Package ‘SCtools’

December 12, 2019

Title Extensions for Synthetic Controls Analysis
Version 0.3.0

Description Extensions to the synthetic controls analyses performed by the package 'Synth' as detailed in Abadie, Diamond, and Hainmueller (2011) <doi:10.18637/jss.v042.i13>. Includes generating and plotting placebos, post/pre-MSPE (mean squared prediction error) significance tests and plots, and calculating average treatment effects for multiple treated units. This package represents an implementation of those methods suggested in Abadie, Diamond, and Hainmueller (2010) <doi:10.1198/jasa.2009.ap08746> for use in synthetic control analysis.

BugReports https://github.com/bcastanho/SCtools/issues

Maintainer Bruno Castanho Silva <bcsilva@wiso.uni-koeln.de>

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.5), future (>= 1.6.2)

Imports ggplot2, Synth, stringr, stats, cvTools, furrr, dplyr, purrr

Suggests testthat, covr, knitr, tidyr, rmarkdown

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Bruno Castanho Silva [aut, cre]
 (<https://orcid.org/0000-0001-9363-4704>),
 Michael DeWitt [aut] (<https://orcid.org/0000-0001-8940-1967>)

Repository CRAN

Date/Publication 2019-12-12 13:40:02 UTC
R topics documented:

- SCtools-package
- alcohol
- generate.placebos
- is_tdf
- is_tdf_multi
- mspe.plot
- mspe.test
- multiple.synth
- plac.dist
- plot_placebos
- synth.data

Index

SCtools-package SCTools: Tools for Synthetic Control Methods

Description

A set of functions to extend the synthetic controls analyses performed by the package ‘Synth’. Includes generating and plotting placebos, significance tests and plots, and calculating average treatment effects for multiple treated units.

Details

- Allow easy generation of placebos
- Generate figures for inference on SCM outputs
- Extend the existing Synth package

Author(s)

Maintainer: Bruno Castanho Silva <bcsilva@wiso.uni-koeln.de> (0000-0001-9363-4704)
Authors:

- Michael DeWitt <me.dewitt.jr@gmail.com> (0000-0001-8940-1967)

See Also

Useful links:

- Report bugs at https://github.com/bcastanho/SCtools/issues
World Alcohol per Capita Consumption

Description

This data set has been compiled from data from the World Health Organization (WHO) and the World Bank (WB). The primary purpose was to investigate the effects of policy changes in the Russian Federation enacted in 2003 around alcohol consumption. This is an excellent case study for SCM approaches to be used. You can read more about the policy changes at https://www.theguardian.com/world/2019/oct/01/russian-alcohol-consumption-down-40-since-2003-who.

Usage

alcohol

Format

a data.frame with 5107 rows and 8 columns:

country_name	The name of the country
year	year
consumption	Alcohol consumption per capita (liters/person); all types
country_code	Three letter country code
labor_force_participation_rate	Labor force participation rate, total (percent of total population ages 15+)
mobile_cellular_subscriptions	Mobile cellular subscriptions (per 100 people)
inflation	Inflation, consumer prices (annual percent)
manufacturing	Manufacturing, value added (percent of GDP)
country_num	The country number

Details

Function to generate placebo synthetic controls

Description

Constructs a synthetic control unit for each unit in the donor pool of an implementation of the synthetic control method for a single treated unit. Used for placebo tests (see `plot_placebos`, `mspe.test`, `mspe.plot`) to assess the strength and significance of a causal inference based on the synthetic control method. On placebo tests, see Abadie and Gardeazabal (2003), and Abadie, Diamond, and Hainmueller (2010, 2011, 2014).

Usage

```r
generate.placebos(dataprep.out, synth.out, Sigf.ipop = 5, strategy = "sequential")
```

```r
generate.placebos(dataprep.out, synth.out, Sigf.ipop = 5, strategy = "sequential")
```

Arguments

- `dataprep.out`: A `data.prep` object produced by the `dataprep` command.
- `synth.out`: A `synth.out` object produced by the `synth` command.
- `Sigf.ipop`: The Precision setting for the `ipop` optimization routine. Default of 5.
- `strategy`: The processing method you wish to use "sequential" or "multiprocess". Use "multiprocess" to parallelize operations and reduce computing time. Default is sequential.

Value

- `df`: Data frame with outcome data for each control unit and their respective synthetic control and for the original treated and its control.
- `mspe.placs`: Mean squared prediction error for the pretreatment period for each placebo.
- `t0`: First time unit in `time.optimize.ssr`.
- `t1`: First time unit after the highest value in `time.optimize.ssr`.
- `tr`: Unit number of the treated unit.
- `names.and.numbers`: Dataframe with two columns showing all unit numbers and names from control units.
- `n`: Number of control units.
- `treated.name`: Unit name of the treated unit.
- `loss.v`: Pretreatment MSPE of the treated unit’s synthetic control.
Examples

```r
## Example with toy data from Synth
library(Synth)
# Load the simulated data
data(synth.data)

# Execute dataprep to produce the necessary matrices for synth
dataprep.out <- dataprep(
  foo = synth.data,
  predictors = c("X1"),
  predictors.op = "mean",
  dependent = "Y",
  unit.variable = "unit.num",
  time.variable = "year",
  special.predictors = list(
    list("Y", 1991, "mean")
  ),
  treatment.identifier = 7,
  controls.identifier = c(29, 2, 13, 17),
  time.predictors.prior = c(1984:1989),
  time.optimize.ssr = c(1984:1990),
  unit.names.variable = "name",
  time.plot = 1984:1996
)

# run the synth command to create the synthetic control
synth.out <- synth(dataprep.out, Sigf.ipop=2)

## run the generate.placebos command to reassign treatment status
## to each unit listed as control, one at a time, and generate their
## synthetic versions. Sigf.ipop = 2 for faster computing time.
## Increase to the default of 5 for better estimates.
tdf <- generate.placebos(dataprep.out, synth.out, Sigf.ipop = 2)
```

is_tdf

Test if the object is a tdf object

Description

This function returns ‘TRUE’ for the object returned from the `generate.placebos` function, and FALSE for all other objects, including regular data frames.

Usage

`is_tdf(x)`
Arguments

x An object

Value

TRUE if the object inherits from the ‘tdf’ class.

is_tdf_multi

Test if the object is a tdf_multi object

Description

This function returns ‘TRUE’ for the object returned from the multiple.synth function. and FALSE for all other objects, including regular data frames.

Usage

is_tdf_multi(x)

Arguments

x An object

Value

TRUE if the object inherits from the ‘tdf_multi’ class.

mspe.plot

Plot the post/pre-treatment MSPE ratio

Description

Plots the post/pre-treatment mean square prediction error ratio for the treated unit and placebos.

Usage

mspe.plot(tdf, discard.extreme = FALSE, mspe.limit = 20,
plot.hist = FALSE, title = NULL, xlab = "Post/Pre MSPE ratio",
ylab = NULL)

mspe.plot(tdf, discard.extreme = FALSE, mspe.limit = 20,
plot.hist = FALSE, title = NULL, xlab = "Post/Pre MSPE ratio",
ylab = NULL)
Arguments

- **tdf**: An object constructed by `generate.placebos`.
- **discard.extreme**: Logical. Whether or not placebos with high pre-treatment MSPE should be excluded from the plot.
- **mspe.limit**: Numerical. Used if `discard.extreme` is `TRUE`. It indicates how many times the pretreatment MSPE of a placebo should be higher than that of the treated unit to be considered extreme and discarded. Default is 20.
- **plot.hist**: Logical. If `FALSE`, a dotplot with each unit name and its post/pre treatment MSPE ratio is produced. If `TRUE`, a histogram is produced, with the frequency of each ratio. Should be set to `TRUE` when there are many controls, to make visualization easier.
- **title**: Character. Optional. Title of the plot.
- **xlab**: Character. Optional. Label of the x axis.
- **ylab**: Character. Optional. Label of the y axis.

Details

Post/pre-treatment mean square prediction error ratio is the difference between the observed outcome of a unit and its synthetic control, before and after treatment. A higher ratio means a small pretreatment prediction error (a good synthetic control), and a high post-treatment MSPE, meaning a large difference between the unit and its synthetic control after the intervention. By calculating this ratio for all placebos, the test can be interpreted as looking at how likely the result obtained for a single treated case with a synthetic control analysis could have occurred by chance given no treatment. For more detailed description, see Abadie, Diamond, and Hainmueller (2011, 2014).

References

See Also

- `generate.placebos`
- `mspe.test`
- `plot_placebos`
- `synth`
Examples

```r
## Example with toy data from 'Synth'
library(Synth)
# Load the simulated data
data(synth.data)

# Execute dataprep to produce the necessary matrices for 'Synth'
dataprep.out <-
dataprep(
  foo = synth.data,
  predictors = c("X1"),
  predictors.op = "mean",
  dependent = "Y",
  unit.variable = "unit.num",
  time.variable = "year",
  special.predictors = list(
    list("Y", 1991, "mean")
  ),
  treatment.identifier = 7,
  controls.identifier = c(29, 2, 13, 17),
  time.predictors.prior = c(1984:1989),
  time.optimize.ssr = c(1984:1990),
  unit.names.variable = "name",
  time.plot = 1984:1996
)

# run the synth command to create the synthetic control
synth.out <- synth(dataprep.out, Sigf.ipop=2)

## run the generate.placebos command to reassign treatment status
## to each unit listed as control, one at a time, and generate their
## synthetic versions. Sigf.ipop = 2 for faster computing time.
## Increase to the default of 5 for better estimates.
tdf <- generate.placebos(dataprep.out, synth.out, Sigf.ipop = 2)

## Test how extreme was the observed treatment effect given the placebos:
ratio <- mspe.test(tdf)
ratio$p.val

mspe.plot(tdf, discard.extreme = FALSE)
```

mspe.test
Function to compute the post/pre treatment MSPE ratio for the treated unit and placebos

Description

Computes the post/pre treatment mean square prediction error ratio for a treated unit in a synthetic control analysis and all placebos produced with `generate.placebos`. Returns a matrix with ra-
Post/pre-treatment mean square prediction error ratio is the difference between the observed outcome of a unit and its synthetic control, before and after treatment. A higher ratio means a small pre-treatment prediction error (a good synthetic control), and a high post-treatment MSPE, meaning a large difference between the unit and its synthetic control after the intervention. By calculating this ratio for all placebos, the test can be interpreted as looking at how likely the result obtained for a single treated case with a synthetic control analysis could have occurred by chance given no treatment. For more detailed description, see Abadie, Diamond, and Hainmueller (2011, 2014).

Value

p.val The p-value of the treated unit post/pre MSPE ratio. It is the proportion of units (placebos and treated) that have a ratio equal or higher than that of the treated unit

test Dataframe with two columns. The first is the post/pre MSPE ratio for each unit. The second indicates unit names

See Also

generate.placebos, mspe.plot, synth

Examples

```r
## Example with toy data from 'Synth'
library(Synth)
# Load the simulated data
data(synth.data)
# Execute dataprep to produce the necessary matrices for 'Synth'
dataprep.out<-
dataprep(
```
foo = synth.data,
predictors = c("X1"),
predictors.op = "mean",
dependent = "Y",
unit.variable = "unit.num",
time.variable = "year",
special.predictors = list(
 list("Y", 1991, "mean")
),
treatment.identifier = 7,
controls.identifier = c(29, 2, 13, 17),
time.predictors.prior = c(1984:1989),
time.optimize.ssr = c(1984:1990),
unit.names.variable = "name",
time.plot = 1984:1996
)

run the synth command to create the synthetic control
synth.out <- synth(dataprep.out, Sigf.ipop=2)

run the generate.placebos command to reassign treatment status
to each unit listed as control, one at a time, and generate their
synthetic versions. Sigf.ipop = 2 for faster computing time.
Increase to the default of 5 for better estimates.
tdf <- generate.placebos(dataprep.out,synth.out, Sigf.ipop = 2)

Test how extreme was the observed treatment effect given the placebos:
ratio <- mspe.test(tdf)
ratio$p.val

mspe.plot(tdf, discard.extreme = FALSE)

multiple.synth

Function to Apply Synthetic Controls to Multiple Treated Units

Description

Generates one synthetic control for each treated unit and calculates the difference between the treated and the synthetic control for each. Returns a vector with outcome values for the synthetic controls, a plot of average treatment effects, and if required generates placebos out of the donor pool to be used in conjunction with `plac.dist`. All arguments are the same used for `dataprep` in the Synth package, except for `treated.units`, `treatment.time`, and `generate.placebos`.

Usage

```r
multiple.synth(foo, predictors, predictors.op, dependent, unit.variable,
  time.variable, special.predictors, treated.units, control.units,
  time.predictors.prior, time.optimize.ssr, unit.names.variable, time.plot,
  treatment.time, gen.placebos = FALSE, strategy = "sequential",
)```

multiple.synth

Sigf.ipop = 5)
multiple_synth(foo, predictors, predictors.op, dependent, unit.variable,
time.variable, special.predictors, treated.units, control.units,
time.predictors.prior, time.optimize.ssr, unit.names.variable, time.plot,
treatment.time, gen.placebos = FALSE, strategy = "sequential",
Sigf.ipop = 5)

Arguments

foo          Dataframe with the panel data.
predictors   Vector of column numbers or column-name character strings that identifies the
             predictors' columns. All predictors have to be numeric.
predictors.op A character string identifying the method (operator) to be used on the predictors.
             Default is mean.
dependent    The column number or a string with the column name that corresponds to the
             dependent variable.
unit.variable The column number or a string with the column name that identifies unit num-
             bers. The variable must be numeric.
time.variable The column number or a string with the column name that identifies the period
             (time) data. The variable must be numeric.
special.predictors A list object identifying additional predictors and their pre-treatment years and
                    operators.
treated.units A vector identifying the unit.variable numbers of the treated units.
control.units A vector identifying the unit.variable numbers of the control units.
time.predictors.prior A numeric vector identifying the pretreatment periods over which the values for
                      the outcome predictors should be averaged.
time.optimize.ssr A numeric vector identifying the periods of the dependent variable over which
                   the loss function should be minimized between each treated unit and its synthetic
                   control.
unit.names.variable The column number or string with column name identifying the variable with
                    units' names. The variable must be a character.
time.plot A vector identifying the periods over which results are to be plotted with path.plot
treatment.time A numeric value with the value in time.variable that marks the intervention.
gen.placebos Logical. Whether a placebo (a synthetic control) for each unit in the donor pool
            should be constructed. Will increase computation time.
strategy      The processing method you wish to use "sequential" or "multiprocess". Use
              "multiprocess" to parallelize operations and reduce computing time. Default is
              sequential.
Sigf.ipop     The Precision setting for the ipop optimization routine. Default of 5.
Details

The function runs `dataprep` and `synth` for each unit identified in `treated.units`. It saves the vector with predicted values for each synthetic control, to be used in estimating average treatment effects in applications of Synthetic Controls for multiple treated units.

For further details on the arguments, see the documentation of `Synth`.

Value

Data frame. Each column contains the outcome values for every time-point for one unit or its synthetic control. The last column contains the time-points.

Examples

```r
Using the toy data from 'Synth':
library(Synth)
data(synth.data)set.seed(42)
multi <- multiple.synth(foo = synth.data,
predictors = c("X1"),
predictors.op = "mean",
dependent = "Y",
unit.variable = "unit.num",
time.variable = "year",
treatment.time = 1990,
special.predictors = list(
 list("Y", 1991, "mean")),
treated.units = c(2,7),
control.units = c(29, 13, 17),
time.predictors.prior = c(1984:1989),
time.optimize.ssr = c(1984:1990),
unit.names.variable = "name",
time.plot = 1984:1996, gen.placebos = FALSE,
Sigf.ipop = 2)
Plot with the average path of the treated units and the average of their
respective synthetic controls:
multi$p
```

---

**plac.dist**

Plot the distribution of placebo samples for synthetic control analysis with multiple treated units.
**plac.dist**

**Description**
Takes the output object of `multiple.synth` creates a distribution of placebo average treatment effects, to test the significance of the observed ATE. Does so by sampling k placebos (where k = the number of treated units) `nboots` times, and calculating the average treatment effect of the k placebos each time.

**Usage**
```r
plac.dist(multiple.synth, nboots = 500)
plac_dist(multiple.synth, nboots = 500)
```

**Arguments**
- `multiple.synth` An object returned by the function `multiple.synth`
- `nboots` Number of bootstrapped samples of placebos to take. Default is 500. It should be higher for more reliable inference.

**Value**
- `p` The plot.
- `att.t` The observed average treatment effect.
- `df` Dataframe where each row is the ATT for one bootstrapped placebo sample, used to build the distribution plot.
- `p.value` Proportion of bootstrapped placebo samples ATTs which are more extreme than the observed average treatment effect. Equivalent to a p-value in a two-tailed test.

**Examples**
```r
Using the toy data from Synth:
library(Synth)
data(synth.data)set.seed(42)
Run the function similar to the dataprep() setup:
multi <- multiple.synth(foo = synth.data,
predictors = c("X1", "X2", "X3"),
predictors.op = "mean",
dependent = "Y",
unit.variable = "unit.num",
time.variable = "year",
treatment.time = 1990,
special.predictors = list(
 list("Y", 1991, "mean"),
 list("Y", 1985, "mean"),
 list("Y", 1980, "mean")
),
treated.units = c(2,7),
control.units = c(29, 13, 17, 32),
```

plot_placebos

Function to plot placebos of a synthetic control analysis

Description

Creates plots with the difference between observed units and synthetic controls for the treated and control units. See Abadie, Diamond, and Hainmueller (2011).

Usage

plot_placebos(tdf = tdf, discard.extreme = FALSE, mspe.limit = 20, xlab = NULL, ylab = NULL, title = NULL, alpha.placebos = 1, ...)

Arguments

- **tdf**: An object with a list of outcome values for placebos, constructed by `generate.placebos`.
- **discard.extreme**: Logical. Whether or not units with high pre-treatment MSPE should be excluded from the plot. Takes a default of `FALSE`.
- **mspe.limit**: Numerical. Used if `discard.extreme` is `TRUE`. It indicates how many times the pre-treatment MSPE of a placebo should be higher than that of the treated unit to be considered extreme and discarded. Default is `20`.
- **xlab**: Character. Optional. Label of the x axis.
- **ylab**: Character. Optional. Label of the y axis.
- **title**: Character. Optional. Title of the plot.
- **alpha.placebos**: The transparency setting, default of `1`.
- **...**: Optional arguments (currently not used).
## Example with toy data from Synth

```r
library(Synth)
Load the simulated data
data(synth.data)

Execute dataprep to produce the necessary matrices for synth
dataprep.out <- dataprep(
 foo = synth.data,
 predictors = c("X1"),
 predictors.op = "mean",
 dependent = "Y",
 unit.variable = "unit.num",
 time.variable = "year",
 special.predictors = list(
 list("Y", 1991, "mean")
),
 treatment.identifier = 7,
 controls.identifier = c(29, 2, 13, 17),
 time.predictors.prior = c(1984:1989),
 time.optimize.ssr = c(1984:1990),
 unit.names.variable = "name",
 time.plot = 1984:1996
)

run the synth command to create the synthetic control
synth.out <- synth(dataprep.out, Sigf.ipop=2)

run the generate.placebos command to reassign treatment status
to each unit listed as control, one at a time, and generate their
synthetic versions. Sigf.ipop = 2 for faster computing time.
Increase to the default of 5 for better estimates.
tdf <- generate.placebos(dataprep.out,synth.out, Sigf.ipop = 2, strategy='multiprocess')

Plot the gaps in outcome values over time of each unit --
treated and placebos -- to their synthetic controls
p <- plot_placebos(tdf,discard.extreme=TRUE, mspe.limit=10, xlab='Year')
p
```

---

**synth.data**

*Synth Data Synthetic data that can be used to explore SCtools.*
Description

Synth Data Synthetic data that can be used to explore SCtools.

Usage

synth.data

Format

a data.frame with 168 rows and 7 columns:

unit.num  The experimental unit number
year      year
name      name of the experimental unit
Y         outcome of interest
X1        Covariate 1
X2        Covariate 2
X3        Covariate 3
Index

*Topic datasets
   alcohol, 3
   synth.data, 15
alcohol, 3
dataprep, 10, 12, 15
gaps.plot, 15
generate.placebos, 4, 7–10, 14, 15
generate_placebos (generate.placebos), 4
is_tdf, 5
is_tdf_multi, 6
mspe.plot, 4, 6, 9
mspe.test, 4, 7, 8
mspe_plot (mspe.plot), 6
mspe_test (mspe.test), 8
multiple.synth, 10, 13
multiple_synth (multiple.synth), 10
path.plot, 11
plac.dist, 10, 12
plac_dist (plac.dist), 12
plot_placebos, 4, 7, 14
SCtools (SCtools-package), 2
SCtools-package, 2
Synth, 10, 12
synth, 7, 9, 12, 15
synth.data, 15