Package ‘SIPmg’

February 22, 2023

Title Statistical Analysis to Identify Isotope Incorporating MAGs

Version 1.4.1

Description Statistical analysis as part of a stable isotope probing (SIP) metagenomics study to identify isotope incorporating taxa recovered as metagenome-assembled genomes (MAGs). Helpful reading and a vignette in bookdown format is provided on the package site <https://zielslab.github.io/SIPmg.github.io/>.

URL https://zielslab.github.io/SIPmg.github.io/

BugReports https://github.com/ZielsLab/SIPmg

License GPL-2

Encoding UTF-8

RoxygenNote 7.2.3

Imports HTSSIP, dplyr, lazyeval, phyloseq, plyr, stringr, tibble, tidyr, magrittr, ggplot2, ggpubr, purrr, rlang, MASS, DESeq2, data.table, utils

VignetteBuilder knitr

NeedsCompilation yes

Depends R (>= 3.5.0)

Suggests rmarkdown, knitr, EBImage, readr, BiocManager

LazyData true

Author Pranav Sampara [aut, cre],
 Kate Waring [ctb],
 Ryan Ziels [aut]

Maintainer Pranav Sampara <pranav.sai.4@gmail.com>

Repository CRAN

Date/Publication 2023-02-22 00:40:10 UTC
R topics documented:

- atomX .. 2
- calc_atom_excess_MAGs 3
- calc_Mheavymax_MAGs 3
- coverage_normalization 4
- DESeq2_l2fc .. 5
- df_atomX_boot .. 6
- filter_l2fc ... 7
- filter_na ... 7
- fractions ... 8
- f_tibble .. 8
- GC_content ... 9
- HRSIP .. 9
- incorporators_taxonomy 11
- mag.table .. 11
- phylo.qSIP ... 12
- phylo.table .. 12
- qSIP_atom_excess_format_MAGs 13
- qSIP_atom_excess_MAGs 14
- qSIP_bootstrap_fcr 15
- sample.table ... 16
- samples.object 17
- scale_features_lm 17
- scale_features_rlm 19
- sequins ... 20
- seq_dil ... 21
- tax.table .. 21
- taxonomy.object 22
- taxonomy_tibble 22

Index 23

atomX Atom fraction excess table

Description

Data table generated from the "qSIP_atom_excess_MAGs" function

Usage

data(atomX)

Format

An object of class "list"
calc_atom_excess_MAGs Calculate atom fraction excess

Description

See Hungate et al., 2015 for more details

Usage

\[
\text{calc Atom excess MAGs}(M_{\text{lab}}, M_{\text{light}}, M_{\text{heavymax}}, \text{isotope} = \text{"13C"})
\]

Arguments

- \(M_{\text{lab}}\): The molecular weight of labeled DNA
- \(M_{\text{light}}\): The molecular weight of unlabeled DNA
- \(M_{\text{heavymax}}\): The theoretical maximum molecular weight of fully-labeled DNA
- \(\text{isotope}\): The isotope for which the DNA is labeled with (‘13C’ or ‘18O’)

Value

numeric value: atom fraction excess (A)

calc_Mheavymax_MAGs Calculate Mheavymax

Description

This script was adapted from https://github.com/buckleylab/HTSSIP/blob/master/R/qSIP_atom_excess.R for use with genome-centric metagenomics. See Hungate et al., 2015 for more details

Usage

\[
\text{calc Mheavymax MAGs}(M_{\text{light}}, \text{isotope} = \text{"13C"}, G_i = G_i)
\]

Arguments

- \(M_{\text{light}}\): The molecular weight of unlabeled DNA
- \(\text{isotope}\): The isotope for which the DNA is labeled with (‘13C’ or ‘18O’)
- \(G_i\): The G+C content of unlabeled DNA

Value

numeric value: maximum molecular weight of fully-labeled DNA
coverage_normalization

Normalize feature coverages to estimate absolute abundance or relative coverage using MAG/contig coverage values with or without multiplying total DNA concentration of the fraction

Description

Normalize feature coverages to estimate absolute abundance or relative coverage using MAG/contig coverage values with or without multiplying total DNA concentration of the fraction

Usage

```r
coverage_normalization(
  f_tibble,
  contig_coverage,
  sequencing_yield,
  fractions_df,
  approach = "relative_coverage"
)
```

Arguments

- **f_tibble** Can be either of (1) a tibble with first column "Feature" that contains bin IDs, and the rest of the columns represent samples with bins’ coverage values. (2) a tibble as outputted by the program "checkm coverage" from the tool CheckM. Please check CheckM documentation - https://github.com/Ecogenomics/CheckM on the usage for "checkm coverage" program

- **contig_coverage** tibble with contig ID names ("Feature" column), sample columns with same sample names as in f_tibble containing coverage values of each contig, contig length in bp ("contig_length" column), and the MAG the contig is associated ("MAG" column) with same MAGs as in Feature column of f_tibble dataset.

- **sequencing_yield** tibble containing sample ID ("sample" column) with same sample names as in f_tibble and number of reads in bp recovered in that sample ("yield" column).

- **fractions_df** fractions data frame A fractions file with the following columns
 - Replicate: Depends on how many replicates the study has
 - Fractions: Typically in the range of 2-24
 - Buoyant_density: As calculated from the refractometer for each fraction and replicate
 - Isotope: "12C", "13C", "14N", "15N" etc.
 - DNA_concentration
 - Sample: In the format "isotope'rep#fraction#". For instance, "12C_rep_1_fraction_1"
Please choose the method for coverage normalization as "relative_coverage", "greenlon", "starr" to estimate only relative coverage without multiplying DNA concentration of fraction, or as per methods in Greenlon et al. - https://journals.asm.org/doi/full/10.1128/msystems.00417-22 or Starr et al. - https://journals.asm.org/doi/10.1128/mSphere.00085-21

Value

tibble containing normalized coverage in required format with MAG name as first column and the normalized coverage values in each sample as the rest of the columns.

Examples

data(f_tibble)
rel.cov = coverage_normalization(f_tibble)

DESeq2_l2fc

Calculating log2 fold change for HTS-SIP data.

Description

The 'use_geo_mean' parameter uses geometric means on all non-zero abundances for estimateSizeFactors instead of using the default log-tranformed geometric means.

Usage

DESeq2_l2fc(
physeq, density_min, density_max, design, l2fc_threshold = 0.25, sparsity_threshold = 0.25, sparsity_apply = "all", size_factors = "geoMean"
)

Arguments

physeq Phylloseq object
density_min Minimum buoyant density of the 'heavy' gradient fractions
density_max Maximum buoyant density of the 'heavy' gradient fractions
design design parameter used for DESeq2 analysis. See DESeq2::DESeq for more details.
l2fc_threshold log2 fold change (l2fc) values must be significantly above this threshold in order to reject the hypothesis of equal counts.

sparsity_threshold All OTUs observed in less than this portion (fraction: 0-1) of gradient fraction samples are pruned. A form of independent filtering. The sparsity cutoff with the most rejected hypotheses is used.

sparsity_apply Apply sparsity threshold to all gradient fraction samples ('all') or just heavy fraction samples ('heavy')

size_factors Method of estimating size factors. 'geoMean' is from (Pepe-Ranney et. al., 2016) and removes all zero-abundances from the calculation. 'default' is the default for estimateSizeFactors. 'iterate' is an alternative when every OTU has a zero in >=1 sample.

Value
dataframe of HRSIP results

Examples
data(phylo.qSIP)

df_l2fc = DESeq2_l2fc(phylo.qSIP, density_min=1.71, density_max=1.75, design=~Isotope)

df_atomX_boot Bootstrapped atom fraction excess table

Description
Data table generated from bootstrapping the AFE table using the "qSIP_bootstrap_fcr" function

Usage
data(df_atomX_boot)

Format
An object of class "data.frame"
filter_l2fc
Filter l2fc table

Description

`filter_l2fc` filters a l2fc table to 'best' sparsity cutoffs & bouyant density windows.

Usage

`filter_l2fc(df_l2fc, padj_cutoff = 0.1)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df_l2fc</td>
<td>data.frame of log2 fold change values</td>
</tr>
<tr>
<td>padj_cutoff</td>
<td>Adjusted p-value cutoff for rejecting the null hypothesis that l2fc values were not greater than the l2fc_threshold.</td>
</tr>
</tbody>
</table>

Value

filtered df_l2fc object

filter_na
Remove MAGs with NAs from atomX table

Description

This function enables removing NAs from the atomX table.

Usage

`filter_na(atomX)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomX</td>
<td>A list object created by qSIP_atom_excess_MAGs()</td>
</tr>
</tbody>
</table>

Value

A list of 2 data.frame objects without MAGs which have NAs. 'W' contains the weighted mean buoyant density (W) values for each OTU in each treatment/control. 'A' contains the atom fraction excess values for each OTU. For the 'A' table, the 'Z' column is buoyant density shift, and the 'A' column is atom fraction excess.
Examples

data(atomX)

```r
### Remove NAs in atomX table
atomx_no_na = filter_na(atomX)
```

fractions

Fractions table

Description

Fractions data used for many functions in the package

Usage

data(fractions)

Format

An object of class "data.frame"

f_tibble

Coverage table

Description

Coverage data used for many functions in the package

Usage

data(f_tibble)

Format

An object of class "data.frame"
Description

GC_content data

Usage

data(GC_content)

Format

An object of class "data.frame"

HRSIP

(MW-)HR-SIP analysis

Description

Conduct (multi-window) high resolution stable isotope probing (HR-SIP) analysis.

Usage

HRSIP(
 physeq,
 design,
 density_windows = data.frame(density_min = c(1.7), density_max = c(1.75)),
 sparsity_threshold = seq(0, 0.3, 0.1),
 sparsity_apply = "all",
 l2fc_threshold = 0.25,
 padj_method = "BH",
 padj_cutoff = NULL,
 parallel = FALSE
)

Arguments

physeq Phylloseq object
design design parameter used for DESeq2 analysis. This is usually used to differentiate labeled-treatment and unlabeled-control samples. See DESeq2::DESeq for more details on the option.
density_windows The buoyant density window(s) used for calculating log2 fold change values. Input can be a vector (length 2) or a data.frame with a 'density_min' and a 'density_max' column (each row designates a density window).
sparsity_threshold
All OTUs observed in less than this portion (fraction: 0-1) of gradient fraction samples are pruned. This is a form of independent filtering. The sparsity cutoff with the most rejected hypotheses is used.

sparsity_apply
Apply sparsity threshold to all gradient fraction samples ('all') or just 'heavy' fraction samples ('heavy'), where 'heavy' samples are designated by the density_windows.

l2fc_threshold
log2 fold change (l2fc) values must be significantly above this threshold in order to reject the hypothesis of equal counts. See DESeq2 for more information.

padj_method
Method for global p-value adjustment (See p.adjust()).

padj_cutoff
Adjusted p-value cutoff for rejecting the null hypothesis that l2fc values were not greater than the l2fc_threshold. Set to NULL to skip filtering of results to the sparsity cutoff with most rejected hypotheses and filtering each OTU to the buoyant density window with the greatest log2 fold change.

parallel
Process each parameter combination in parallel. See plyr::mdply() for more information.

Details
The (MW-)HR-SIP workflow is as follows:

1. For each sparsity threshold & BD window: calculate log2 fold change values (with DESeq2) for each OTU
2. Globally adjust p-values with a user-defined method (see p.adjust())
3. Select the sparsity cutoff with the most rejected hypotheses
4. For each OTU, select the BD window with the greatest log2 fold change value

Value
dataframe of HRSIP results

Examples
data(phylo.qSIP)

HR-SIP
Note: treatment-control samples differentiated with 'design=~Isotope'
df_l2fc = HRSIP(phylo.qSIP, design=~Isotope)
Same, but multiple BD windows (MW-HR-SIP). For parallel processing change to parallel = TRUE
Windows = 1.7-1.74, 1.72-1.75, and 1.73 - 1.76
windows = data.frame(density_min=c(1.71,1.72, 1.73), density_max=c(1.74,1.75,1.76))
df_l2fc = HRSIP(phylo.qSIP,
 desgn=~Isotope,
 density_windows = windows,
 padj_cutoff = 0.05,
 parallel=FALSE)
incorporators_taxonomy

Isotope incorporator list with GTDB taxonomy

Description
This function provides a table with MAGs and their corresponding GTDB taxonomy as an output. This would be useful in identifying the taxa that have incorporation.

Usage
incorporators_taxonomy(taxonomy, bootstrapped_AFE_table)

Arguments
- taxonomy: A taxonomy tibble obtained in the markdown. This taxonomy tibble is typically a concatenated list of archaeal and bacterial taxonomy from GTDB-Tk. Please check GTDB-Tk documentation for running the tool.
- bootstrapped_AFE_table: A data frame indicating bootstrapped atom fraction excess values.

Value
A tibble with two columns, OTU and Taxonomy, with taxonomy of the incorporator MAGs.

Examples
```r
data(taxonomy_tibble, df_atomX_boot)

### Making incorporator taxonomy list
incorporator_list = incorporators_taxonomy(taxonomy = taxonomy_tibble,
                                           bootstrapped_AFE_table = df_atomX_boot)
```

mag.table

MAG abundance table in phyloseq format

Description
MAG abundances in the format of phyloseq object to be used in the qSIP and (MW-)HR-SIP pipeline.
Usage

data(mag.table)

Format

An object of class "phyloseq"

phylo.qSIP
Master phyloseq object

Description

Master phyloseq object

Usage

data(phylo.qSIP)

Format

An object of class "phyloseq"

phylo.table
Master phyloseq object using the MAG phyloseq objects

Description

Creates a phyloseq-style object using processed phyloseq objects for otu table (here, MAG table), taxa table, and sample table

Usage

phylo.table(mag, taxa, samples)

Arguments

- **mag**
 phyloseq-styled MAG table
- **taxa**
 phyloseq-styled taxa table
- **samples**
 sample information table

Value

phyloseq object for MAGs
Examples

data(mag.table, taxonomy.object, samples.object, fractions, taxonomy_tibble)
Making phyloseq table from fractions metadata
samples.object = sample.table(fractions)
taxonomy.object = tax.table(taxonomy_tibble)

Making master phyloseq table from scaled MAG data, taxa and fractions phyloseq data
phylo.qSIP = phylo.table(mag.table, taxonomy.object, samples.object)

qSIP_atom_excess_format_MAGs

Reformat a phyloseq object of qSIP_atom_excess_MAGs analysis

Description

Reformat a phyloseq object of qSIP_atom_excess_MAGs analysis

Usage

qSIP_atom_excess_format_MAGs(physeq, control_expr, treatment_rep)

Arguments

physeq A phyloseq object
control_expr An expression for identifying unlabeled control samples in the phyloseq object (eg., "Substrate=='12C-Con'")
treatment_rep Which column in the phyloseq sample data designates replicate treatments

Value

numeric value: atom fraction excess (A)
qSIP_atom_excess_MAGs Calculate atom fraction excess using q-SIP method

Description
Calculate atom fraction excess using q-SIP method

Usage
qSIP_atom_excess_MAGs(
 physeq,
 control_expr,
 treatment_rep = NULL,
 isotope = "13C",
 df_OTU_W = NULL,
 Gi
)

Arguments
physeq A phyloseq object
control_expr Expression used to identify control samples based on sample_data.
treatment_rep Which column in the phyloseq sample data designates replicate treatments
isotope The isotope for which the DNA is labeled with ('13C' or '18O')
df_OTU_W Keep NULL
Gi GC content of the MAG

Value
A list of 2 data.frame objects. 'W' contains the weighted mean buoyant density (W) values for each OTU in each treatment/control. 'A' contains the atom fraction excess values for each OTU. For the 'A' table, the 'Z' column is buoyant density shift, and the 'A' column is atom fraction excess.

Examples
data(phylo.qSIP,GC_content)
Making atomx table
Not run::
BD shift (Z) & atom excess (A)
atomX = qSIP_atom_excess_MAGs(phylo.qSIP,
 control_expr='Isotope="12C"',
 treatment_rep='Replicate',
 Gi = GC_content)
qSIP_bootstrap_fcr

Calculate adjusted bootstrap CI after for multiple testing for atom fraction excess using q-SIP method. Multiple hypothesis tests are corrected by

Description

Calculate adjusted bootstrap CI after for multiple testing for atom fraction excess using q-SIP method. Multiple hypothesis tests are corrected by

Usage

```r
qSIP_bootstrap_fcr(
  atomX,
  isotope = "13C",
  n_sample = c(3, 3),
  ci_adjust_method = "fcr",
  n_boot = 10,
  parallel = FALSE,
  a = 0.1
)
```

Arguments

- `atomX`: A list object created by `qSIP_atom_excess_MAGs()`
- `isotope`: The isotope for which the DNA is labeled with ('13C' or '18O')
- `n_sample`: A vector of length 2. The sample size for data resampling (with replacement) for 1) control samples and 2) treatment samples.
- `ci_adjust_method`: Confidence interval adjustment method. Please choose 'FCR', 'Bonferroni', or 'none' (if no adjustment is needed). Default is FCR and also provides unadjusted CI.
- `n_boot`: Number of bootstrap replicates.
- `parallel`: Parallel processing. See `parallel` option in `dplyr::mdply()` for more details.
- `a`: A numeric value. The alpha for calculating confidence intervals.

Value

A data.frame of atom fraction excess values (A) and atom fraction excess confidence intervals adjusted for multiple testing.
BD shift (Z) & atom excess (A)

```r
atomX = qSIP_atom_excess_MAGs(phylo.qSIP,
control_expr='Isotope="12C"',
treatment_rep='Replicate', Gi = GC_content)
```

Add doParallel::registerDoParallel(num_cores) if parallel bootstrapping is to be done

```r
df_atomX_boot = qSIP_bootstrap_fcr(atomX, n_boot=5, parallel = FALSE)
```

sample.table
phyloseq-styled sample table

Description

Creates a phyloseq-styled sample table from fractions metadata containing data on fraction number, number of replicates, buoyant density calculated from a refractometer, type of isotope, and DNA concentration of each fraction, and isotope type. See below for information on "fractions" file.

Usage

```r
sample.table(fractions_df)
```

Arguments

- `fractions_df`: fractions data frame A fractions file with the following columns
 - Replicate: Depends on how many replicates the study has
 - Fractions: Typically in the range of 2-24
 - Buoyant_density: As calculated from the refractometer for each fraction and replicate
 - Isotope: "12C", "13C", "14N", "15N" etc.
 - DNA_concentration
 - Sample: In the format "isotope_rep_fraction\#". For instance, "12C_rep_1_fraction_1"

Value

- data frame: phyloseq-style sample table
Examples

```r
data(fractions)

### Making phyloseq table from fractions metadata
samples.object = sample.table(fractions)
```

Description

Fractions metadata in the format of phyloseq object to be used in the qSIP and (MW-)HR-SIP pipeline

Usage

```r
data(samples.object)
```

Format

An object of class "phyloseq"

scale_features_lm

Scale feature coverage values to estimate their absolute abundance

Description

Calculates global scaling factors for features (contigs or bins), based on linear regression of sequin coverage. Options include log-transformations of coverage, as well as filtering features based on limit of detection. This function must be called first, before the feature abundance table, feature detection table, and plots are retrieved.

Usage

```r
scale_features_lm(
  f_tibble,
  sequin_meta,
  seq_dilution,
  log_trans = TRUE,
  coe_of_variation = 250,
  lod_limit = 0,
  save_plots = TRUE,
  plot_dir = tempdir(),
  cook_filtering = TRUE
)
```
Arguments

f_tibble Can be either of (1) a tibble with first column "Feature" that contains bin IDs, and the rest of the columns represent samples with bins' coverage values. (2) a tibble as outputted by the program "checkm coverage" from the tool CheckM. Please check CheckM documentation - https://github.com/Ecogenomics/CheckM on the usage for "checkm coverage" program

sequin_meta tibble containing sequin names ("Feature column") and concentrations in attamoles/μL ("Concentration") column.

seq_dilution tibble with first column "Sample" with same sample names as in f_tibble, and a second column "Dilution" showing ratio of sequins added to final sample volume (e.g. a value of 0.01 for a dilution of 1 volume sequin to 99 volumes sample)

log_trans Boolean (TRUE or FALSE), should coverages and sequin concentrations be log-scaled?

coe_of_variation Acceptable coefficient of variation for coverage and detection (eg. 20 - for 20% threshold of coefficient of variation). Coverages above the threshold value will be flagged in the plots.

lod_limit (Decimal range 0-1) Threshold for the percentage of minimum detected sequins per concentration group. Default = 0

save_plots Boolean (TRUE or FALSE), should sequin scaling be saved? Default = TRUE

plot_dir Directory where plots are to be saved. Will create a directory "sequin_scaling_plots_lm" if it does not exist.

cook_filtering Boolean (TRUE or FALSE), should data points be filtered based on Cook’s distance metric. Cooks distance can be useful in detecting influential outliers in an ordinary least square’s regression model, which can negatively influence the model. A threshold of Cooks distance of 4/n (where n is the sample size) is chosen, and any data point with Cooks distance > 4/n is filtered out. It is typical to choose 4/n as the threshold in detecting the outliers in the data. Default = TRUE

Value

a list of tibbles containing

- **mag_tab**: a tibble with first column "Feature" that contains bin (or contig IDs), and the rest of the columns represent samples with features' scaled abundances (attamoles/μL)
- **mag_det**: a tibble with first column "Feature" that contains bin (or contig IDs),
- **plots**: linear regression plots for scaling MAG coverage values to absolute abundance
- **scale_fac**: a master tibble with all of the intermediate values in above calculations

Examples

data(f_tibble, sequins, seq_dil)
scale_features_rlm

scaling sequins from coverage values

```r
scaled_features_lm = scale_features_lm(f_tibble, sequin_meta, seq_dil)
```

scale_features_rlm
Scale feature coverage values to estimate their absolute abundance

Description

Calculates global scaling factors for features (contigs or bins), based on linear regression of sequin coverage. Options include log-transformations of coverage, as well as filtering features based on limit of detection. This function must be called first, before the feature abundance table, feature detection table, and plots are retrieved.

Usage

```r
scale_features_rlm(
  f_tibble,
  sequin_meta,
  seq_dilution,
  log_trans = TRUE,
  coe_of_variation = 250,
  lod_limit = 0,
  save_plots = TRUE,
  plot_dir = tempdir()
)
```

Arguments

- **f_tibble**
 Can be either of (1) a tibble with first column "Feature" that contains bin IDs, and the rest of the columns represent samples with bins’ coverage values. (2) a tibble as outputted by the program "checkm coverage" from the tool CheckM. Please check CheckM documentation - https://github.com/Ecogenomics/CheckM on the usage for "checkm coverage" program

- **sequin_meta**
 tibble containing sequin names ("Feature column") and concentrations in attamoles/uL ("Concentration") column.

- **seq_dilution**
 tibble with first column "Sample" with **same sample names as in f_tibble**, and a second column "Dilution" showing ratio of sequins added to final sample volume (e.g. a value of 0.01 for a dilution of 1 volume sequin to 99 volumes sample)

- **log_trans**
 Boolean (TRUE or FALSE), should coverages and sequin concentrations be log-scaled? Default = TRUE

- **coe_of_variation**
 Acceptable coefficient of variation for coverage and detection (eg. 20 - for 20% threshold of coefficient of variation). Coverages above the threshold value will be flagged in the plots. Default = 250
sequins

lod_limit
(Decimal range 0-1) Threshold for the percentage of minimum detected sequins per concentration group. Default = 0

save_plots
Boolean (TRUE or FALSE), should sequin scaling be saved? Default = TRUE

plot_dir
Directory where plots are to be saved. Will create a directory "sequin_scaling_plots_rlm" if it does not exist.

Value

a list of tibbles containing

- mag_tab: a tibble with first column "Feature" that contains bin (or contig IDs), and the rest of the columns represent samples with features’ scaled abundances (attamoles/uL)
- mag_det: a tibble with first column "Feature" that contains bin (or contig IDs).
- plots: linear regression plots for scaling MAG coverage values to absolute abundance (optional)
- scale_fac: a master tibble with all of the intermediate values in above calculations

Examples

```r
data(f_tibble, sequins, seq_dil)

### scaling sequins from coverage values
scaled_features_rlm = scale_features_rlm(f_tibble, sequins, seq_dil)
```

sequins

Sequins table

Description

Sequins metadata

Usage

data(sequins)

Format

An object of class "data.frame"
seq_dil

Sequins dilution table

Description
Sequins dilution data

Usage
data(seq_dil)

Format
An object of class "data.frame"

tax.table

phyloseq taxa table from GTDB taxonomy input

Description
A MAG table, similar to OTU table in phyloseq, will be generated from a concatenated GTDB taxa table for bacteria and archaea

Usage
tax.table(taxonomy)

Arguments
taxonomy

GTDB taxonomy data frame. A taxonomy file in the GTDB output format. Load the bacteria and archaea taxonomy outputs separately. The markdown requires loading the standard output files from GTDB-Tk separately for bacteria and archaea

Value
phyloseq-style taxonomy table, but for MAGs

Examples
data(taxonomy_tibble)

```r
### Making phyloseq table from taxonomy metadata
taxonomy.object = tax.table(taxonomy_tibble)
```
taxonomy.object

Description

Taxonomy table in the format of phyloseq object to be used in the qSIP and (MW-)HR-SIP pipeline

Usage

```r
data(taxonomy.object)
```

Format

An object of class "phyloseq"

taxonomy_tibble

Description

Taxonomy table from GTDB-Tk output - combining both bacterial and archaeal taxonomy

Usage

```r
data(taxonomy_tibble)
```

Format

An object of class "data.frame"
Index

* datasets
 atomX, 2
 df_atomX_boot, 6
 f_tibble, 8
 fractions, 8
 GC_content, 9
 mag.table, 11
 phylo.qSIP, 12
 samples.object, 17
 seq_dil, 21
 sequins, 20
 taxonomy.object, 22
 taxonomy_tibble, 22

atomX, 2

calc_atom_excess_MAGs, 3
calc_Mheavymax_MAGs, 3
coverage_normalization, 4

DESeq2_l2fc, 5
df_atomX_boot, 6

f_tibble, 8
filter_l2fc, 7
filter_na, 7
fractions, 8

GC_content, 9

HRSIP, 9

incorporators_taxonomy, 11

mag.table, 11

phylo.qSIP, 12
phylo.table, 12

qSIP_atom_excess_format_MAGs, 13
qSIP_atom_excess_MAGs, 14

qSIP_bootstrap_fcr, 15

sample.table, 16
samples.object, 17
scale_features_lm, 17
scale_features_rlm, 19
seq_dil, 21
sequins, 20
tax.table, 21
taxonomy.object, 22
taxonomy_tibble, 22