Package ‘SGDinference’

November 16, 2023

Type Package
Title Inference with Stochastic Gradient Descent
Version 0.1.0
Description Estimation and inference methods for large-scale mean and quantile regression models via stochastic (sub-)gradient descent (S-subGD) algorithms.
The inference procedure handles cross-sectional data sequentially:
(i) updating the parameter estimate with each incoming "new observation",
(ii) aggregating it as a Polyak-Ruppert average, and
(iii) computing an asymptotically pivotal statistic for inference through random scaling.
The methodology used in the 'SGDinference' package is described in detail in the following papers:
License GPL-3
Imports stats, Rcpp (>= 1.0.5)
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.2.3
Encoding UTF-8
Suggests knitr, rmarkdown, testthat (>= 3.0.0), lmtest (>= 0.9),
sandwich (>= 3.0), microbenchmark (>= 1.4), conquer (>= 1.3.3)
VignetteBuilder knitr
Config/testthat/edition 3
Depends R (>= 3.5.0)
LazyData true
BugReports https://github.com/SGDinference-Lab/SGDinference/issues
NeedsCompilation yes
Description

The Census2000 dataset from Acemoglu and Autor (2011) consists of observations on 26,120 nonwhite, female workers. This small dataset is constructed from "microwage2000_ext.dta" at https://economics.mit.edu/people/faculty/david-h-autor/data-archive. Specifically, observations are dropped if hourly wages are missing or years of education are smaller than 6. Then, a 5 percent random sample is drawn to make the dataset small.

Usage

Census2000

Format

A data frame with 26,120 rows and 3 variables:

- ln_hrwage log hourly wages
- edyrs years of education
- exp years of potential experience

Source

The original dataset from Acemoglu and Autor (2011) is available at https://economics.mit.edu/people/faculty/david-h-autor/data-archive.
References

Description

The ‘SGDinference’ package provides estimation and inference methods for large-scale mean and quantile regression models via stochastic (sub-)gradient descent (S-subGD) algorithms. The inference procedure handles cross-sectional data sequentially: (i) updating the parameter estimate with each incoming "new observation", (ii) aggregating it as a Polyak-Ruppert average, and (iii) computing an asymptotically pivotal statistic for inference through random scaling.

Author(s)

Sokbae Lee, Yuan Liao, Myung Hwan Seo, Youngki Shin

Usage

sgdi_lm(
 formula,
 data,
 gamma_0 = NULL,
 alpha = 0.501,
 burn = 1,
 inference = "rs",
 bt_start = NULL,
 studentize = TRUE,
 no_studentize = 100L,
 intercept = TRUE,
 rss_idx = c(1),
 level = 0.95,
 path = FALSE,
 path_index = c(1)
)
Arguments

formula
- formula. The response is on the left of a ~ operator. The terms are on the right of a ~ operator, separated by a + operator.

data
- an optional data frame containing variables in the model.

gamma_0
- numeric. A tuning parameter for the learning rate (gamma_0 x t ^ alpha). Default is NULL and it is determined by the adaptive method: 1/sd(y).

alpha
- numeric. A tuning parameter for the learning rate (gamma_0 x t ^ alpha). Default is 0.501.

burn
- numeric. A tuning parameter for "burn-in" observations. We burn-in up to (burn-1) observations and use observations from (burn) for estimation. Default is 1, i.e. no burn-in.

inference
- character. Specifying the inference method. Default is "rs" (random scaling matrix for joint inference using all the parameters). "rss" is for ransom scaling subset inference. This option requires that "rss_idx" should be provided. "rsd" is for the diagonal elements of the random scaling matrix, excluding one for the intercept term.

bt_start
- numeric. (p x 1) vector. User-provided starting value Default is NULL.

studentize
- logical. Studentize regressors. Default is TRUE

no_studentize
- numeric. The number of observations to compute the mean and std error for studentization. Default is 100.

intercept
- logical. Use the intercept term for regressors. Default is TRUE. If this option is TRUE, the first element of the parameter vector is the intercept term.

rss_idx
- numeric. Index of x for random scaling subset inference. Default is 1, the first regressor of x. For example, if we want to focus on the 1st and 3rd covariates of x, then set it to be c(1,3).

level
- numeric. The confidence level required. Default is 0.95. Can choose 0.90 and 0.80.

path
- logical. The whole path of estimation results is out. Default is FALSE.

path_index
- numeric. A vector of indices to print out the path. Default is 1.

Value

An object of class "sgdi", which is a list containing the following

- **coefficient** A (p + 1)-vector of estimated parameter values including the intercept.
- **var** A (p+1)x(p+1) variance-covariance matrix of coefficient
- **ci.lower** The lower part of the 95% confidence interval
- **ci.upper** The upper part of the 95% confidence interval
- **level** The confidence level required. Default is 0.95.
- **path_coefficients** The path of coefficients.
Examples

```r
n = 1e05
p = 5
bt0 = rep(5, p)
x = matrix(rnorm(n*(p-1)), n, (p-1))
y = cbind(1, x) %*% bt0 + rnorm(n)
my.dat = data.frame(y=y, x=x)
sgdi.out = sgdi_lm(y~., data=my.dat)
```

sgdi_qr

Averaged S-subGD and its Inference via Random Scaling in Linear Quantile Regression

Description

Compute the averaged S-subGD (stochastic subgradient) estimator for the coefficients in linear quantile regression and conduct inference via random scaling method.

Usage

```r
sgdi_qr(
  formula,  
data,  
gamma_0 = NULL,  
alpha = 0.501,  
burn = 1,  
inference = "rs",  
bt_start = NULL,  
qt = 0.5,  
studentize = TRUE,  
no_studentize = 100L,  
intercept = TRUE,  
rss_idx = c(1),  
level = 0.95,  
path = FALSE,  
path_index = c(1)
)
```

Arguments

- `formula`: formula. The response is on the left of a ~ operator. The terms are on the right of a ~ operator, separated by a + operator.
- `data`: an optional data frame containing variables in the model.
- `gamma_0`: numeric. A tuning parameter for the learning rate (gamma_0 x t ^ alpha). Default is NULL and it is determined by the adaptive method in Lee et al. (2023).
- `alpha`: numeric. A tuning parameter for the learning rate (gamma_0 x t ^ alpha). Default is 0.501.
burn numeric. A tuning parameter for "burn-in" observations. We burn-in up to (burn-1) observations and use observations from (burn) for estimation. Default is 1, i.e. no burn-in.

inference character. Specifying the inference method. Default is "rs" (random scaling matrix for joint inference using all the parameters). "rss" is for ransom scaling subset inference. This option requires that "rss_idx" should be provided. "rsd" is for the diagonal elements of the random scaling matrix, excluding one for the intercept term.

bt_start numeric. (p x 1) vector, excluding the intercept term. User-provided starting value. Default is NULL. Then, it is estimated by conquer.

qt numeric. Quantile. Default is 0.5.

studentize logical. Studentize regressors. Default is TRUE.

no_studentize numeric. The number of observations to compute the mean and std error for studentization. Default is 100.

intercept logical. Use the intercept term for regressors. Default is TRUE. If this option is TRUE, the first element of the parameter vector is the intercept term.

rss_idx numeric. Index of x for random scaling subset inference. Default is 1, the first regressor of x. For example, if we want to focus on the 1st and 3rd covariates of x, then set it to be c(1,3).

level numeric. The confidence level required. Default is 0.95. Can choose 0.90 and 0.80.

path logical. The whole path of estimation results is out. Default is FALSE.

path_index numeric. A vector of indices to print out the path. Default is 1.

Value

An object of class "sgdi", which is a list containing the following

- **coefficients** a vector of estimated parameter values
- **V** a random scaling matrix depending on the inference method
- **ci.lower** a vector of lower confidence limits
- **ci.upper** a vector of upper confidence limits
- **inference** character that specifies the inference method
- **level** The confidence level required. Default is 0.95.
- **path_coefficients** The path of coefficients.

Note

The dimension of coefficients is (p+1) if intercept=TRUE or p otherwise. The random scaling matrix V is a full matrix if "rs" is chosen; it is a scalar or smaller matrix, depending on the specification of "rss_idx" if "rss" is selected; it is a vector of diagonal elements of the full matrix if "rsd" is selected. In this case, the first element is missing if the intercept is included. The confidence intervals may contain NA under "rss" and "rsd".
Examples

```
n = 1e05
p = 5
bt0 = rep(5,p)
x = matrix(rnorm(n*(p-1)), n, (p-1))
y = cbind(1,x) %*% bt0 + rnorm(n)
my.dat = data.frame(y=y, x=x)
sgdi.out = sgdi_qr(y~, data=my.dat)
```

Description

Compute the averaged SGD estimator for the coefficients in linear mean regression.

Usage

```r
sgd_lm(
  formula,      
data,         
gamma_0 = NULL,   
alpha = 0.501,  
burn = 1,      
bt_start = NULL,  
studentize = TRUE,    
no_studentize = 100L,  
intercept = TRUE,  
path = FALSE,  
path_index = c(1)
)
```

Arguments

- `formula` : formula. The response is on the left of a ~ operator. The terms are on the right of a ~ operator, separated by a + operator.
- `data` : an optional data frame containing variables in the model.
- `gamma_0` : numeric. A tuning parameter for the learning rate (gamma_0 x t ^ alpha). Default is NULL and it is determined by the adaptive method: 1/sd(y).
- `alpha` : numeric. A tuning parameter for the learning rate (gamma_0 x t ^ alpha). Default is 0.501.
- `burn` : numeric. A tuning parameter for "burn-in" observations. We burn-in up to (burn-1) observations and use observations from (burn) for estimation. Default is 1, i.e. no burn-in.
- `bt_start` : numeric. (p x 1) vector, excluding the intercept term. User-provided starting value. Default is NULL.
studentize logical. Studentize regressors. Default is TRUE.
no_studentize numeric. The number of observations to compute the mean and std error for studentization. Default is 100.
intercept logical. Use the intercept term for regressors. Default is TRUE. If this option is TRUE, the first element of the parameter vector is the intercept term.
path logical. The whole path of estimation results is out. Default is FALSE.
path_index numeric. A vector of indices to print out the path. Default is 1.

Value
An object of class "sgdi", which is a list containing the following

coefficients a vector of estimated parameter values
path_coefficients The path of coefficients.

Note
The dimension of coefficients is (p+1) if intercept=TRUE or p otherwise.

Examples
n = 1e05
p = 5
bt0 = rep(5,p)
x = matrix(rnorm(n*(p-1)), n, (p-1))
y = cbind(1,x) %*% bt0 + rnorm(n)
my.dat = data.frame(y=y, x=x)
sgd.out = sgd_lm(y~., data=my.dat)

sgd_qr Averaged S-subGD Estimator in Linear Quantile Regression

Description
Compute the averaged S-subGD (stochastic subgradient) estimator for the coefficients in linear quantile regression.

Usage
sgd_qr(
 formula,
 data,
 gamma_0 = NULL,
 alpha = 0.501,
 burn = 1,
 bt_start = NULL,
 qt = 0.5,
studentize = TRUE,
no_studentize = 100L,
intercept = TRUE,
path = FALSE,
path_index = c(1)
)

Arguments

formula formula. The response is on the left of a ~ operator. The terms are on the right of a ~ operator, separated by a + operator.
data an optional data frame containing variables in the model.
gamma_0 numeric. A tuning parameter for the learning rate (gamma_0 x t ^ alpha). Default is NULL and it is determined by the adaptive method in Lee et al. (2023).
alpha numeric. A tuning parameter for the learning rate (gamma_0 x t ^ alpha). Default is 0.501.
burn numeric. A tuning parameter for "burn-in" observations. We burn-in up to (burn-1) observations and use observations from (burn) for estimation. Default is 1, i.e. no burn-in.
bet_start numeric. (p x 1) vector, excluding the intercept term. User-provided starting value. Default is NULL. Then, it is estimated by conquer.
qt numeric. Quantile. Default is 0.5.
studentize logical. Studentize regressors. Default is TRUE.
no_studentize numeric. The number of observations to compute the mean and std error for studentization. Default is 100.
intercept logical. Use the intercept term for regressors. Default is TRUE. If this option is TRUE, the first element of the parameter vector is the intercept term.
path logical. The whole path of estimation results is out. Default is FALSE.
path_index numeric. A vector of indices to print out the path. Default is 1.

Value

An object of class "sgdi", which is a list containing the following

coefficients a vector of estimated parameter values
path_coefficients The path of coefficients.

Note

The dimension of coefficients is (p+1) if intercept=TRUE or p otherwise.
Examples

\[
\begin{align*}
 n &= 1e05 \\
 p &= 5 \\
 bt0 &= \text{rep}(5, p) \\
 x &= \text{matrix}(\text{rnorm}(n*(p-1)), n, (p-1)) \\
 y &= \text{cbind}(1, x) \times bt0 + \text{rnorm}(n) \\
 \text{my.dat} &= \text{data.frame}(y=y, x=x) \\
 \text{sgd.out} &= \text{sgd_qr}(y \sim ., \text{data=my.dat})
\end{align*}
\]
Index

* datasets
 Census2000, 2
Census2000, 2
sgd_lm, 7
sgd_qr, 8
sgdi_lm, 3
sgdi_qr, 5
SGDinference, 3