Package ‘SIDES’

September 1, 2023

Type Package

Title Subgroup Identification Based on Differential Effect Search

Version 1.18

Date 2023-08-31

Author Marie-Karelle Riviere

Maintainer Marie-Karelle Riviere <eldamjh@gmail.com>

Copyright All files are copyright Sanofi Aventis

Description Provides function to apply "Subgroup Identification based on Differential Effect Search" (SIDES) method proposed by Lipkovich et al. (2011) <doi:10.1002/sim.4289>.

License GPL-3

Imports memoise (>= 1.0.0), nnet (>= 7.3-12), multicool (>= 0.1-9),
 survival (>= 2.37-7), doParallel (>= 1.0.10), foreach (>= 1.4.3), MASS

Depends R (>= 3.1.2)

LinkingTo

NeedsCompilation no

Repository CRAN

Date/Publication 2023-09-01 08:40:02 UTC

R topics documented:

SIDES-package ... 2
SIDES ... 2
simulation_SIDES ... 5

Index 9
SIDES-package

Subgroup Identification Based on Differential Effect Search

Description

Provides function to apply "Subgroup Identification based on Differential Effect Search" (SIDES) method proposed by Lipkovich et al. (2011) <doi:10.1002/sim.4289>.

Details

Package: SIDES
Type: Package
Version: 1.18
Date: 2023-08-31
License: GPL-3

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

SIDES

SIDES algorithm

Description

SIDES apply Subgroup Identification based on Differential Effect Search algorithm on a data set for binary, continuous, survival or count outcome.

Usage

```
SIDES(all_set, type_var, type_outcome, level_control, D=0, L=3, S, M=5, gamma=rep(1,3), H=1, pct_rand=0.5, prop_gpe=c(1), alloc_high_prob=TRUE, num_crit=1, step=0.5, nb_sub_cross=5, alpha, nsim=500, nsim_cv=500, ord.bin=10, M_per_covar=FALSE, upper_best=TRUE, selec=FALSE, seed=42, modified=TRUE)
```
Arguments

all_set
Data frame representing the global data set. The first column must be the outcome (if the outcome is survival, this column should contain a data frame with the time-to-event in the first column and the indicator status in the second column), the second column must be the treatment variable, and other columns are for covariates.

type_var
A vector of length the number of covariates giving for each of them their type. Must be either "continuous", "ordinal" or "nominal".

type_outcome
Type of outcome. Are implementing "continuous", "binary", "survival" and "count".

level_control
Value representing the control in the data set.

D
Minimum desired difference to be demonstrated between the treatment and the control.

L
Maximum number of covariates used to define a subgroup (= depth of the tree). The default value is set at 3.

S
Minimum subgroup size desired. (Subgroups that do not meet this requirement will be excluded).

M
Maximum number of best promising subgroups selected at each step of the algorithm. The default value is set at 5.

gamma
Vector of length L representing the relative improvement parameter. Each element must be between 0 and 1. Smaller values indicate more selective procedure. If any improvement is desired, it is recommended to set all elements to 1. Default values are set at 1.

H
Number of data sets the global data set is split into. There will be 1 training data set and H-1 validation sets. The default value is set at 1.

pct_rand
Proportion of the global data set that is randomly allocated between training and validation sets. The default value is set at 0.5.

prop_gpe
Vector of size H containing the proportion of patients for each data sets (training and validation).

alloc_high_prob
Boolean with value TRUE indicating that patients are allocated to the set the minimizing the imbalanced score, or FALSE indicated that patients are randomized into those sets inversely proportional to their imbalanced score.

num_crit
Integer representing the splitting criterion used. Value equal to 1 stands for criterion maximizing the differential effect between the two child subgroups, while value equal to 2 stands for criterion maximizing the treatment effect in at least one of the two child subgroups. The default value is set at 1.

step
When gamma is not specified, step into which to cut the interval [0,1] to determine gamma by cross-validation. Warning, this process is highly time-consuming and several ties are obtained, thus it is more recommended to provide gamma after thinking about what is desired. The default value is set at 0.5.

nb_sub_cross
Number of folds for cross-validation to determine gamma. The default value is set at 5.
alpha Overall type I error rate.
nsim Number of permutations for the resampling-based method used to protect the overall Type I error rate in a weak sense.
nsim_cv Number of permutations for the resampling-based method used to protect the overall Type I error rate in the cross-validation part to determine gamma. The default value is set at 500.
ord.bin Number of classes continuous covariates will be discretized into.
M_per_covar Boolean indicating if the M best promising child subgroups are selected by covariate (TRUE) or across all remaining covariates. The default value is set at FALSE.
upper_best Boolean indicating if greater values of the outcome mean better responses.
selec Boolean indicating if in addition of the validated subgroups, the output should also contain subgroups that were selected (before validation).
seed Seed. The default value is set at 42.
modified Boolean indicating if modified or original Sidak correction is used for over-representation of covariates with more than 2 levels. Default value is TRUE.

Value
An object of class "SIDES" is returned, consisting of:
candidates A list containing selected candidates subgroups (before validation step) and their associated p-values.
confirmed A list containing confirmed/validated subgroups and their associated p-values.

Author(s)
Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Examples
WARNING: the package does not catch wrong entries by the user and could then # return any type of error that would not make sense! # Data must be supplied as numerical, even factors / characters must be # transformed into numerical values and type is then provided through "type_var"

n=500
x=data.frame(matrix(rnorm(n*5,10,5),n,5),matrix(rbinom(n*5,1,0.5),n,5))
colnames(x)=paste("x",c(1:10),sep="\n")
rownames(x)=1:n
trt=rbinom(n,1,0.5)
I1=(x$x1>10);n1=sum(I1)

Value
An object of class "SIDES" is returned, consisting of:
candidates A list containing selected candidates subgroups (before validation step) and their associated p-values.
confirmed A list containing confirmed/validated subgroups and their associated p-values.

Author(s)
Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Examples
WARNING: the package does not catch wrong entries by the user and could then # return any type of error that would not make sense! # Data must be supplied as numerical, even factors / characters must be # transformed into numerical values and type is then provided through "type_var"

n=500
x=data.frame(matrix(rnorm(n*5,10,5),n,5),matrix(rbinom(n*5,1,0.5),n,5))
colnames(x)=paste("x",c(1:10),sep="\n")
rownames(x)=1:n
trt=rbinom(n,1,0.5)
I1=(x$x1>10);n1=sum(I1)
I6=(x$x6==0);n6=sum(I6)
I7=(x$x7==0);n7=sum(I7)
y=trt*(1-I1)*n1+I1*(n-n1)-(1-I6)*n6+I6*(n-n6)-(1-I7)*n7)/n+rnorm(n)
data=cbind(y,trt,x)
head(data)

REAL EXAMPLES TO UNCOMMENT
#s1 = SIDES(all_set=data,
#type_var=c(rep("continuous",5),rep("ordinal",5)), type_outcome="continuous",
#level_control=0, D=0, L=3, S=30, M=5, gamma=c(1,1,1), H=1, num_crit=1,
#alpha=0.10, nsim=1000, ord.bin=10, upper_best=TRUE, seed=42)

#s1 = SIDES(all_set=data,
#type_var=c(rep("continuous",5),rep("ordinal",5)), type_outcome="continuous",
#level_control=0, D=0, L=3, S=30, M=5, gamma=c(1,1,1), H=2, pct_rand=0.5,
#prop_gpe=c(0.7,0.3), num_crit=1, alpha=0.10, nsim=1000, ord.bin=10,
#upper_best=TRUE, seed=42)

#Example on how to enter data for survival
#n=200
#data=data.frame(rep(NA,n), rbinom(n,1,0.5), matrix(rbinom(n*5,1,0.5),n,5))
#colnames(data)=c("y", "trt", paste("x",c(1:5),sep=""))
#rownames(data)=1:n
#data$y = matrix(NA,ncol=2,nrow=n)
#data$y[,1] = rexp(n)
#data$y[,2] = rbinom(n,1,0.5)
#head(data)

simulation_SIDES

Simulations of SIDES method

Description

`simulation_SIDES` is used to perform simulations of SIDES algorithm on a data set for binary, continuous, survival or count outcome.

Usage

```
simulation_SIDES(all_set, type_var, type_outcome, level_control, D=0, L=3, S, M=5, num_crit=1, gamma=rep(1,3), alpha, nsim=500, ord.bin=10, nrep=100, seed=42, H=1, pct_rand=0.5, prop_gpe=c(1), alloc_high_prob=TRUE, step=0.5, nb_sub_cross=5, nsim_cv=500, M_per_covar=FALSE, upper_best=TRUE, nb_cores=NA, ideal=NA, modified=TRUE)
```

Arguments

- **all_set** Data frame representing the global data set. The first column must be the outcome (if the outcome is survival, this column should contain a data frame with
the time-to-event in the first column and the indicator status in the second column), the second column must be the treatment variable, and other columns are for covariates.

type_var A vector of length the number of covariates giving for each of them their type. Must be either "continuous", "ordinal" or "nominal".

type_outcome Type of outcome. Are implementing "continuous", "binary", "survival" and "count".

level_control Value representing the control in the data set.

D Minimum desired difference to be demonstrate between the treatment and the control.

L Maximum number of covariates used to define a subgroup (= depth of the tree). The default value is set at 3.

S Minimum subgroup size desired. (Subgroups that do not meet this requirement will be excluded).

M Maximum number of best promising subgroups selected at each step of the algorithm. The default value is set at 5.

num_crit Integer representing the splitting criterion used. Value equal to 1 stands for criterion maximizing the differential effect between the two child subgroups, while value equal to 2 stands for criterion maximizing the treatment effect in at least one of the two child subgroups. The default value is set at 1.

gamma Vector of length L representing the relative improvement parameter. Each element must be between 0 and 1. Smaller values indicates more selective procedure. If any improvement is desired, it is recommended to set all elements to 1. Default values are set at 1.

alpha Overall type I error rate.

nsim Number of permutations for the resampling-based method used to protect the overall Type I error rate in a weak sense.

ord.bin Number of classes continuous covariates will be discretized into.

nrep Number of simulation replicates.

seed Seed. The default value is set at 42.

H Number of data sets the global data set is split into. There will be 1 training data set and H-1 validation sets. The default value is set at 1.

pct_rand Proportion of the global data set that is randomly allocated between training and validation sets. The default value is set at 0.5.

prop_gpe Vector of size H containing the proportion of patients for each data sets (training and validation).

alloc_high_prob Boolean with value TRUE indicating that patients are allocated to the set the minimizing the imbalanced score, or FALSE indicated that patients are randomized into those sets inversely proportional to their imbalanced score.

step When gamma is not specified, step into which to cut the interval [0,1] to determine gamma by cross-validation. Warning, this process is highly time-consuming and several ties are obtained, thus it is more recommended to provide gamma after thinking about what is desired. The default value is set at 0.5.
simulation_SIDES

It is returned, consisting of:

- **pct_no_subgroup**
 - Percentage of simulations where no subgroup is identified and validated.

- **mean_size**
 - Mean subgroups size across all simulations (returning at least one subgroup).

- **subgroups**
 - List of subgroups that are validated as responders.

- **pct_selection**
 - Vector containing the percentage of selection and validation of each subgroup in subgroups.

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Examples

WARNING: the package does not catch wrong entries by the user and could then return any type of error that would not make sense!
Data must be supplied as numerical, even factors / characters must be transformed into numerical values and type is then provided through "type_var"

n=500
x=data.frame(matrix(rnorm(n*10,10,5),n,10),matrix(rbinom(n*10,1,0.5),n,10))
colnames(x)=paste("x",c(1:10),sep="_")
rownames(x)=1:n
trt=rbinom(n,1,0.5)
I1=(x$x1>10);n1=sum(I1)
I6=(x$x6==0);n6=sum(I6)
I7=(x$x7==0);n7=sum(I7)
y=trt*(I1*(n-n1)-(1-I1)*n1+I6*(n-n6)-(1-I6)*n6+I7*(n-n7)-(1-I7)*n7)/n+rnorm(n)
data=cbind(y,trt,x)

DUMMY EXAMPLE TO RUN
s1 = simulation_SIDES(all_set=data[,c(1,2,8,9,10)], type_var=rep("ordinal",3),
type_outcome="continuous", level_control=0, D=0, L=1, S=50, M=1, num_crit=1,
gamma=c(1), alpha=0.05, nsim=1, ord.bin=10, nrep=1, seed=42,
H=2, pct_rand=1.0, prop_gpe=c(0.7,0.3), upper_best=TRUE, nb_cores=1)

REAL EXAMPLES TO UNCOMMENT
#s1 = simulation_SIDES(all_set=data,
#type_var=c(rep("continuous",5),rep("ordinal",5)), type_outcome="continuous",
#level_control=0, D=0, L=3, S=30, M=5, num_crit=1, gamma=c(1,1,1), alpha=0.10,
#nsim=1000, ord.bin=10, nrep=1000, seed=42, H=1, upper_best=TRUE)
#s1

#s1 = simulation_SIDES(all_set=data,
#type_var=c(rep("continuous",5),rep("ordinal",5)), type_outcome="continuous",
#level_control=0, D=0, L=3, S=30, M=5, num_crit=1, gamma=c(1,1,1), alpha=0.10,
#nsim=1000, ord.bin=10, nrep=1000, seed=42, H=2, pct_rand=0.5,
#prop_gpe=c(0.7,0.3), upper_best=TRUE)
#s1
Index

print.SIDES (SIDES), 2
print.simulation_SIDES
 (simulation_SIDES), 5

SIDES, 2
SIDES-package, 2
simulation_SIDES, 5