Package ‘SEA’

October 12, 2022

Type Package
Title Segregation Analysis
Version 2.0.1
Date 2022-3-28
Maintainer Yuan-Ming Zhang <soyzhang@mail.hzau.edu.cn>
Contact Yuan-Ming Zhang <soyzhang@mail.hzau.edu.cn>
Description A few major genes and a series of polygene are responsive for each quantitative trait. Major genes are individually identified while polygene is collectively detected. This is mixed major genes plus polygene inheritance analysis or segregation analysis (SEA). In the SEA, phenotypes from a single or multiple bi-parental segregation populations along with their parents are used to fit all the possible models and the best model of the trait for population phenotypic distributions is viewed as the model of the trait. There are fourteen types of population combinations available. Zhang Yuan-Ming, Gai Jun-Yi, Yang Yong-Hua (2003, <doi:10.1017/S0016672303006141>).
Depends shiny,MASS,doParallel,foreach,methods
Imports KScorrect,utils,stats,grDevices,graphics,data.table
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-03-30 07:30:12 UTC
Author Jing-Tian Wang [aut],
Ya-Wen Zhang [aut],
Yuan-Ming Zhang [aut, cre] (<https://orcid.org/0000-0003-2317-2190>)

R topics documented:

SEA-package ... 2
BCexdata ... 3
BCFexdata ... 4
BCFFun ... 4
BCFun ... 5
Description

A few major genes and a series of polygene are responsive for each quantitative trait. Major genes are individually identified while polygene is collectively detected. This is mixed major genes plus polygene inheritance analysis or segregation analysis (SEA). In the SEA, phenotypes from a single or multiple bi-parental segregation populations along with their parents are used to fit all the possible models and the best model for population phenotypic distributions is viewed as the model of the trait. There are fourteen types of population combinations available. Zhang Yuan-Ming, Gai Jun-Yi, Yang Yong-Hua (2003, <doi:10.1017/S0016672303006141>), and Wang Jing-Tian, Zhang Ya-Wen, Du Ying-Wen, Ren Wen-Long, Li Hong-Fu, Sun Wen-Xian, Ge Chao, and Zhang Yuan-Ming (2022, <doi:10.3724/SP.J.1006.2022.14088>)
Details

Package: SEA
Type: Package
Version: 2.0.1
Date: 2022-03-28
Depends: shiny, MASS, doParallel, foreach
Imports: KScorrect, kolmim, utils, stats, grDevices, graphics, data.table
License: GPL(>=2)
LazyLoad: yes

Users can use 'SEA()' start the GUI.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

References

Examples

```r
## Not run: SEA()
```

BCexdata

```r
BC population dataset
```

Description

The phenotype of BC population.

Usage

```r
data(BCexdata)
```

Details

Dataset input of BCFun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
BCFxdata \hspace{1cm} BCF population dataset

Description

The phenotype of BCF population.

Usage

data(BCFxdata)

Details

Dataset input of BCFFun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

BCFFun \hspace{1cm} segregation analysis of BCF population

Description

Phenotypic observations in BCF population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

BCFFun(df,model,BCFtext2)

Arguments

df \hspace{1cm} phenotype matrix.
model \hspace{1cm} genetic model.
BCFtext2 \hspace{1cm} number of plants measured in each family.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

BCF=data(BCFxdata)
BCFFun(BCFxdata,"0MG",1)
BCFun

segregation analysis of BC population

Description

Phenotypic observations in BC population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

```r
BCFun(df, model)
```

Arguments

- `df`: phenotype matrix.
- `model`: genetic model.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

```r
BC = data(BCexdata)
BCFun(BCexdata, "0MG")
```

BILexdata

BIL population dataset

Description

The phenotype of BIL population.

Usage

```r
data(BILexdata)
```

Details

Dataset input of BILFun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
BILFun
segregation analysis of BIL population

Description
Phenotypic observations in BIL population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage
BILFun(df, model, BILfr)

Arguments
- `df`: phenotype matrix.
- `model`: genetic model.
- `BILfr`: BIL type.

Author(s)
Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples
```
BIL=data(BILexdata)
BILFun(BILexdata,"0MG","BIL1(F1xP1)")
```

DHexdata
DH population dataset

Description
The phenotype of DH population.

Usage
data(DHexdata)

Details
Dataset input of DHFun function.

Author(s)
Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
DHFun

segregation analysis of DH population

Description

Phenotypic observations in DH population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

```r
DHFun(df, model)
```

Arguments

- `df`: phenotype matrix.
- `model`: genetic model.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming

Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

```r
DH=data(DHexdata)
DHFun(DHexdata,"0MG")
```

F23exdata

F23 population dataset

Description

The phenotype of F23 population.

Usage

```r
data(F23exdata)
```

Details

Dataset input of F23Fun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming

Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
F23Fun

segregation analysis of F23 population

Description
Phenotypic observations in F23 population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

F23Fun(df,model,m_nf)

Arguments

- df: phenotype matrix.
- model: genetic model.
- m_nf: number of plants measured in each family.

Author(s)
Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

F23=data(F23exdata)
F23Fun(F23exdata,"0MG",1)

F2exdata

F2 population dataset

Description
The phenotype of F2 population.

Usage

data(F2exdata)

Details
Dataset input of F2Fun function.

Author(s)
Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
F2Fun

Description

Phenotypic observations in F2 population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

\[
\text{F2Fun}(\text{df}, \text{model})
\]

Arguments

- **df**: phenotype matrix.
- **model**: genetic model.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

\[
\text{F2=\text{data(F2exdata)}} \quad \text{F2Fun(F2exdata,"0MG")}
\]

G3DHexdata

Description

The phenotype of G3DH population.

Usage

\[
\text{data(G3DHexdata)}
\]

Details

Dataset input of G3DHFun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
G3DHFun

segregation analysis of G3DH population

Description

Phenotypic observations in G3DH population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

G3DHFun(df,model,G3DHtext2)

Arguments

- df: phenotype matrix.
- model: genetic model.
- G3DHtext2: number of plants measured in each family.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

G3DH=data(G3DHexdata)
G3DHFun(G3DHexdata,"0MG",1)

G4F2exdata

G4F2 population dataset

Description

The phenotype of G4F2 population.

Usage

data(G4F2exdata)

Details

Dataset input of G4F2Fun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
G4F2Fun

segregation analysis of G4F2 population

Description

Phenotypic observations in G4F2 population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

```
G4F2Fun(df,model)
```

Arguments

- `df` : phenotype matrix.
- `model` : genetic model.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming

Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

```
G4F2=data(G4F2exdata)
G4F2Fun(G4F2exdata,"PG-AD")
```

G4F3exdata

G4F3 population dataset

Description

The phenotype of G4F3 population.

Usage

```
data(G4F3exdata)
```

Details

Dataset input of G4F3Fun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming

Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
G4F3Fun
segregation analysis of G4F3 population

Description

Phenotypic observations in G4F3 population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

```r
G4F3Fun(df,model,G4F3text2)
```

Arguments

- `df`: phenotype matrix.
- `model`: genetic model.
- `G4F3text2`: number of plants measured in each family.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

```r
G4F3=data(G4F3exdata)
G4F3Fun(G4F3exdata,"PG-AD",1)
```

G5BCexdata
G5BC population dataset

Description

The phenotype of G5BC population.

Usage

```r
data(G5BCexdata)
```

Details

Dataset input of G5BCFun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
G5BCFexdata

G5BCFexdata G5BCF population dataset

Description
The phenotype of G5BCF population.

Usage
data(G5BCFexdata)

Details
Dataset input of G5BCFFun function.

Author(s)
Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

G5BCFFun segregation analysis of G5BCF population

Description
Phenotypic observations in G5BCF population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage
G5BCFFun(df,model,G5BCFtext2)

Arguments
df phenotype matrix.
model genetic model.
G5BCFtext2 number of plants measured in each family.

Author(s)
Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples
G5BCF=data(G5BCFexdata)
G5BCFFun(G5BCFexdata,"1MG-AD",1)
G5BCFun

segregation analysis of G5BC population

Description

Phenotypic observations in G5BC population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

G5BCFun(df, model)

Arguments

- *df* phenotype matrix.
- *model* genetic model.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming

Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

G5BC=data(G5BCexdata)
G5BCFun(G5BCexdata,"1MG-AD")

G5exdata *G5 population dataset*

Description

The phenotype of G5 population.

Usage

data(G5exdata)

Details

Dataset input of G5Fun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming

Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
G5Fun

Description

Phenotypic observations in G5 population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

G5Fun(df,model,G5text2)

Arguments

- df: phenotype matrix.
- model: genetic model.
- G5text2: number of plants measured in each family.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming

Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

G5=data(G5exdata)
G5Fun(G5exdata,"PG-AD",1)

G6exdata

Description

The phenotype of G6 population.

Usage

data(G6exdata)

Details

Dataset input of G6Fun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming

Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
G6Fexdata

Description

The phenotype of G6F population.

Usage

data(G6Fexdata)

Details

Dataset input of G6FFun function.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

G6FFun

Description

Phenotypic observations in G6F population have often been used to identify mixed major-gene plus polygene inheritance model for quantitative traits in plants.

Usage

G6FFun(df,model,G6Ftext2)

Arguments

- **df**: phenotype matrix.
- **model**: genetic model.
- **G6Ftext2**: number of plants measured in each family.

Author(s)

Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples

G6F=data(G6Fexdata)
G6FFun(G6Fexdata,"PG-AD",1)
G6Fun

Description
Phenotypic observations in G6 population have often been used to identify mixed major-gene plus
dyogene inheritance model for quantitative traits in plants.

Usage
G6Fun(df,model)

Arguments
- df: phenotype matrix.
- model: genetic model.

Author(s)
Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples
G6=data(G6exdata)
G6Fun(G6exdata,"PG-AD")

PosPro

Description
calculate posterior probability of the optimal model

Usage
PosPro(Population,result,data)

Arguments
- Population: which Population to analysis.
- result: result of calculation used corresponding population function.
- data: phenotype matrix.
Author(s)
Wang Jing-Tian, Zhang Ya-Wen, and Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>

Examples
F23=data(F23exdata)
result<-F23Fun(F23exdata,"1MG-AD",1)
PosPro("F2:3",result,F23exdata)
Index

B1 (BCexdata), 3
B2 (BCexdata), 3
BCexdata, 3
BCF–B12 (BCFexdata), 4
BCF–B22 (BCFexdata), 4
BCFexdata, 4
BCFFun, 4
BCFun, 5
BIL (BILexdata), 5
BILexdata, 5
BILFun, 6

DH (DHexdata), 6
DHexdata, 6
DHFun, 7

F2 (F2exdata), 8
F23 (F23exdata), 7
F23exdata, 7
F23Fun, 8
F2exdata, 8
F2Fun, 9

G3DH–DH (G3DHexdata), 9
G3DH–P1 (G3DHexdata), 9
G3DH–P2 (G3DHexdata), 9
G3DHexdata, 9
G3DHFun, 10
G4F2–F1 (G4F2exdata), 10
G4F2–F2 (G4F2exdata), 10
G4F2–P1 (G4F2exdata), 10
G4F2–P2 (G4F2exdata), 10
G4F2exdata, 10
G4F2Fun, 11
G4F3–F1 (G4F3exdata), 11
G4F3–F23 (G4F3exdata), 11
G4F3–P1 (G4F3exdata), 11
G4F3–P2 (G4F3exdata), 11
G4F3exdata, 11
G4F3Fun, 12

G5–F1 (G5exdata), 14
G5–F2 (G5exdata), 14
G5–F23 (G5exdata), 14
G5–P1 (G5exdata), 14
G5–P2 (G5exdata), 14
G5BC–B1 (G5BCexdata), 12
G5BC–B2 (G5BCexdata), 12
G5BC–F1 (G5BCexdata), 12
G5BC–P1 (G5BCexdata), 12
G5BC–P2 (G5BCexdata), 12
G5BCexdata, 12
G5BCF–B12 (G5BCFexdata), 13
G5BCF–B22 (G5BCFexdata), 13
G5BCF–F1 (G5BCFexdata), 13
G5BCF–P1 (G5BCFexdata), 13
G5BCF–P2 (G5BCFexdata), 13
G5BCFexdata, 13
G5BCFFun, 13
G5BCFun, 14
G5exdata, 14
G5Fun, 15
G6–B1 (G6exdata), 15
G6–B2 (G6exdata), 15
G6–F1 (G6exdata), 15
G6–F2 (G6exdata), 15
G6–P1 (G6exdata), 15
G6–P2 (G6exdata), 15
G6exdata, 15
G6F–B12 (G6Fexdata), 16
G6F–B22 (G6Fexdata), 16
G6F–F1 (G6Fexdata), 16
G6F–F23 (G6Fexdata), 16
G6F–P1 (G6Fexdata), 16
G6F–P2 (G6Fexdata), 16
G6Fexdata, 16
G6FFun, 16
G6Fun, 17

PosPro, 17
SEA (SEA-package). 2
SEA-package. 2