Value

A ComplexHeatmap object.

Examples

Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_CorrelationPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/
 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))
 # Default values.
p <- SCpubr::do_CorrelationPlot(sample = sample)
p
} else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using `SCpubr::state_dependencies()`.")
}
do_DimPlot

Usage

do_DimPlot(
 sample,
 reduction = NULL,
 group.by = NULL,
 split.by = NULL,
 colors.use = NULL,
 shuffle = TRUE,
 order = NULL,
 pt.size = 1,
 label = FALSE,
 label.color = "white",
 label.size = 4,
 label.box = TRUE,
 repel = FALSE,
 cells.highlight = NULL,
 idents.highlight = NULL,
 idents.keep = NULL,
 sizes.highlight = 1,
 ncol = NULL,
 plot.title = NULL,
 plot.subtitle = NULL,
 plot.caption = NULL,
 legend.title = NULL,
 legend.position = "bottom",
 legend.title.position = "top",
 legend.ncol = NULL,
 legend.nrow = NULL,
 legend.icon.size = 4,
 legend.byrow = FALSE,
 raster = FALSE,
 raster.dpi = 1024,
 dims = c(1, 2),
 font.size = 14,
 font.type = "sans",
 na.value = "grey75",
 plot_cell_borders = TRUE,
 border.size = 2,
 border.color = "black",
 plot_marginal_distributions = FALSE,
 marginal.type = "density",
 marginal.size = 5,
 marginal.group = TRUE,
 plot.axes = FALSE,
 plot_density_contour = FALSE,
 contour.position = "bottom",
 contour.color = "grey90",
 contour.lineend = "butt",
)
contour.linejoin = "round",
contour_expand_axes = 0.25
)

Arguments

sample Seurat | A Seurat object, generated by CreateSeuratObject.
reduction character | Reduction to use. Can be the canonical ones such as "umap", "pca", or any custom ones, such as "diffusion". If you are unsure about which reductions you have, use Seurat::Reductions(sample). Defaults to "umap" if present or to the last computed reduction if the argument is not provided.
group.by character | Metadata variable to group the output by. Has to be a character of factor column.
split.by character | Secondary metadata variable to further group (split) the output by. Has to be a character of factor column.
colors.use named_vector | Named vector of valid color representations (either name of HEX codes) with as many named colors as unique values of group.by. If group.by is not provided, defaults to the unique values of Idents. If not provided, a color scale will be set by default.
shuffle logical | Whether to shuffle the cells or not, so that they are not plotted cluster-wise. Recommended.
order character | Vector of identities to be plotted. Either one with all identities or just some, which will be plotted last.
pt.size numeric | Size of the dots.
label logical | Whether to plot the cluster labels in the UMAP. The cluster labels will have the same color as the cluster colors.
label.color character | Color of the labels in the plot.
label.size numeric | Size of the labels in the plot.
label.box logical | Whether to plot the plot labels as geom_text (FALSE) or geom_label (TRUE).
repel logical | Whether to repel the text labels.
cells.highlight, idents.highlight character | Vector of cells/identities to focus into. The identities have to much those in Seurat::Idents(sample). The rest of the cells will be grayed out. Both parameters can be used at the same time.
idents.keep character | Vector of identities to keep. This will effectively set the rest of the cells that do not match the identities provided to NA, therefore coloring them according to na.value parameter.
sizes.highlight numeric | Point size of highlighted cells using cells.highlight parameter.
ncol numeric | Number of columns used in the arrangement of the output plot using "split.by" parameter.
plot.title, plot.subtitle, plot.caption character | Title, subtitle or caption to use in the plot.
legend.title character | Title for the legend.

legend.position character | Position of the legend in the plot. One of:
• top: Top of the figure.
• bottom: Bottom of the figure.
• left: Left of the figure.
• right: Right of the figure.
• none: No legend is displayed.

legend.title.position character | Position for the title of the legend. One of:
• top: Top of the legend.
• bottom: Bottom of the legend.
• left: Left of the legend.
• right: Right of the legend.

legend.ncol numeric | Number of columns in the legend.

legend.nrow numeric | Number of rows in the legend.

legend.icon.size numeric | Size of the icons in legend.

legend.byrow logical | Whether the legend is filled by row or not.

raster logical | Whether to raster the resulting plot. This is recommendable if plotting a lot of cells.

raster.dpi numeric | Pixel resolution for rasterized plots. Defaults to 1024. Only activates on Seurat versions higher or equal than 4.1.0.

dims numeric | Vector of 2 numerics indicating the dimensions to plot out of the selected reduction. Defaults to c(1, 2) if not specified.

font.size numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.

font.type character | Base font family for the plot. One of:
• mono: Mono spaced font.
• serif: Serif font family.
• sans: Default font family.

na.value character | Color value for NA.

plot_cell_borders logical | Whether to plot border around cells.

border.size numeric | Width of the border of the cells.

border.color character | Color to use for the border of the cells.

plot_marginal_distributions logical | Whether to plot marginal distributions on the figure or not.

marginal.type character | One of:
• density: Compute density plots on the margins.
• histogram: Compute histograms on the margins.
• boxplot: Compute boxplot on the margins.
• violin: Compute violin plots on the margins.
• densigram: Compute densigram plots on the margins.

marginal.size numeric | Size ratio between the main and marginal plots. A value of 5 means that the main plot is 5 times bigger than the marginal plots.

marginal.group logical | Whether to group the marginal distribution by group.by or current identities.

plot.axes logical | Whether to plot axes or not.

plot_density_contour logical | Whether to plot density contours in the UMAP.

contour.position character | Whether to plot density contours on top or at the bottom of the visualization layers, thus overlapping the clusters/cells or not.

contour.color character | Color of the density lines.

contour.lineend character | Line end style (round, butt, square).

contour.linejoin character | Line join style (round, mitre, bevel).

contour_expand_axes numeric | To make the contours fit the plot, the limits of the X and Y axis are expanding a given percentage from the min and max values for each axis. This controls such percentage.

Value

A ggplot2 object containing a DimPlot.

Examples

Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_DimPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Basic DimPlot.
p <- SCpubr::do_DimPlot(sample = sample)

 # Restrict the amount of identities displayed.
p <- SCpubr::do_DimPlot(sample = sample,
 idents.keep = c("1", "3", "5"))

 # Group by another variable rather than `Seurat::Idsents(sample)`
do_DotPlot

This function is a wrapper for DotPlot. It provides most of its functionalities while adding extra. You can

Description

This function is a wrapper for DotPlot. It provides most of its functionalities while adding extra. You can

Usage

do_DotPlot(
 sample,
 features,
 assay = NULL,
 group.by = NULL,
 split.by = NULL,
 legend.type = "colorbar",
 legend.position = "bottom",
 legend.framewidth = 0.5,
 legend.tickwidth = 0.5,
 legend.length = 20,
 legend.width = 1,
 legend.framecolor = "grey50",
 legend.tickcolor = "white",
 dot.scale = 6,
 colors.use = c("#1BFFFF25", "#2E3192"),
 plot.title = NULL,
)
plot.subtitle = NULL,
plot.caption = NULL,
xlab = NULL,
ylab = NULL,
font.size = 14,
font.type = "sans",
cluster.idents = FALSE,
flip = FALSE,
rotate_x_axis_labels = 45,
scale.by = "size",
use_viridis = FALSE,
viridis_color_map = "G",
viridis_direction = -1,
na.value = "grey75",
dot.border = TRUE,
plot.grid = TRUE,
grid.color = "grey75",
grid.type = "dashed"
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample</td>
<td>Seurat</td>
</tr>
<tr>
<td>features</td>
<td>character</td>
</tr>
<tr>
<td>assay</td>
<td>character</td>
</tr>
<tr>
<td>group.by</td>
<td>character</td>
</tr>
<tr>
<td>split.by</td>
<td>character</td>
</tr>
<tr>
<td>legend.type</td>
<td>character</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>legend.position</td>
<td>character</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>legend.framewidth, legend.tickwidth</td>
<td>numeric</td>
</tr>
<tr>
<td>legend.length, legend.width</td>
<td>numeric</td>
</tr>
</tbody>
</table>
do_DotPlot

legend.framecolor
character | Color of the lines of the box in the legend.

legend.tickcolor
character | Color of the ticks of the box in the legend.

dot.scale
numeric | Scale the size of the dots.

colors.use
character | Two colors if split.by is not set, which will define a gradient. As many numbers as unique values in split.by, if set, which each own will define its own gradient. Defaults to predefined color scales if not provided.

plot.title, plot.subtitle, plot.caption
character | Title, subtitle or caption to use in the plot.

xlab, ylab
character | Titles for the X and Y axis.

font.size
numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.

font.type
character | Base font family for the plot. One of:
• mono: Mono spaced font.
• serif: Serif font family.
• sans: Default font family.

cluster.idents
logical | Whether to cluster the identities based on the expression of the features.

flip
logical | Whether to invert the axis of the displayed plot.

rotate_x_axis_labels
numeric | Degree to rotate the X labels. One of: 0, 45, 90.

scale.by
character | How to scale the size of the dots. One of:
• radius: use radius aesthetic.
• size: use size aesthetic.

use_viridis
logical | Whether to use viridis color scales.

viridis_color_map
character | A capital letter from A to H or the scale name as in scale_fill_viridis.

viridis_direction
numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.

na.value
character | Color value for NA.

dot_border
logical | Whether to plot a border around dots.

plot.grid
logical | Whether to plot grid lines.

grid.color
character | Color of the grid in the panels.

grid.type
character | One of the possible linetype options:
• blank.
• solid.
• dashed.
• dotted.
• dotdash.
• longdash.
• twodash.
do_DotPlot

Value

A ggplot2 object containing a Dot Plot.

Examples

Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_DotPlot", passive = TRUE)

if (isTRUE(value)){
 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Basic Dot plot.
p <- SCpubr::do_DotPlot(sample = sample,
 features = "EPC1")

 # Querying multiple features.
genesis <- rownames(sample)[1:14]
p <- SCpubr::do_DotPlot(sample = sample,
 features = genesis)

 # Inverting the axes.
p <- SCpubr::do_DotPlot(sample = sample,
 features = genes,
 cluster.idents = TRUE,
 plot.title = "Clustered",
 flip = TRUE)

 # Modifying default colors.
 # Two colors to generate a gradient.
p <- SCpubr::do_DotPlot(sample = sample,
 features = genes,
 colors.use = c("#001219", "#e9d8a6"))

 # Querying multiple features as a named list - splitting by each item in list.
 # Genes have to be unique.
genesis <- list("Naive CD4+ T" = rownames(sample)[1:2],
 "EPC1+ Mono" = rownames(sample)[3:4],
 "Memory CD4+" = rownames(sample)[5],
 "B" = rownames(sample)[6],
 "CD8+ T" = rownames(sample)[7],
 "FCGR3A+ Mono" = rownames(sample)[8:9],
 "NK" = rownames(sample)[10:11],
 "DC" = rownames(sample)[12:13],
 "Platelet" = rownames(sample)[14])

 p <- SCpubr::do_DotPlot(sample = sample,
 features = genes)

 # Clustering the identities.
p <- SCpubr::do_DotPlot(sample = sample,
do_EnrichmentHeatmap

features = genes,
cluster.idents = TRUE,
plot.title = "Clustered")

} else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using `SCpubr::state_dependencies()`.")
}

do_EnrichmentHeatmap Create enrichment scores heatmaps.

Description

This function computes the enrichment scores for the cells using `AddModuleScore` and then aggregates the scores by the metadata variables provided by the user and displays it as a heatmap, computed by `Heatmap`.

Usage

do_EnrichmentHeatmap(
 sample,
 input_gene_list,
 assay = NULL,
 slot = NULL,
 reduction = NULL,
 group.by = NULL,
 verbose = FALSE,
 flip = FALSE,
 cluster.cols = FALSE,
 cluster.rows = FALSE,
 row_names_rot = 0,
 column_names_rot = 45,
 cell_size = 8,
 na.value = "grey75",
 legend.position = "bottom",
 use.viridis = TRUE,
 viridis.color_map = "G",
 viridis.direction = 1,
 heatmap.legend.length = 75,
 heatmap.legend.width = 5,
 heatmap.legend.framecolor = "black",
 legend.width = 1,
 legend.length = 20,
 legend.framewidth = 1.5,
 legend.tickwidth = 1.5,
 legend.framecolor = "grey50",
 legend.tickcolor = "white",
)
legend.type = "colorbar",
font.size = 14,
font.type = "sans",
rotate_x_axis_labels = 45,
enforce_symmetry = FALSE,
heatmap_gap = 0.5,
row_names_side = "right",
row_title_side = "left",
row_title_rot = 90,
column_title = NULL,
row_title = NULL,
nbin = 24,
ctrl = 100,
flavor = "Seurat",
legend.title = if (flavor != "AUCell") {
 "Enrichment"
} else {
 "AUC"
},
ncores = 1,
storeRanks = TRUE,
min.cutoff = NULL,
max.cutoff = NULL,
plot_FeaturePlots = FALSE,
plot_GeyserPlots = FALSE,
plot_BeeSwarmPlots = FALSE,
plot_BoxPlots = FALSE,
plot_ViolinPlots = FALSE,
pt.size = 1,
plot_cell_borders = TRUE,
border.size = 2,
geyser_order_by_mean = TRUE,
geyser_scale_type = "continuous",
boxplot_order_by_mean = TRUE,
vViolin_plot_boxplot = TRUE,
vViolin_boxplot_width = 0.2,
return_object = FALSE,
return_matrix = FALSE
}

Arguments

sample | Seurat | A Seurat object, generated by CreateSeuratObject.
input_gene_list | named_list | Named list of lists of genes to be used as input.
assay | character | Assay to use. Defaults to the current assay.
slot | character | Data slot to use. Only one of: counts, data, scale.data. Defaults to "data".
do_EnrichmentHeatmap

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduction</td>
<td><code>character</code></td>
</tr>
<tr>
<td>group.by</td>
<td><code>character</code></td>
</tr>
<tr>
<td>verbose</td>
<td><code>logical</code></td>
</tr>
<tr>
<td>flip</td>
<td><code>logical</code></td>
</tr>
<tr>
<td>cluster.cols</td>
<td><code>logical</code></td>
</tr>
<tr>
<td>cluster.rows</td>
<td><code>logical</code></td>
</tr>
<tr>
<td>row.names_rot</td>
<td><code>numeric</code></td>
</tr>
<tr>
<td>column.names_rot</td>
<td><code>numeric</code></td>
</tr>
<tr>
<td>cell.size</td>
<td><code>numeric</code></td>
</tr>
<tr>
<td>na.value</td>
<td><code>character</code></td>
</tr>
</tbody>
</table>
| **legend.position** | `character` | Position of the legend in the plot. One of:
 - **top**: Top of the figure.
 - **bottom**: Bottom of the figure.
 - **left**: Left of the figure.
 - **right**: Right of the figure.
 - **none**: No legend is displayed. |
| **use_viridis** | `logical` | Whether to use viridis color scales. |
| **viridis.color_map** | `character` | A capital letter from A to H or the scale name as in `scale_fill_viridis`. |
| **viridis.direction** | `numeric` | Either 1 or -1. Controls how the gradient of viridis scale is formed. |
| **heatmap.legend.length**, **heatmap.legend.width** | `numeric` | Width and length of the legend in the heatmap. |
| **heatmap.legend.framecolor** | `character` | Color of the edges and ticks of the legend in the heatmap. |
| **legend.length**, **legend.width** | `numeric` | Length and width of the legend. Will adjust automatically depending on legend side. |
| **legend.framewidth**, **legend.tickwidth** | `numeric` | Length and width of the legend. Will adjust automatically depending on legend side. |
| **legend.framecolor** | `character` | Color of the lines of the box in the legend. |
| **legend.tickcolor** | `character` | Color of the ticks of the box in the legend. |
| **legend.type** | `character` | Type of legend to display. One of:
 - **normal**: Default legend displayed by `ggplot2`. |
• colorbar: Redefined colorbar legend, using `guide_colorbar`.
 • colorsteps: Redefined legend with colors going by range, in steps, using `guide_colorsteps`.

`font.size` numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.

`font.type` character | Base font family for the plot. One of:
 • mono: Mono spaced font.
 • serif: Serif font family.
 • sans: Default font family.

`rotate_x_axis_labels` numeric | Degree to rotate the X labels. One of: 0, 45, 90.

`enforce_symmetry` logical | Whether the geyser and feature plot has a symmetrical color scale.

`heatmap_gap` numeric | Gap in cm between heatmaps.

`row_names_side` character | Side to put the row names. Either left or right.

`row_title_side` character | Side to put the row titles. Either left or right.

`row_title_rot` numeric | Degree in which to rotate the row titles.

`column_title` character | Title for the columns of the heatmaps. Only works with single heatmaps.

`row_title` character | Title for the rows of the heatmaps. Only works with single heatmaps.

`nbin` numeric | Number of bins to use in `AddModuleScore`.

`ctrl` numeric | Number of genes in the control set to use in `AddModuleScore`.

`flavor` character | One of: Seurat, UCell. Compute the enrichment scores using `AddModuleScore` or `AddModuleScore_UCell`.

`legend.title` character | Title for the legend.

`ncores` numeric | Number of cores used to run UCell scoring.

`storeRanks` logical | Whether to store the ranks for faster UCell scoring computations. Might require large amounts of RAM.

`min.cutoff, max.cutoff` numeric | Set the min/max ends of the color scale. Any cell/group with a value lower than min.cutoff will turn into min.cutoff and any cell with a value higher than max.cutoff will turn into max.cutoff. In FeaturePlots, provide as many values as features. Use NAs to skip a feature.

`plot_FeaturePlots, plot_GeyserPlots, plot_BeeSwarmPlots, plot_BoxPlots, plot_ViolinPlots` logical | Compute extra visualizations for each of the gene lists.

`pt.size` numeric | Size of the dots.

`plot_cell_borders` logical | Whether to plot border around cells.

`border.size` numeric | Width of the border of the cells.

`geyser_order_by_mean, boxplot_order_by_mean` logical | Whether to order the X axis by the mean of the values.
do_EnrichmentHeatmap

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>geyser_scale_type</td>
<td>character</td>
<td>Type of scale to use. Either "continuous" or "categorical."</td>
</tr>
<tr>
<td>violin_plot_boxplot</td>
<td>logical</td>
<td>Whether to plot the boxplots inside the violin plots.</td>
</tr>
<tr>
<td>violin_boxplot_width</td>
<td>numeric</td>
<td>Width of the boxplots in the violin plots.</td>
</tr>
<tr>
<td>return_object</td>
<td>logical</td>
<td>Return the Seurat object with the enrichment scores stored.</td>
</tr>
<tr>
<td>return_matrix</td>
<td>logical</td>
<td>Return the enrichment matrix used for the heatmaps for each value in group.by.</td>
</tr>
</tbody>
</table>

Value

A ComplexHeatmap object.

Examples

```r
# Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_EnrichmentHeatmap", passive = TRUE)

if (isTRUE(value)){
  # Consult the Full documentation in https://enblacar.github.io/SCpubr-book/
  # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

  # Genes have to be unique.
genesis <- list("Naive CD4+ T" = rownames(sample)[1:2],
                 "EPC1+ Mono" = rownames(sample)[3:4],
                 "Memory CD4+" = rownames(sample)[5],
                 "B" = rownames(sample)[6],
                 "CD8+ T" = rownames(sample)[7],
                 "FCGR3A+ Mono" = rownames(sample)[8:9],
                 "NK" = rownames(sample)[10:11],
                 "DC" = rownames(sample)[12:13],
                 "Platelet" = rownames(sample)[14])

  # Default parameters.
p <- SCpubr::do_EnrichmentHeatmap(sample = sample,
                                     input_gene_list = genes,
                                     nbin = 1,
                                     ctrl = 10)

p
} else if (isFALSE(value)){
  message("This function can not be used without its suggested packages.")
  message("Check out which ones are needed using `SCpubr::state_dependencies()`.")
}
```
do_ExpressionHeatmap
Create heatmaps of averaged expression by groups.

Description
This function generates a heatmap with averaged expression values by the unique groups of the metadata variables provided by the user.

Usage
```r
do_ExpressionHeatmap(
  sample,  
  features,  
  group.by = NULL,  
  assay = NULL,  
  slot = "data",  
  flip = FALSE,  
  column_title = NULL,  
  row_title = NULL,  
  cluster_cols = FALSE,  
  cluster_rows = FALSE,  
  legend.title = "Avg. Expression",  
  row_names_rot = 0,  
  column_names_rot = 45,  
  cell_size = 8,  
  na.value = "grey75",  
  legend.position = "bottom",  
  use_viridis = TRUE,  
  viridis_color_map = "G",  
  viridis_direction = 1,  
  heatmap.legend.length = 75,  
  heatmap.legend.width = 5,  
  heatmap.legend.framecolor = "black",  
  rotate_x_axis_labels = 45,  
  enforce_symmetry = FALSE,  
  heatmap_gap = 0.5,  
  row_names_side = "right",  
  row_title_side = "left",  
  row_title_rot = 90,  
  min.cutoff = NULL,  
  max.cutoff = NULL
)
```

Arguments
- **sample**
 Seurat | A Seurat object, generated by `CreateSeuratObject`.
- **features**
 character | Features to represent.
group.by character | Metadata variable to group the output by. Has to be a character of factor column.
assay character | Assay to use. Defaults to the current assay.
slot character | Data slot to use. Only one of: counts, data, scale.data. Defaults to "data".
flip logical | Whether to invert the axis of the displayed plot.
column_title character | Title for the columns of the heatmaps. Only works with single heatmaps.
row_title character | Title for the rows of the heatmaps. Only works with single heatmaps.
cluster.cols logical | Cluster the columns or rows of the heatmaps.
cluster.rows logical | Cluster the rows or rows of the heatmaps.
legend.title character | Title for the legend.
row_names_rot numeric | Degree in which to rotate the row labels.
column_names_rot numeric | Degree in which to rotate the column labels.
cell.size numeric | Size of each cell in the heatmap.
na.value character | Color value for NA.
legend.position character | Position of the legend in the plot. One of:
 • top: Top of the figure.
 • bottom: Bottom of the figure.
 • left: Left of the figure.
 • right: Right of the figure.
 • none: No legend is displayed.
use_viridis logical | Whether to use viridis color scales.
viridis_color_map character | A capital letter from A to H or the scale name as in `scale_fill_viridis`.
viridis_direction numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.
heatmap.legend.length, heatmap.legend.width numeric | Width and length of the legend in the heatmap.
heatmap.legend.framecolor character | Color of the edges and ticks of the legend in the heatmap.
rotate_x_axis_labels numeric | Degree to rotate the X labels. One of: 0, 45, 90.
enforce_symmetry logical | Return a symmetrical plot axes-wise or continuous color scale-wise, when applicable.
heatmap_gap numeric | Gap in cm between heatmaps.
row_names_side character | Side to put the row names. Either left or right.
row_title_side character | Side to put the row titles Either left or right.
do_FeaturePlot

Wrapper for FeaturePlot.

Description

Wrapper for FeaturePlot.

Usage

do_FeaturePlot(
 sample,
 features,
 assay = NULL,
 row_title_rot numeric | Degree in which to rotate the row titles.
 min.cutoff, max.cutoff numeric | Set the min/max ends of the color scale. Any cell/group with a value lower than min.cutoff will turn into min.cutoff and any cell with a value higher than max.cutoff will turn into max.cutoff. In FeaturePlots, provide as many values as features. Use NAs to skip a feature.

Value

A ComplexHeatmap object.

Examples

Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_ExpressionHeatmap", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/
 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Define list of genes.
genesis <- rownames(sample)[1:10]

 # Default parameters.
p <- SCpubr::do_ExpressionHeatmap(sample = sample,
 features = genes,
 viridis_direction = -1)
} else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using \'SCpubr::state_dependencies()\'.")
}
do_FeaturePlot

reduction = NULL,
slot = NULL,
order = FALSE,
split.by = NULL,
split.by.idents = NULL,
cells.highlight = NULL,
idents.highlight = NULL,
dims = c(1, 2),
enforce_symmetry = FALSE,
pt.size = 1,
font.size = 14,
font.type = "sans",
legend.title = NULL,
legend.type = "colorbar",
legend.position = "bottom",
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.length = 20,
legend.width = 1,
legend.framecolor = "grey50",
legend.tickcolor = "white",
plot.title = NULL,
plot.subtitle = NULL,
plot.caption = NULL,
individual.titles = NULL,
individual.subtitles = NULL,
individual.captions = NULL,
ncol = NULL,
viridis_color_map = "G",
viridis_direction = 1,
raster = FALSE,
raster.dpi = 1024,
plot_cell_borders = TRUE,
border.size = 2,
border.color = "black",
na.value = "grey75",
verbose = TRUE,
plot.axes = FALSE,
min.cutoff = rep(NA, length(features)),
max.cutoff = rep(NA, length(features)),
plot_density_contour = FALSE,
contour.position = "bottom",
contour.color = "grey90",
contour.lineend = "butt",
contour.linejoin = "round",
contour_expand_axes = 0.25,
label = FALSE,
label.color = "black",
do_FeaturePlot

label.size = 4
)

Arguments

sample | Seurat | A Seurat object, generated by CreateSeuratObject.
features | character | Features to represent.
assay | character | Assay to use. Defaults to the current assay.
reduction | character | Reduction to use. Can be the canonical ones such as "umap", "pca", or any custom ones, such as "diffusion". If you are unsure about which reductions you have, use Seurat::Reductions(sample). Defaults to "umap" if present or to the last computed reduction if the argument is not provided.
slot | character | Data slot to use. Only one of: counts, data, scale.data. Defaults to "data".
order | logical | Whether to order the cells based on expression.
split.by | character | Secondary metadata variable to further group (split) the output by. Has to be a character of factor column.
split.by.idents | character | Vector of identities to plot. The gradient scale will also be subset to only the values of such identities.
cells.highlight, idents.highlight | character | Vector of cells/identities to focus into. The identities have to much those in Seurat::Idents(sample) The rest of the cells will be grayed out. Both parameters can be used at the same time.
dims | numeric | Vector of 2 numerics indicating the dimensions to plot out of the selected reduction. Defaults to c(1, 2) if not specified.
enforce_symmetry | logical | Return a symmetrical plot axes-wise or continuous color scale-wise, when applicable.
pt.size | numeric | Size of the dots.
font.size | numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.
font.type | character | Base font family for the plot. One of:
 • mono: Mono spaced font.
 • serif: Serif font family.
 • sans: Default font family.
legend.title | character | Title for the legend.
legend.type | character | Type of legend to display. One of:
 • normal: Default legend displayed by ggplot2.
 • colorbar: Redefined colorbar legend, using guide_colorbar.
 • colorsteps: Redefined legend with colors going by range, in steps, using guide_colorsteps.
legend.position | character | Position of the legend in the plot. One of:
• top: Top of the figure.
• bottom: Bottom of the figure.
• left: Left of the figure.
• right: Right of the figure.
• none: No legend is displayed.

legend.framewidth, legend.tickwidth
numeric | Width of the lines of the box in the legend.

legend.length, legend.width
numeric | Length and width of the legend. Will adjust automatically depending on legend side.

legend.framecolor
character | Color of the lines of the box in the legend.

legend.tickcolor
character | Color of the ticks of the box in the legend.

plot.title, plot.subtitle, plot.caption
character | Title, subtitle or caption to use in the plot.

individual.titles, individual.subtitles, individual.captions
character | Titles or subtitles. for each feature if needed. Either NULL or a vector of equal length of features.

ncol numeric | Number of columns used in the arrangement of the output plot using "split.by" parameter.

viridis_color_map
character | A capital letter from A to H or the scale name as in scale_fill_viridis.

viridis_direction
numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.

raster logical | Whether to raster the resulting plot. This is recommendable if plotting a lot of cells.

raster.dpi numeric | Pixel resolution for rasterized plots. Defaults to 1024. Only activates on Seurat versions higher or equal than 4.1.0.

plot_cell_borders
logical | Whether to plot border around cells.

border.size numeric | Width of the border of the cells.

border.color character | Color to use for the border of the cells.

na.value character | Color value for NA.

verbose logical | Whether to show extra comments, warnings, etc.

plot.axes logical | Whether to plot axes or not.

min.cutoff, max.cutoff
numeric | Set the min/max ends of the color scale. Any cell/group with a value lower than min.cutoff will turn into min.cutoff and any cell with a value higher than max.cutoff will turn into max.cutoff. In FeaturePlots, provide as many values as features. Use NAs to skip a feature.

plot_density_contour
logical | Whether to plot density contours in the UMAP.
do_FeaturePlot

contour.position character | Whether to plot density contours on top or at the bottom of the visualization layers, thus overlapping the clusters/cells or not.
contour.color character | Color of the density lines.
contour.lineend character | Line end style (round, butt, square).
contour.linejoin character | Line join style (round, mitre, bevel).
contour_expand_axes numeric | To make the contours fit the plot, the limits of the X and Y axis are expanding a given percentage from the min and max values for each axis. This controls such percentage.
label logical | Whether to plot the cluster labels in the UMAP. The cluster labels will have the same color as the cluster colors.
label.color character | Color of the labels in the plot.
label.size numeric | Size of the labels in the plot.

Value

A ggplot2 object containing a Feature Plot.

Examples

```r
# Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_FeaturePlot", passive = TRUE)

if (isTRUE(value)){
  # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

  # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

  # Regular FeaturePlot.
p <- SCpubr::do_FeaturePlot(sample = sample,
                              features = "nCount_RNA")

  # FeaturePlot with a subset of identities
  # (in Seurat::Idents(sample)) maintaining the original UMAP shape.
  idents.use <- levels(sample)[!(levels(sample) %in% c("2", "5", "8"))]
p <- SCpubr::do_FeaturePlot(sample = sample,
                             idents.highlight = idents.use,
                             features = c("EPC1"))

  # Splitting the FeaturePlot by a variable and
  # maintaining the color scale and the UMAP shape.
p <- SCpubr::do_FeaturePlot(sample = sample,
                             features = "EPC1",
                             split.by = "seurat_clusters")
```
do_FunctionalAnnotationPlot

Compute functional annotation plots using GO or KEGG ontologies

Description

Compute functional annotation plots using GO or KEGG ontologies

Usage

```
do_FunctionalAnnotationPlot(
  genes,
  org.db,
  organism = "hsa",
  database = "GO",
  GO_ontology = "BP",
  min.overlap = if (length(genes) <= 4) {
    1
  } else {
    3
  },
  p.adjust.cutoff = 0.05,
  pAdjustMethod = "BH",
  minGSSize = 10,
  maxGSSize = 500,
  cluster_cols = TRUE,
  cluster_rows = TRUE,
  cell_size = 8,
  heatmap_gap = 0.5,
  font.size = 10,
  font.type = "sans",
  rotate_x_axis_labels = 45,
  xlab = NULL,
  ylab = NULL,
  plot.title = NULL,
  plot.subtitle = NULL,
  plot.caption = NULL,
  plot.grid = TRUE,
  grid.color = "grey75",
  grid.type = "dashed",
  flip = TRUE,
)```
do_FunctionalAnnotationPlot

    legend.type = "colorbar",
    legend.position = "bottom",
    legend.framewidth = 0.5,
    legend.tickwidth = 0.5,
    legend.length = 20,
    legend.width = 1,
    legend.framecolor = "grey50",
    legend.tickcolor = "white",
    heatmap.legend.length = 75,
    heatmap.legend.width = 5,
    heatmap.legend.framecolor = "black",
    viridis_color_map = "G",
    viridis_direction = -1,
    showCategory = 30,
    nWords = 4,
    nCluster = 5
)

Arguments

genes | character  | Vector of gene symbols to query for functional annotation.
org.db | OrgDB      | Database object to use for the query.
organism | character | Supported KEGG organism.
database | character | Database to run the analysis on. One of:
    • GO.
    • KEGG.
GO_ontology | character | GO ontology to use. One of:
    • BP: For Biological Process.
    • MF: For Molecular Function.
    • CC: For Cellular Component.
min.overlap | numeric    | Filter the output result to the terms which are supported by this many genes.
p.adjust.cutoff | numeric    | Significance cutoff used to filter non-significant terms.
pAdjustMethod | character | Method to adjust for multiple testing. One of:
    • holm.
    • hochberg.
    • hommel.
    • bonferroni.
    • BH.
    • BY.
    • fdr.
    • none.
minGSSize | numeric    | Minimal size of genes annotated by Ontology term for testing.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>maxGSSize</code></td>
<td>numeric</td>
<td>Maximal size of genes annotated for testing.</td>
</tr>
<tr>
<td><code>cluster_cols</code></td>
<td>logical</td>
<td>Cluster the columns or rows of the heatmaps.</td>
</tr>
<tr>
<td><code>cluster_rows</code></td>
<td>logical</td>
<td>Cluster the rows or rows of the heatmaps.</td>
</tr>
<tr>
<td><code>cell_size</code></td>
<td>numeric</td>
<td>Size of each cell in the heatmap.</td>
</tr>
<tr>
<td><code>heatmap_gap</code></td>
<td>numeric</td>
<td>Gap in cm between heatmaps.</td>
</tr>
<tr>
<td><code>font.size</code></td>
<td>numeric</td>
<td>Overall font size of the plot. All plot elements will have a size relationship with this font size.</td>
</tr>
<tr>
<td><code>font.type</code></td>
<td>character</td>
<td>Base font family for the plot. One of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mono: Mono spaced font.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• serif: Serif font family.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sans: Default font family.</td>
</tr>
<tr>
<td><code>rotate_x_axis_labels</code></td>
<td>numeric</td>
<td>Degree to rotate the X labels. One of: 0, 45, 90.</td>
</tr>
<tr>
<td><code>xlab, ylab</code></td>
<td>character</td>
<td>Titles for the X and Y axis.</td>
</tr>
<tr>
<td><code>plot.title, plot.subtitle, plot.caption</code></td>
<td>character</td>
<td>Title, subtitle or caption to use in the plot.</td>
</tr>
<tr>
<td><code>plot.grid</code></td>
<td>logical</td>
<td>Whether to plot grid lines.</td>
</tr>
<tr>
<td><code>grid.color</code></td>
<td>character</td>
<td>Color of the grid in the panels.</td>
</tr>
<tr>
<td><code>grid.type</code></td>
<td>character</td>
<td>One of the possible linetype options:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• blank.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• solid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• dashed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• dotted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• dotdash.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• longdash.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• twodash.</td>
</tr>
<tr>
<td><code>flip</code></td>
<td>logical</td>
<td>Whether to invert the axis of the displayed plot.</td>
</tr>
<tr>
<td><code>legend.type</code></td>
<td>character</td>
<td>Type of legend to display. One of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• normal: Default legend displayed by ggplot2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• colorbar: Redefined colorbar legend, using guide_colorbar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• colorsteps: Redefined legend with colors going by range, in steps, using guide_colorsteps.</td>
</tr>
<tr>
<td><code>legend.position</code></td>
<td>character</td>
<td>Position of the legend in the plot. One of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• top: Top of the figure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• bottom: Bottom of the figure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• left: Left of the figure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• right: Right of the figure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• none: No legend is displayed.</td>
</tr>
<tr>
<td><code>legend.framewidth, legend.tickwidth</code></td>
<td>numeric</td>
<td>Width of the lines of the box in the legend.</td>
</tr>
</tbody>
</table>
do_FunctionalAnnotationPlot

legend.length, legend.width
numeric | Length and width of the legend. Will adjust automatically depending on legend side.

legend.framecolor
color | Color of the lines of the box in the legend.

legend.tickcolor
color | Color of the ticks of the box in the legend.

heatmap.legend.length, heatmap.legend.width
numeric | Width and length of the legend in the heatmap.

heatmap.legend.framecolor
color | Color of the edges and ticks of the legend in the heatmap.

viridis_color_map
color | A capital letter from A to H or the scale name as in scale_fill_viridis.

viridis_direction
numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.

showCategory numeric | Number of enriched terms to display in the output tree plot.

nWords numeric | The number of words in the cluster tags in the tree plot.

nCluster numeric | The number of clusters to group the resulting terms in the tree plot. Suggested value is above 2, as two can lead to some errors.

Value

A list containing a heatmap of the presence/absence of the genes in the enriched term, as well as a bar plot, dot plot and tree plot of the enriched terms.

Examples

# Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_FunctionalAnnotationPlot", passive = TRUE)

if (isTRUE(value)){
  # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

  # Need to load this library or equivalent.
  suppressMessages(library("org.Hs.eg.db"))

  # Define list of genes to query.
  genes.use <- c("CCR7", "CD14", "LYZ",
                 "S100A4", "MS4A1",
                 "MS4A7", "GNLY", "NKG7", "FCER1A",
                 "CST3", "PPBP")

  # Compute the grouped GO terms.
  out <- SCpubr::do_FunctionalAnnotationPlot(genes = genes.use,
                                              org.db = org.Hs.eg.db)
}

} else if (isFALSE(value)){
  message("This function can not be used without its suggested packages.")
A Geyser plot is a custom plot in which we plot continuous values on the Y axis grouped by a categorical value in the X. This is plotted as a dot plot, jittered so that the dots span all the way to the other groups. On top of this, the mean and .66 and .95 of the data is plotted, depicting the overall distribution of the dots. The cells can, then, be colored by a continuous variable (same as Y axis or different) or a categorical one (same as X axis or different).

Usage

```r
do_GeyserPlot(sample, features, assay = NULL, slot = "data", group.by = NULL, split.by = NULL, enforce_symmetry = FALSE, scale_type = "continuous", order_by_mean = TRUE, plot_cell_borders = TRUE, jitter = 0.45, pt.size = 1, border.size = 2, border.color = "black", legend.position = "bottom", legend.width = 1, legend.length = 20, legend.framewidth = 0.5, legend.tickwidth = 0.5, legend.framecolor = "grey50", legend.tickcolor = "white", legend.type = "colorbar", font.size = 14, font.type = "sans", rotate_x_axis_labels = 45, viridis_color_map = "G", viridis_direction = 1, colors.use = NULL, na.value = "grey75")
```
do_GeyserPlot

legend.ncol = NULL,
legend.nrow = NULL,
legend.icon.size = 4,
legend.byrow = FALSE,
legend.title = NULL,
plot.title = NULL,
plot.subtitle = NULL,
plot.caption = NULL,
xlab = "Groups",
ylab = feature,
flip = FALSE,
min.cutoff = NULL,
max.cutoff = NULL
)

Arguments

sample Seurat | A Seurat object, generated by CreateSeuratObject.
features character | Features to represent.
assay character | Assay to use. Defaults to the current assay.
slot character | Data slot to use. Only one of: counts, data, scale.data. Defaults to "data".
group.by character | Metadata variable to group the output by. Has to be a character of factor column.
split.by character | Secondary metadata variable to further group (split) the output by. Has to be a character of factor column.
enforce_symmetry logical | Return a symmetrical plot axes-wise or continuous color scale-wise, when applicable.
scale_type character | Type of color scale to use. One of:
  • categorical: Use a categorical color scale based on the values of "group.by".
  • continuous: Use a continuous color scale based on the values of "feature".
order_by_mean logical | Whether to order the groups by the mean of the data (highest to lowest).
plot_cell_borders logical | Whether to plot border around cells.
jitter numeric | Amount of jitter in the plot along the X axis. The lower the value, the more compacted the dots are.
pt.size numeric | Size of the dots.
border.size numeric | Width of the border of the cells.
border.color character | Color to use for the border of the cells.
legend.position character | Position of the legend in the plot. One of:
  • top: Top of the figure.
• bottom: Bottom of the figure.
• left: Left of the figure.
• right: Right of the figure.
• none: No legend is displayed.

legend.length, legend.width
numeric | Length and width of the legend. Will adjust automatically depending on legend side.

legend.framewidth, legend.tickwidth
numeric | Width of the lines of the box in the legend.

legend.framecolor
character | Color of the lines of the box in the legend.

legend.tickcolor
character | Color of the ticks of the box in the legend.

legend.type
character | Type of legend to display. One of:
• normal: Default legend displayed by ggplot2.
• colorbar: Redefined colorbar legend, using guide_colorbar.
• colorsteps: Redefined legend with colors going by range, in steps, using guide_colorsteps.

font.size
numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.

font.type
character | Base font family for the plot. One of:
• mono: Mono spaced font.
• serif: Serif font family.
• sans: Default font family.

rotate_x_axis_labels
numeric | Degree to rotate the X labels. One of: 0, 45, 90.

viridis_color_map
character | A capital letter from A to H or the scale name as in scale_fill_viridis.

viridis_direction
numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.

colors.use
character | Named vector of colors to use. Has to match the unique values of group.by when scale_type is set to categorical.

na.value
character | Color value for NA.

legend.ncol
numeric | Number of columns in the legend.

legend.nrow
numeric | Number of rows in the legend.

legend.icon.size
numeric | Size of the icons in legend.

legend.byrow
logical | Whether the legend is filled by row or not.

legend.title
character | Title for the legend.

plot.title, plot.subtitle, plot.caption
character | Title, subtitle or caption to use in the plot.

xlab, ylab
character | Titles for the X and Y axis.
do_GeyserPlot

flip logical | Whether to invert the axis of the displayed plot.
min.cutoff, max.cutoff numeric | Set the min/max ends of the color scale. Any cell/group with a value lower than min.cutoff will turn into min.cutoff and any cell with a value higher than max.cutoff will turn into max.cutoff. In FeaturePlots, provide as many values as features. Use NAs to skip a feature.

Details

Special thanks to Christina Blume for coming up with the name of the plot.

Value

Either a plot of a list of plots, depending on the number of features provided.

Examples

```r
Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_GeyserPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Geyser plot with categorical color scale.
p <- SCpubr::do_GeyserPlot(sample = sample,
 features = "nCount_RNA",
 scale_type = "categorical")

 p

 # Geyser plot with continuous color scale.
p <- SCpubr::do_GeyserPlot(sample = sample,
 features = "nCount_RNA",
 scale_type = "continuous")

 p
}
else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using `SCpubr::state_dependencies()`.")
}
```
do_GroupedGOTermPlot   Compute an overview of the GO terms associated with the input list of genes.

Description

Compute an overview of the GO terms associated with the input list of genes.

Usage

do_GroupedGOTermPlot(
  genes,
  org.db,
  levels.use = NULL,
  GO_ontology = "BP",
  min.overlap = NULL,
  flip = TRUE,
  legend.position = "right",
  heatmap_gap = 0.5,
  cluster_rows = TRUE,
  cluster_cols = TRUE,
  cell_size = 8,
  reverse.levels = TRUE,
  colors.use = c("grey90", "#29353d"),
  rotate_x_axis_labels = 45,
  font.size = 10,
  verbose = FALSE
)

Arguments

genes character | Vector of gene symbols to query for functional annotation.
org.db OrgDB | Database object to use for the query.
levels.use numeric | Vector of numerics corresponding to the GO ontology levels to plot.
                  | If NULL will compute all recursively until there are no results.
GO_ontology character | GO ontology to use. One of:
                        • BP: For Biological Process.
                        • MF: For Molecular Function.
                        • CC: For Cellular Component.
min.overlap numeric | Filter the output result to the terms which are supported by this many genes.
flip logical | Whether to invert the axis of the displayed plot.
legend.position character | Position of the legend in the plot. One of:
do_GroupedGOTermPlot

- top: Top of the figure.
- bottom: Bottom of the figure.
- left: Left of the figure.
- right: Right of the figure.
- none: No legend is displayed.

heatmap_gap numeric | Gap in cm between heatmaps.
cluster_rows logical | Cluster the rows or rows of the heatmaps.
cluster_cols logical | Cluster the columns or rows of the heatmaps.
cell_size numeric | Size of each cell in the heatmap.
reverse.levels logical | Whether to place the higher levels first when computing the joint heatmap.
colors.use character | Vector of 2 colors to use in the heatmap. The first will correspond to the empty values and the second one to the genes present in the terms.
rotate_x_axis_labels numeric | Degree to rotate the X labels. One of: 0, 45, 90.
font.size numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.
verbose logical | Whether to show extra comments, warnings, etc.

Value

A list containing all the matrices for the respective GO levels and all the individual and combined heatmaps.

Examples

# Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_GroupedGOTermPlot", passive = TRUE)

if (isTRUE(value)){
  # Consult the Full documentation in https://enblacar.github.io/SCpubr-book/
  # Need to load this library or equivalent.
  suppressMessages(library("org.Hs.eg.db"))
  
  # Define list of genes to query.
  genes.use <- c("CCR7", "CD14", "LYZ", "S100A4", "MS4A1", "MS4A7", "GNLY", "NKG7", "FCER1A", "CST3", "PPBP")

  # Compute the grouped GO terms.
  out <- SCpubr::do_GroupedGOTermPlot(genes = genes.use,
    org.db = org.Hs.eg.db)
}
else if (isFALSE(value)){
  message("This function can not be used without its suggested packages.")
}
do_GroupwiseDEPlot

Compute a heatmap with the results of a group-wise DE analysis.

Description

Compute a heatmap with the results of a group-wise DE analysis.

Usage

do_GroupwiseDEPlot(
  sample,
  de_genes,
  group.by = NULL,
  viridis_map_pvalues = "B",
  viridis_map_logfc = "D",
  viridis_map_expression = "G",
  heatmap.legend.length = 75,
  heatmap.legend.width = 5,
  heatmap.legend.framecolor = "black",
  top_genes = 5,
  viridis_direction = -1,
  row_title_p_values = "",
  row_title_logfc = "Clusters",
  row_title_expression = if (is.null(group.by)) {
    ""
  } else {
    rep("", length(group.by))
  },
  column_title = "DE genes",
  heatmap_gap = 0.5,
  legend_gap = 1,
  assay = NULL,
  slot = "data",
  legend.position = "bottom",
  row_names_side = "right",
  row_title_side = "left",
  row_title_rot = 90,
  column_names_rot = 45,
  cell_size = 6,
  min.cutoff = NULL,
  max.cutoff = NULL
)
Arguments

- **sample**: Seurat | A Seurat object, generated by `CreateSeuratObject`.
- **de_genes**: tibble | DE genes matrix resulting of running `Seurat::FindAllMarkers()`.
- **group.by**: character | Metadata variable to group the output by. Has to be a character of factor column.
- **viridis_map_pvalues, viridis_map_logfc, viridis_map_expression**: character | Viridis color map for the heatmap of p-values, logFC or expression. One of A, B, C, D, E, F, G, H.
- **heatmap.legend.length, heatmap.legend.width**: numeric | Width and length of the legend in the heatmap.
- **heatmap.legend.framecolor**: character | Color of the edges and ticks of the legend in the heatmap.
- **top_genes**: numeric | Top N differentially expressed (DE) genes by group to retrieve.
- **viridis_direction**: numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.
- **row_title_p_values**: character | Row title for the p-value heatmap. Blank by default.
- **row_title_logfc**: character | Row title for the logfc heatmap. Clusters by default.
- **row_title_expression**: character | Vector of titles of equal length as group.by.
- **column_title**: character | Title for the columns of the heatmaps. Only works with single heatmaps.
- **heatmap_gap**: numeric | Gap in cm between heatmaps.
- **legend_gap**: numeric | Gap in cm between legends.
- **assay**: character | Assay to use. Defaults to the current assay.
- **slot**: character | Data slot to use. Only one of: counts, data, scale.data. Defaults to "data".
- **legend.position**: character | Position of the legend in the plot. One of:
  - top: Top of the figure.
  - bottom: Bottom of the figure.
  - left: Left of the figure.
  - right: Right of the figure.
  - none: No legend is displayed.
- **row_names_side**: character | Side to put the row names. Either left or right.
- **row_title_side**: character | Side to put the row titles Either left or right.
- **row_title_rot**: numeric | Degree in which to rotate the row titles.
- **column_names_rot**: numeric | Degree in which to rotate the column labels.
- **cell_size**: numeric | Size of each cell in the heatmap.
do_NebulosaPlot

min.cutoff, max.cutoff
numeric | Set the min/max ends of the color scale. Any cell/group with a value lower than min.cutoff will turn into min.cutoff and any cell with a value higher than max.cutoff will turn into max.cutoff. In FeaturePlots, provide as many values as features. Use NAs to skip a feature.

Value

A heatmap composed of 3 main panels: -log10(adjusted p-value), log2(FC) and mean expression by cluster.

Examples

```r
Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_GroupwiseDEPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/
 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Compute DE genes and transform to a tibble.
de_genes <- readRDS(system.file("extdata/de_genes_example.rds", package = "SCpubr"))

 # Default output.
p <- SCpubr::do_GroupwiseDEPlot(sample = sample,
 de_genes = de_genes)

 p
} else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using \"SCpubr::state_dependencies()\".")
}
```

---

do_NebulosaPlot Wrapper for Nebulosa::plot_density in Seurat.

Description

Wrapper for Nebulosa::plot_density in Seurat.

Usage

do_NebulosaPlot(
  sample,
features,
slot = NULL,
dims = c(1, 2),
pt.size = 1,
reduction = NULL,
combine = TRUE,
method = c("ks", "wkde"),
joint = FALSE,
return_only_joint = FALSE,
plot.title = NULL,
plot.subtitle = NULL,
plot.caption = NULL,
legend.type = "colorbar",
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.length = 20,
legend.width = 1,
legend.framecolor = "grey50",
legend.tickcolor = "white",
font.size = 14,
font.type = "sans",
legend.position = "bottom",
plot_cell_borders = TRUE,
border.size = 2,
border.color = "black",
viridis_color_map = "G",
viridis_direction = 1,
verbose = TRUE,
a.value = "grey75",
plot.axes = FALSE
)

Arguments

sample | Seurat | A Seurat object, generated by CreateSeuratObject.
features | character | Features to represent.
slot | character | Data slot to use. Only one of: counts, data, scale.data. Defaults to "data".
dims | numeric | Vector of 2 numerics indicating the dimensions to plot out of the selected reduction. Defaults to c(1, 2) if not specified.
pt.size | numeric | Size of the dots.
reduction | character | Reduction to use. Can be the canonical ones such as "umap", "pca", or any custom ones, such as "diffusion". If you are unsure about which reductions you have, use Seurat::Reductions(sample). Defaults to "umap" if present or to the last computed reduction if the argument is not provided.
combine | logical | Whether to create a single plot out of multiple features.
method | Kernel density estimation method:
ks: Computes density using the kde function from the ks package.
wkde: Computes density using a modified version of the kde2d function from the MASS package to allow weights. Bandwidth selection from the ks package is used instead.

joint logical | Whether to plot different features as joint density.
return_only_joint logical | Whether to only return the joint density panel.
plot.title, plot.subtitle, plot.caption character | Title, subtitle or caption to use in the plot.
legend.type character | Type of legend to display. One of:
  • normal: Default legend displayed by ggplot2.
  • colorbar: Redefined colorbar legend, using guide_colorbar.
  • colorsteps: Redefined legend with colors going by range, in steps, using guide_colorsteps.
legend.framewidth, legend.tickwidth numeric | Width of the lines of the box in the legend.
legend.length, legend.width numeric | Length and width of the legend. Will adjust automatically depending on legend side.
legend.framecolor character | Color of the lines of the box in the legend.
legend.tickcolor character | Color of the ticks of the box in the legend.
font.size numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.
font.type character | Base font family for the plot. One of:
  • mono: Mono spaced font.
  • serif: Serif font family.
  • sans: Default font family.
legend.position character | Position of the legend in the plot. One of:
  • top: Top of the figure.
  • bottom: Bottom of the figure.
  • left: Left of the figure.
  • right: Right of the figure.
  • none: No legend is displayed.
plot_cell_borders logical | Whether to plot border around cells.
border.size numeric | Width of the border of the cells.
border.color character | Color to use for the border of the cells.
viridis_color_map character | A capital letter from A to H or the scale name as in scale_fill_viridis.
do_PathwayActivityPlot

Plot Pathway Activities from decoupleR using Progeny prior knowledge.

Description

Plot Pathway Activities from decoupleR using Progeny prior knowledge.

Value

A ggplot2 object containing a Nebulosa plot.

Examples

```r
Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_NebulosaPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

 # Define your Seurat object.
 sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Basic Nebulosa plot.
 p <- SCpubr::do_NebulosaPlot(sample = sample,
 features = "EPC1")

 # Compute joint density.
 p <- SCpubr::do_NebulosaPlot(sample = sample,
 features = c("EPC1", "TOX2"),
 joint = TRUE)
}
else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.")
 message("Check out which ones are needed using 'SCpubr::state_dependencies()'.")
}
```
do_PathwayActivityPlot

Usage

```r
do_PathwayActivityPlot(
 sample,
 activities,
 group.by = NULL,
 split.by = NULL,
 plot_FeaturePlots = FALSE,
 plot_Heatmaps = TRUE,
 plot_GeyserPlots = FALSE,
 row_title = NULL,
 column_title = NULL,
 flip = FALSE,
 cluster_cols = TRUE,
 cluster_rows = TRUE,
 row_names_rot = 0,
 column_names_rot = 45,
 cell_size = 8,
 pt.size = 1,
 plot_cell_borders = TRUE,
 border.size = 2,
 na.value = "grey75",
 legend.position = "bottom",
 heatmap.legend.length = 75,
 heatmap.legend.width = 5,
 heatmap.legend.framecolor = "black",
 legend.width = 1,
 legend.length = 20,
 legend.framewidth = 0.5,
 legend.tickwidth = 0.5,
 legend.framecolor = "grey50",
 legend.tickcolor = "white",
 legend.type = "colorbar",
 font.size = 14,
 font.type = "sans",
 rotate_x_axis_labels = 45,
 enforce_symmetry = TRUE,
 geyser_order_by_mean = TRUE,
 geyser_scale_type = "continuous",
 viridis_color_map = "G",
 viridis_direction = 1,
 min.cutoff = NULL,
 max.cutoff = NULL
)
```

Arguments

- **sample**: `Seurat` | A Seurat object, generated by `CreateSeuratObject`.
- **activities**: `tibble` | Result of running decoupleR method with progeny regulon prior knowl-
do_PathwayActivityPlot

d group.by: character | Metadata variable to group the output by. Has to be a character of factor column.

split.by: character | Secondary metadata variable to further group (split) the output by. Has to be a character of factor column.

plot_FeaturePlots: logical | Compute output FeaturePlots for each of the top regulons.

plot_Heatmaps: logical | Compute output heatmap showcasing the average TF activity per regulon and group.by variable.

plot_GeyserPlots: logical | Compute output GeyserPlots for each of the top regulons and group.by variable.

row_title: character | Title for the rows of the heatmaps. Only works with single heatmaps.

column_title: character | Title for the columns of the heatmaps. Only works with single heatmaps.

flip: logical | Whether to invert the axis of the displayed plot.

cluster_cols: logical | Cluster the columns or rows of the heatmaps.

cluster_rows: logical | Cluster the rows or rows of the heatmaps.

row_names_rot: numeric | Degree in which to rotate the row labels.

column_names_rot: numeric | Degree in which to rotate the column labels.

cell_size: numeric | Size of each cell in the heatmap.

pt.size: numeric | Size of the dots.

plot_cell_borders: logical | Whether to plot border around cells.

border.size: numeric | Width of the border of the cells.

na.value: character | Color value for NA.

legend.position: character | Position of the legend in the plot. One of:

- top: Top of the figure.
- bottom: Bottom of the figure.
- left: Left of the figure.
- right: Right of the figure.
- none: No legend is displayed.

heatmap.legend.length, heatmap.legend.width: numeric | Width and length of the legend in the heatmap.

heatmap.legend.framecolor: character | Color of the edges and ticks of the legend in the heatmap.

legend.length, legend.width: numeric | Length and width of the legend. Will adjust automatically depending on legend side.

legend framewidth, legend.tickwidth: numeric | Width of the lines of the box in the legend.
do_PathwayActivityPlot

legend.framecolor
  character | Color of the lines of the box in the legend.

legend.tickcolor
  character | Color of the ticks of the box in the legend.

legend.type
  character | Type of legend to display. One of:
             - normal: Default legend displayed by ggplot2.
             - colorbar: Redefined colorbar legend, using guide_colorbar.
             - colorsteps: Redefined legend with colors going by range, in steps, using guide_colorsteps.

font.size
  numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.

font.type
  character | Base font family for the plot. One of:
             - mono: Mono spaced font.
             - serif: Serif font family.
             - sans: Default font family.

rotate_x_axis_labels
  numeric | Degree to rotate the X labels. One of: 0, 45, 90.

enforce_symmetry
  logical | Return a symmetrical plot axes-wise or continuous color scale-wise, when applicable.

geyser_order_by_mean
  logical | Whether to order the X axis by the mean of the values.

geyser_scale_type
  character | Type of scale to use. Either "continuous" or "categorical.

viridis_color_map
  character | A capital letter from A to H or the scale name as in scale_fill_viridis.

viridis_direction
  numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.

min.cutoff, max.cutoff
  numeric | Set the min/max ends of the color scale. Any cell/group with a value lower than min.cutoff will turn into min.cutoff and any cell with a value higher than max.cutoff will turn into max.cutoff. In FeaturePlots, provide as many values as features. Use NAs to skip a feature.

Value

A list containing several output plots according to the user’s specifications.

Examples

# Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_PathwayActivityPlot", passive = TRUE)

if (isTRUE(value)){
  # Consult the full documentation in https://enblacar.github.io/SCpubr-book/
# Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

# Define your activities object.
progeny_activities <- readRDS(system.file("extdata/progeny_activities_example.rds", package = "SCpubr"))

# General heatmap.
out <- SCpubr::do_PathwayActivityPlot(sample = sample,
  activities = progeny_activities,
  plot_FeaturePlots = TRUE,
  plot_GeyserPlots = TRUE)
p <- out$heatmaps$average_scores
p

# Retrieve feature plots.
p <- out$feature_plots$EGFR
p

# Retrieve Geyser plots.
p <- out$geyser_plots$EGFR
p

) else if (isFALSE(value)){
  message("This function can not be used without its suggested packages.")
  message("Check out which ones are needed using "SCpubr::state_dependencies()".")
}

---

**do_RidgePlot**

Create ridge plots.

**Description**

This function computes ridge plots based on the ggridges package.

**Usage**

```r
do_RidgePlot(
sample,
feature,
group.by = NULL,
split.by = NULL,
assay = "SCT",
slot = "data",
continuous.scale = FALSE,
legend.title = NULL,```
do_RidgePlot

legend.ncol = NULL,
legend.nrow = NULL,
legend.byrow = FALSE,
legend.position = NULL,
legend.width = 1,
legend.length = 20,
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.framecolor = "grey50",
legend.tickcolor = "white",
legend.type = "colorbar",
colors.use = NULL,
font.size = 14,
font.type = "sans",
rotate_x_axis_labels = 45,
plot.title = NULL,
plot.subtitle = NULL,
plot.caption = NULL,
xlab = NULL,
ylab = NULL,
compute_quantiles = FALSE,
compute_custom_quantiles = FALSE,
quantiles = c(0.25, 0.5, 0.75),
compute_distribution_tails = FALSE,
prob_tails = 0.025,
color_by_probabilities = FALSE,
viridis_color_map = "G",
viridis_direction = 1,
plot.grid = TRUE,
grid.color = "grey75",
grid.type = "dashed",
flip = FALSE

Arguments

sample | A Seurat object, generated by CreateSeuratObject.
feature | Feature to represent.
group.by | Metadata variable to group the output by. Has to be a character of factor column.
split.by | Secondary metadata variable to further group (split) the output by. Has to be a character of factor column.
assay | Assay to use. Defaults to the current assay.
slot | Data slot to use. Only one of: counts, data, scale.data. Defaults to "data".
continuous_scale | Whether to color the ridges depending on a categorical or continuous scale.
legend.title character | Title for the legend.
legend.ncol numeric | Number of columns in the legend.
legend.nrow numeric | Number of rows in the legend.
legend.byrow logical | Whether the legend is filled by row or not.
legend.position character | Position of the legend in the plot. One of:
 • top: Top of the figure.
 • bottom: Bottom of the figure.
 • left: Left of the figure.
 • right: Right of the figure.
 • none: No legend is displayed.

legend.length, legend.width numeric | Length and width of the legend. Will adjust automatically depending on legend side.

legend.framewidth, legend.tickwidth numeric | Width of the lines of the box in the legend.

legend.framecolor character | Color of the lines of the box in the legend.

legend.tickcolor character | Color of the ticks of the box in the legend.

legend.type character | Type of legend to display. One of:
 • normal: Default legend displayed by ggplot2.
 • colorbar: Redefined colorbar legend, using guide_colorbar.
 • colorsteps: Redefined legend with colors going by range, in steps, using guide_colorsteps.

colors.use character | Named vector of colors to use. Has to match the unique values of group.by or color.by (if used) when scale.type is set to categorical.

font.size numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.

font.type character | Base font family for the plot. One of:
 • mono: Mono spaced font.
 • serif: Serif font family.
 • sans: Default font family.

rotate_x_axis_labels numeric | Degree to rotate the X labels. One of: 0, 45, 90.

plot.title, plot.subtitle, plot.caption character | Title, subtitle or caption to use in the plot.

xlab, ylab character | Titles for the X and Y axis.
compute.quantiles logical | Whether to compute quantiles of the distribution and color the ridge plots by them.
do_RidgePlot

compute_custom_quantiles
 logical | Whether to compute custom quantiles.
quantiles numeric | Numeric vector of quantiles.
compute_distribution_tails
 logical | Whether to compute distribution tails and color them.
prob_tails numeric | The accumulated probability that the tails should contain.
color_by_probabilities
 logical | Whether to color the ridges depending on the probability.
viridis_color_map
 character | A capital letter from A to H or the scale name as in scale_fill_viridis.
viridis_direction
 numeric | Either 1 or -1. Controls how the gradient of viridis scale is formed.
plot.grid logical | Whether to plot grid lines.
grid.color character | Color of the grid in the panels.
grid.type character | One of the possible linetype options:
 • blank.
 • solid.
 • dashed.
 • dotted.
 • dotdash.
 • longdash.
 • twodash.
flip logical | Whether to invert the axis of the displayed plot.

Value
 A ggplot2 object.

Examples

Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_RidgePlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/
 # Define your Seurat object.
 sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Compute the most basic ridge plot.
 p <- SCpubr::do_RidgePlot(sample = sample,
 feature = "nFeature_RNA")
 p

 # Use continuous color scale.
 p <- SCpubr::do_RidgePlot(sample = sample,
do_TermEnrichmentPlot

Display the enriched terms for a given list of genes.

description

Display the enriched terms for a given list of genes.

Usage

do_TermEnrichmentPlot(
 enriched_terms,
 nchar_wrap = 20,
 nterms = 10,
 font.size = 14,
 font.type = "sans",
 plot.title = NULL,
do_TermEnrichmentPlot

plot.subtitle = NULL,
plot.caption = NULL,
legend.position = "bottom",
legend.type = "colorbar",
colors.use = NULL,
text_labels_size = 4,
legend.length = 30,
legend.width = 1,
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.framecolor = "grey50",
legend.tickcolor = "white"
)

Arguments

enriched_terms list | List containing the output(s) of running Enrichr.
nchar_wrap numeric | Number of characters to use as a limit to wrap the term names. The
higher this value, the longer the lines would be for each term in the plots. De-
defaults to 60.
nterms numeric | Number of terms to report for each database. Terms are arranged by
adjusted p-value and selected from lowest to highest. Defaults to 5.
 • Enrichr.
 • FlyEnrichr.
 • WormEnrichr.
 • YeastEnrichr.
 • FishEnrichr.
font.size numeric | Overall font size of the plot. All plot elements will have a size rela-
tionship with this font size.
font.type character | Base font family for the plot. One of:
 • mono: Mono spaced font.
 • serif: Serif font family.
 • sans: Default font family.
plot.title, plot.subtitle, plot.caption character | Title, subtitle or caption to use in the plot.
legend.position character | Position of the legend in the plot. One of:
 • top: Top of the figure.
 • bottom: Bottom of the figure.
 • left: Left of the figure.
 • right: Right of the figure.
 • none: No legend is displayed.
legend.type character | Type of legend to display. One of:
 • normal: Default legend displayed by ggplot2.
• colorbar: Redefined colorbar legend, using `guide_colorbar`.
• colorsteps: Redefined legend with colors going by range, in steps, using `guide_colorsteps`.

`colors.use` character | Character vector of 2 colors (low and high ends of the color scale) to generate the gradient.

`text_labels_size` numeric | Controls how big or small labels are in the plot.

`legend.length`, `legend.width` numeric | Length and width of the legend. Will adjust automatically depending on legend side.

`legend.framewidth`, `legend.tickwidth` numeric | Width of the lines of the box in the legend.

`legend.framecolor` character | Color of the lines of the box in the legend.

`legend.tickcolor` character | Color of the ticks of the box in the legend.

Value

A ggplot2 object with enriched terms.

Examples

```r
# Check Suggests.
value <- SCpubr::check_suggests(function_name = "do_TermEnrichmentPlot", passive = TRUE)

if (isTRUE(value)){
  # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

  # Define your enriched terms.
  enriched_terms <- readRDS(system.file("extdata/enriched_terms_example.rds", package = "SCpubr"))
  enriched_terms$GO_Cellular_Component_2021 <- NULL
  enriched_terms$Azimuth_Cell_Types_2021 <- NULL

  # Default plot.
  p <- SCpubr::do_TermEnrichmentPlot(enriched_terms = enriched_terms)
  p
}
else if (isFALSE(value)){
  message("This function can not be used without its suggested packages.")
  message("Check out which ones are needed using `SCpubr::state_dependencies()`.")
}
```
do_TFActivityPlot

Plot TF Activities from decoupleR using Dorothea prior knowledge.

Description

Plot TF Activities from decoupleR using Dorothea prior knowledge.

Usage

```r
do_TFActivityPlot(
  sample,
  activities,
  n_tfs = 25,
  group.by = NULL,
  split.by = NULL,
  plot_FeaturePlots = FALSE,
  plot_Heatmaps = TRUE,
  plot_GeyserPlots = FALSE,
  row_title = NULL,
  column_title = NULL,
  flip = FALSE,
  cluster_cols = TRUE,
  cluster_rows = TRUE,
  row_names_rot = 0,
  column_names_rot = 45,
  cell_size = 8,
  pt.size = 1,
  plot_cell_borders = TRUE,
  border.size = 2,
  na.value = "grey75",
  legend.position = "bottom",
  heatmap.legend.length = 75,
  heatmap.legend.width = 5,
  heatmap.legend.framecolor = "black",
  legend.width = 1,
  legend.length = 20,
  legend.framewidth = 0.5,
  legend.tickwidth = 0.5,
  legend.framecolor = "grey50",
  legend.tickcolor = "white",
  legend.type = "colorbar",
  font.size = 14,
  font.type = "sans",
  rotate_x_axis_labels = 45,
  enforce_symmetry = TRUE,
  geyser_order_by_mean = TRUE,
  geyser_scale_type = "continuous",
)```

```r
viridis_color_map = "G",
viridis_direction = 1,
min.cutoff = NULL,
max.cutoff = NULL
)

Arguments

sample: Seurat | A Seurat object, generated by CreateSeuratObject.
activities: tibble | Result of running decoupleR method with dorothea regulon prior knowledge.
n_tfs: numeric | Number of top regulons to consider for downstream analysis.
group.by: character | Metadata variable to group the output by. Has to be a character of factor column.
split.by: character | Secondary metadata variable to further group (split) the output by. Has to be a character of factor column.
plot_FeaturePlots: logical | Compute output FeaturePlots for each of the top regulons.
plot_Heatmaps: logical | Compute output heatmap showcasing the average TF activity per regulon and group.by variable.
plot_GeyserPlots: logical | Compute output GeyserPlots for each of the top regulons and group.by variable.
row_title: character | Title for the rows of the heatmaps. Only works with single heatmaps.
column_title: character | Title for the columns of the heatmaps. Only works with single heatmaps.
flip: logical | Whether to invert the axis of the displayed plot.
cluster_cols: logical | Cluster the columns or rows of the heatmaps.
cluster_rows: logical | Cluster the rows or rows of the heatmaps.
row_names_rot: numeric | Degree in which to rotate the row labels.
column_names_rot: numeric | Degree in which to rotate the column labels.
cell_size: numeric | Size of each cell in the heatmap.
pt.size: numeric | Size of the dots.
plot_cell_borders: logical | Whether to plot border around cells.
border.size: numeric | Width of the border of the cells.
na.value: character | Color value for NA.
legend.position: character | Position of the legend in the plot. One of:
 • top: Top of the figure.
 • bottom: Bottom of the figure.
 • left: Left of the figure.
```
• right: Right of the figure.
• none: No legend is displayed.

**heatmap.legend.length, heatmap.legend.width**
*numeric* | Width and length of the legend in the heatmap.

**heatmap.legend.framecolor**
*character* | Color of the edges and ticks of the legend in the heatmap.

**legend.length, legend.width**
*numeric* | Length and width of the legend. Will adjust automatically depending on legend side.

**legend.framewidth, legend.tickwidth**
*numeric* | Width of the lines of the box in the legend.

**legend.framecolor**
*character* | Color of the lines of the box in the legend.

**legend.tickcolor**
*character* | Color of the ticks of the box in the legend.

**legend.type**
*character* | Type of legend to display. One of:
• normal: Default legend displayed by `ggplot2`.
• colorbar: Redefined colorbar legend, using `guide_colorbar`.
• colorsteps: Redefined legend with colors going by range, in steps, using `guide_colorsteps`.

**font.size**
*numeric* | Overall font size of the plot. All plot elements will have a size relationship with this font size.

**font.type**
*character* | Base font family for the plot. One of:
• mono: Mono spaced font.
• serif: Serif font family.
• sans: Default font family.

**rotate_x_axis_labels**
*numeric* | Degree to rotate the X labels. One of: 0, 45, 90.

**enforce_symmetry**
*logical* | Whether the geyser and feature plot has a symmetrical color scale.

**geyser_order_by_mean**
*logical* | Whether to order the X axis by the mean of the values.

**geyser_scale_type**
*character* | Type of scale to use. Either "continuous" or "categorical.

**viridis_color_map**
*character* | A capital letter from A to H or the scale name as in `scale_fill_viridis`.

**viridis_direction**
*numeric* | Either 1 or -1. Controls how the gradient of viridis scale is formed.

**min.cutoff, max.cutoff**
*numeric* | Set the min/max ends of the color scale. Any cell/group with a value lower than min.cutoff will turn into min.cutoff and any cell with a value higher than max.cutoff will turn into max.cutoff. In FeaturePlots, provide as many values as features. Use NAs to skip a feature.
do_ViolinPlot

Value

A list containing several output plots according to the user’s specifications.

Examples

```r
Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_TFActivityPlot", passive = TRUE)

if (isTRUE(value)){
 # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

 # Define your Seurat object.
sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

 # Define your activities object.
dorothea_activities <- readRDS(system.file("extdata/dorothea_activities_example.rds", package = "SCpubr"))

 # General heatmap.
 out <- SCpubr::do_TFActivityPlot(sample = sample,
 activities = dorothea_activities,
 plot_FeaturePlots = TRUE,
 plot_GeyserPlots = TRUE)

 p <- out$heatmaps$average_scores

 # Retrieve feature plots.
p <- out$feature_plots$ARID2

 # Retrieve Geyser plots.
p <- out$geyser_plots$ARID2
}
else if (isFALSE(value)){
 message("This function can not be used without its suggested packages.
 Check out which ones are needed using `SCpubr::state Dependencies()`.")
}
```

---

do_ViolinPlot  

Wrapper for VlnPlot.

Description

Wrapper for VlnPlot.
do_ViolinPlot

Usage

do_ViolinPlot(
    sample,
    features,
    assay = NULL,
    slot = NULL,
    group.by = NULL,
    split.by = NULL,
    colors.use = NULL,
    pt.size = 0,
    line_width = 0.5,
    y_cut = rep(NA, length(features)),
    plot_boxplot = TRUE,
    boxplot_width = 0.2,
    legend.position = "none",
    plot.title = NULL,
    plot.subtitle = NULL,
    plot.caption = NULL,
    xlab = rep(NA, length(features)),
    ylab = rep(NA, length(features)),
    font.size = 14,
    font.type = "sans",
    rotate_x_axis_labels = 45,
    plot.grid = TRUE,
    grid.color = "grey75",
    grid.type = "dashed",
    flip = FALSE,
    ncol = NULL,
    share.y.lims = FALSE,
    legend.title = NULL,
    legend.ncol = NULL,
    legend.nrow = NULL,
    legend.byrow = FALSE
)

Arguments

sample Seurat | A Seurat object, generated by CreateSeuratObject.
features character | Features to represent.
assay character | Assay to use. Defaults to the current assay.
slot character | Data slot to use. Only one of: counts, data, scale.data. Defaults to "data".
group.by character | Metadata variable to group the output by. Has to be a character of factor column.
split.by character | Secondary metadata variable to further group (split) the output by. Has to be a character of factor column.
colors.use | Named vector of valid color representations (either name of
| HEX codes) with as many named colors as unique values of group.by. If group.by
| is not provided, defaults to the unique values of Idents. If not provided, a color
| scale will be set by default.

pt.size | Size of points in the Violin plot.
line_width | Width of the lines drawn in the plot. Defaults to 1.
y_cut | Vector with the values in which the Violins should be cut. Only works
| for one feature.
plot_boxplot | Whether to plot a Box plot inside the violin or not.
boxplot_width | Width of the boxplots. Defaults to 0.2.
legend.position | Position of the legend in the plot. One of:
| • top: Top of the figure.
| • bottom: Bottom of the figure.
| • left: Left of the figure.
| • right: Right of the figure.
| • none: No legend is displayed.
plot.title, plot.subtitle, plot.caption | Title, subtitle or caption to use in the plot.
xlab, ylab | Titles for the X and Y axis.
font.size | Overall font size of the plot. All plot elements will have a size rela-
| tionship with this font size.
font.type | Base font family for the plot. One of:
| • mono: Mono spaced font.
| • serif: Serif font family.
| • sans: Default font family.
rotate_x_axis_labels | Degree to rotate the X labels. One of: 0, 45, 90.
plot.grid | Whether to plot grid lines.
grid.color | Color of the grid in the panels.
grid.type | One of the possible linetype options:
| • blank.
| • solid.
| • dashed.
| • dotted.
| • dotdash.
| • longdash.
| • twodash.
flip | Whether to invert the axis of the displayed plot.
ncol | Number of columns used in the arrangement of the output plot using
| "split.by" parameter.
do_VolcanoPlot

.share.y.lims logical | When querying multiple features, force the Y axis of all of them to be on the same range of values (this being the max and min of all features combined).

.legend.title character | Title for the legend.

.legend.ncol numeric | Number of columns in the legend.

.legend.nrow numeric | Number of rows in the legend.

.legend.byrow logical | Whether the legend is filled by row or not.

Value

A ggplot2 object containing a Violin Plot.

Examples

# Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_VolcanoPlot", passive = TRUE)

if (isTRUE(value)){
  # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

  # Define your Seurat object.
  sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

  # Basic violin plot.
  p <- SCpubr::do_VolcanoPlot(sample = sample,
                              feature = "nCount_RNA")

  p

  # Remove the box plots.
  p <- SCpubr::do_VolcanoPlot(sample = sample,
                              feature = "nCount_RNA",
                              plot_boxplot = FALSE)

  p
}
else if (isFALSE(value)){
  message("This function can not be used without its suggested packages.")
  message("Check out which ones are needed using `SCpubr::state_dependencies()`.")
}

---

do_VolcanoPlot

Compute a Volcano plot out of DE genes.

Description

Compute a Volcano plot out of DE genes.
do_VolcanoPlot

Usage

do_VolcanoPlot(
  sample,
  de_genes,
  pval_cutoff = 0.05,
  FC_cutoff = 2,
  pt.size = 2,
  border.size = 1.5,
  border.color = "black",
  font.size = 14,
  font.type = "sans",
  plot.title = NULL,
  plot.subtitle = NULL,
  plot.caption = NULL,
  plot_lines = TRUE,
  line_color = "grey75",
  line_size = 0.5,
  add_gene_tags = TRUE,
  order_tags_by = "both",
  n_genes = 5,
  use_labels = FALSE,
  colors.use = "steelblue"
)

Arguments

sample Seurat | A Seurat object, generated by CreateSeuratObject.
de_genes tibble | Output of Seurat::FindMarkers().
pval_cutoff numeric | Cutoff for the p-value.
FC_cutoff numeric | Cutoff for the avg_log2FC.
pt.size numeric | Size of the dots.
border.size numeric | Width of the border of the cells.
border.color character | Color to use for the border of the cells.
font.size numeric | Overall font size of the plot. All plot elements will have a size relationship with this font size.
font.type character | Base font family for the plot. One of:
  • mono: Mono spaced font.
  • serif: Serif font family.
  • sans: Default font family.
plot.title, plot.subtitle, plot.caption character | Title, subtitle or caption to use in the plot.
plot_lines logical | Whether to plot the division lines.
line_color character | Color for the lines.
line_size numeric | Size of the lines in the plot.
add_gene_tags logical | Whether to plot the top genes.
order_tags_by character | Either "both", "pvalue" or "logfc".
n_genes numeric | Number of top genes in each side to plot.
use_labels logical | Whether to use labels instead of text for the tags.
colors.use character | Color to generate a tetradic color scale with.

Value
A volcano plot as a ggplot2 object.

Examples

# Check Suggests.
value <- SCpubr:::check_suggests(function_name = "do_VolcanoPlot", passive = TRUE)

if (isTRUE(value)){
  # Consult the full documentation in https://enblacar.github.io/SCpubr-book/

  # Define your Seurat object.
  sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr"))

  # Retrieve DE genes.
  de_genes <- readRDS(system.file("extdata/de_genes_example.rds", package = "SCpubr"))

  # Generate a volcano plot.
  p <- SCpubr::do_VolcanoPlot(sample = sample,
                              de_genes = de_genes)
  p
}
else if (isFALSE(value)){
  message("This function can not be used without its suggested packages.")
  message("Check out which ones are needed using \'SCpubr::state_dependencies()\'.")
}

human_chr_locations      Chromosome arm locations for human genome GRCh38.

Description
A tibble containing the chromosome, arm and start and end coordinates.

Usage
data(human_chr_locations)
Format

A tibble with 48 rows and 4 columns:

- **chr**  Chromosome.
- **arm**  Chromosome arm.
- **start** Start coordinates.
- **end**  End coordinates.

```
state_dependencies State SCpubr current function dependencies.
```

Description

State SCpubr current function dependencies.

Usage

`state_dependencies(function_name = NULL, return_dependencies = FALSE)`

Arguments

- **function_name** character | Name of an exported function from SCpubr. If NULL, return all functions.
- **return_dependencies** logical | Whether to have the dependencies as an output object instead of a printed message.

Value

None

Examples

```r
See all dependencies.
SCpubr::state_dependencies()

See the dependencies for a single package.
SCpubr::state_dependencies(function_name = "do_DimPlot")
```
Index

* datasets
  human_chr_locations, 89

AddModuleScore, 22, 43, 46
AddModuleScore_UCell, 46

character, 4, 5, 7–10, 12–14, 16, 17, 21, 22, 24, 25, 27, 30, 31, 33, 34, 36–38, 40, 41, 44–49, 52–54, 56–58, 60, 61, 63, 64, 66, 68–70, 72, 73, 75–77, 79, 80, 82, 83, 85–90
chordDiagramFromDataFrame, 25, 26
chordDiagramFromMatrix, 25, 26
CreateSeuratObject, 4, 7, 9, 12, 16, 20, 24, 30, 33, 36, 40, 44, 48, 52, 60, 66, 68, 71, 75, 82, 85, 88

DimPlot, 34
do_AlluvialPlot, 3
do_AzimuthAnalysisPlot, 6
do_BarPlot, 9
do_BeeSwarmPlot, 11
do_BoxPlot, 15
do_CellularStatesPlot, 19
do_ChordDiagramPlot, 24
do_ColorPalette, 26
do_CopyNumberVariantPlot, 29
do_CorrelationPlot, 32
do_DimPlot, 34
do_DotPlot, 39
do_EnrichmentHeatmap, 43
do_ExpressionHeatmap, 48
do_FeaturePlot, 50
do_FunctionalAnnotationPlot, 55
do_GeyserPlot, 59
do_GroupedGOTermPlot, 63
do_GroupwiseDEPlot, 65
do_NebulosaPlot, 67
do_PathwayActivityPlot, 70
do_RidgePlot, 74
do_TermEnrichmentPlot, 78
do_TFActivityPlot, 81
do_ViolinPlot, 84
do_VolcanoPlot, 87

DotPlot, 39
FeaturePlot, 50
gemalluvium, 4
gem_flow, 4
gem_label, 36
gem_text, 36
guide_colorbar, 13, 30, 40, 46, 52, 57, 61, 69, 73, 76, 80, 83
guide_colorsteps, 13, 30, 40, 46, 52, 57, 61, 69, 73, 76, 80, 83

Heatmap, 43
human_chr_locations, 89

Idents, 8, 10, 13, 17, 21, 36, 86
infercnv, 30

list, 79

logical, 4, 5, 7–10, 13, 14, 17, 18, 21, 22, 25, 27, 30, 31, 33, 36–38, 41, 45–47, 49, 52–54, 57, 60–64, 68–70, 72, 73, 75–77, 82, 83, 86–90

named_list, 20, 44
named_vector, 8, 10, 13, 17, 21, 25, 30, 36, 86
numeric, 4, 5, 7, 8, 10, 13, 14, 16, 17, 21, 22, 25–27, 31, 33, 34, 36–38, 40, 41, 45–47, 49, 50, 52–54, 56–58, 60–64, 66–70, 72, 73, 76, 77, 79, 80, 82, 83, 86–89

position_fill, 10
position_stack, 9

scale_fill_viridis, 5, 8, 14, 22, 31, 33, 41, 45, 49, 53, 58, 61, 69, 73, 77, 83

91
Seurat, 4, 7, 9, 12, 16, 20, 24, 30, 33, 36, 40, 44, 48, 52, 60, 66, 68, 71, 75, 82, 85, 88

state_dependencies, 90

tibble, 30, 66, 71, 82, 88

VlnPlot, 84