Package ‘SKFCPD’

February 18, 2024

Type Package
Title Fast Online Changepoint Detection for Temporally Correlated Data
Version 0.2.4
Date 2024-02-15
Maintainer Hanmo Li <hanmo@pstat.ucsb.edu>
Author Hanmo Li [aut, cre],
 Yuedong Wang [aut],
 Mengyang Gu [aut]
Description Sequential Kalman filter for scalable online changepoint detection by temporally corre-
related data. It enables fast single and multiple change points with missing values. See the refer-
License GPL (>= 3)
Depends R (>= 3.5.0), methods (>= 4.2.2), rlang (>= 1.0.6), ggplot2
 (>= 3.4.0), ggpubr (>= 0.5.0), reshape2 (>= 1.4.4), FastGaSP
 (>= 0.5.2)
Imports Rcpp (>= 1.0.9)
LinkingTo Rcpp, RcppEigen
NeedsCompilation yes
Encoding UTF-8
Repository CRAN
Date/Publication 2024-02-17 23:30:12 UTC

R topics documented:

 SKFCPD-package .. 2
 Estimate_GP_params .. 4
 plot_SKFCPD .. 6
 SKFCPD .. 7
 SKFCPD-class .. 10

Index 12
Description

The ‘SKFCPD’ package provides estimation of changepoint locations using the Dynamic Linear Model (DLM) within the Bayesian Online Changepoint Detection (BOCPD) framework. The efficient computation is achieved through implementation of the Sequential Kalman filter. The range parameter and noise-to-signal ratio are estimated from training samples via a Gaussian process model. This package is capable of handling multidimensional data with temporal correlations and random missing patterns.

Details

The DESCRIPTION file:

Package: SKFCPD
Type: Package
Title: Fast Online Changepoint Detection for Temporally Correlated Data
Version: 0.2.4
Date: 2024-02-15
Authors@R: c(person(given="Hanmo",family="Li",role=c("aut", "cre"), email="hanmo@pstat.ucsb.edu"), person(given="Yuedong",family="Wang",role=c("aut", "cre"), email="yuedong@pstat.ucsb.edu"), person(given="Mengyang",family="Gu", role=c("aut"), email="mengyang@pstat.ucsb.edu"))
Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>
Author: Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]
Description: Sequential Kalman filter for scalable online changepoint detection by temporally correlated data. It enables fast detection of change points with missing values. See the reference: Hanmo Li, Yuedong Wang, Mengyang Gu (2023), <arXiv:2310.18611>.
License: GPL (>= 3)
Depends: R (>= 3.5.0), methods (>= 4.2.2), rlang (>= 1.0.6), ggplot2 (>= 3.4.0), ggpubr (>= 0.5.0), reshape2 (>= 1.4.4), FastGaSP (>= 0.5.2)
Imports: Rcpp (>= 1.0.9)
LinkingTo: Rcpp, RcppEigen
NeedsCompilation: yes
Encoding: UTF-8
Packaged: 2024-02-15 11:15:56 UTC; lihan
Archs: x64

Index of help topics:

Estimate_GP_params Estimate parameters from fast computation of GaSP model
SKFCPD Getting the results of the SKFCPD model
SKFCPD-class Class "SKFCPD"
SKFCPD-package Dynamic Linear Model for Online Changepoint Detection
plot_SKFCPD Plot for SKFCPD model

Implements a fast online changepoint detection algorithm using dynamic linear model based on Sequential Kalman filter. It’s for temporally correlated data and accepts multi-dimensional datasets.
with missing values.

Author(s)

Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]
Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>

References

See Also

SKFCPD

Examples

```r
library(SKFCPD)

#------------------------------------------------------------------------------
# Example: fast online changepoint detection with DEPENDENT data.
#
# Data generation: Data follows a multidimensional Gaussian process with Matern 2.5 kernel.
#---------------------------------------------------------------
# Data Generation
set.seed(1)

n_obs = 150
dim = 2
seg_len = c(70, 30, 20,30)
mean_each_seg = c(0,1,-1,0)

x_mat=matrix(1:n_obs)
y_mat=matrix(NA, nrow=n_obs, ncol=n_dim)
```
gamma = rep(5, n_dim) # range parameter of the covariance matrix

compute the matern 2.5 kernel
construct_cor_matrix = function(input, gamma){
 n = length(input)
 R0 = abs(outer(input, (input), '-'))
 matrix_one = matrix(1, n, n)
 const = sqrt(5) * R0 / gamma
 Sigma = (matrix_one + const + const^2/3) * (exp(-const))
 return(Sigma)
}

for(j in 1:n_dim){
 y_each_dim = c()
 for(i in 1:length(seg_len)){
 nobs_per_seg = seg_len[i]
 Sigma = construct_cor_matrix(1:nobs_per_seg, gamma[j])
 L = t(chol(Sigma))
 theta = rep(mean_each_seg[i], nobs_per_seg) + L %*% rnorm(nobs_per_seg)
 y_each_dim = c(y_each_dim, theta + 0.1 * rnorm(nobs_per_seg))
 }
 y_mat[,j] = y_each_dim
}

Detect changepoints by SKFCPD
Online_CPD_1 = SKFCPD(design = x_mat,
 response = y_mat,
 train_prop = 1/3)

visualize the results
plot_SKFCPD(Online_CPD_1)

Estimate_GP_params

Estimate parameters from fast computation of GaSP model

Description

Getting the estimated parameters from fast computation of the Gaussian stochastic process (GaSP) model with the Matern kernel function with a noise.

Usage

```
Estimate_GP_params(input, output, kernel_type='matern_5_2')
```

Arguments

- **input**: a vector with dimension num_obs x 1 for the sorted input locations.
- **output**: a vector with dimension n x 1 for the observations at the sorted input locations.
kernel_type

A character to specify the type of kernel to use. The current version supports `kernel_type` to be "matern_5_2" or "exp", meaning that the matern kernel with roughness parameter being 2.5 or 0.5 (power exponent kernel), respectively.

Value

`Estimate_GP_params` returns an S4 object of class `Estimated_GP_params` with estimated parameters including:

- **beta**: the inverse range parameter, i.e. $\beta = 1/\gamma$
- **eta**: the noise-to-signal ratio
- **sigma_2**: the variance parameter

Author(s)

Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]

Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>

References

Examples

```r
library(SKFCPD)

#---------------------------------------------------------------
# simple example with noise
#---------------------------------------------------------------

y_R<-function(x){
  cos(2*pi*x)
}

###let's test for 100 observations
set.seed(1)
num_obs=100
input=runif(num_obs)
output=y_R(input)+rnorm(num_obs,mean=0, sd=1)
```
run Estimate_GP_params to get estimated parameters
params_est = Estimate_GP_params(input, output)
print(params_est@beta) ## inverse of range parameter
print(params_est@eta) ## noise-to-signal ratio
print(params_est@sigma_2) ## variance

Description

Function to make plots on SKFCPD models after the SKFCPD model has been constructed.

Usage

```r
plot_SKFCPD(x, type = "cp")
```

Arguments

- `x` an object of class SKFCPD.
- `type` A character specifying the type of plot. `cp` plots the data with estimated changepoints marked in red crossings. `run_length_posterior` plots the matrix of run length posterior distribution.

Value

Two plots: (1) plot of data with the red dashed lines mark the estimated changepoint locations, and (2) plot of the run length posterior distribution matrix. For multidimensional data, only the first dimension is plotted.

Author(s)

Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]
Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>

References

Examples

```r
library(SKFCPD)

# Example: fast online changepoint detection with DEPENDENT data.
# Data generation: Data follows a multidimensional Gaussian process with Matern 2.5 kernel.
```
Data Generation

```r
set.seed(1)
n_obs = 150
n_dim = 2
seg_len = c(70, 30, 20, 30)
mean_each_seg = c(0, 1, -1, 0)

x_mat=matrix(1:n_obs)
y_mat=matrix(NA, nrow=n_obs, ncol=n_dim)

gamma = rep(5, n_dim) # range parameter of the covariance matrix

# compute the matern 2.5 kernel
construct_cor_matrix = function(input, gamma){
  n = length(input)
  R0=abs(outer(input,(input),'-'))
  matrix_one = matrix(1, n, n)
  const = sqrt(5) * R0 / gamma
  Sigma = (matrix_one + const + const^2/3) * (exp(-const))
  return(Sigma)
}

for(j in 1:n_dim){
  y_each_dim = c()
  for(i in 1:length(seg_len)){
    nobs_per_seg = seg_len[i]
    Sigma = construct_cor_matrix(1:nobs_per_seg, gamma[j])
    L=t(chol(Sigma))
    theta=rep(mean_each_seg[i],nobs_per_seg)+L%*%rnorm(nobs_per_seg)
    y_each_dim = c(y_each_dim, theta+0.1*rnorm(nobs_per_seg))
  }
  y_mat[,j] = y_each_dim
}

# Detect changepoints by SKFCPD
Online_CPD_1 = SKFCPD(design = x_mat,
response = y_mat,
train_prop = 1/3)

# visualize the results
plot_SKFCPD(Online_CPD_1)
```

SKFCPD

Getting the results of the SKFCPD model

Description

Estimating changepoint locations using the Dynamic Linear Model (DLM) within the Bayesian Online Changepoint Detection (BOCPD) framework. The efficient computation is achieved through
implementation of the Kalman filter. The range parameter and noise-to-signal ratio are estimated from training samples via a Gaussian process model. This function is capable of handling multidimensional data with temporal correlations and random missing patterns.

Usage

```r
SKFCPD(design = NULL, response = NULL, FCPD = NULL,
init_params = list(gamma = 1, sigma_2 = 1, eta = 1),
train_prop = NULL, kernel_type = "matern_5_2",
hazard_vec=100, print_info = TRUE, truncate_at_prev_cp = FALSE)
```

Arguments

- `design`: A vector with the length of n. The design of the experiment.
- `response`: A matrix with dimension n x q. The observations.
- `FCPD`: An object of the class `SKFCPD` computed in the previous run of the algorithm.
- `init_params`: A list with estimated range parameter `gamma`, noise-to-signal parameter `eta` and variance parameter `sigma_2`. The default values are `gamma`=1, `eta`=1, and `sigma_2`=1.
- `train_prop`: A numerical value between 0 and 1. The proportion of training samples for parameter estimation. When `train_prop=NULL`, we skip the training process and specify the parameter values in the argument `init_params`.
- `kernel_type`: A character specifying the type of kernels of the input. `matern_5_2` are Matern correlation with roughness parameter 5/2. `exp` is power exponential correlation with roughness parameter `alpha`=2. The default choice is `matern_5_2`.
- `hazard_vec`: Either a constant or a vector with the length of n. The hazard vector in the SKFCPD method. `hazard_vec = 1/hazard_const` is the prior probability that a changepoint occur at any time points. The default value of hazard_vec is 100.
- `print_info`: This setting prints out updates on the progress of the algorithm if set to TRUE.
- `truncate_at_prev_cp`: If TRUE, truncate the run length at the most recently detected changepoint. The default value of `truncate_at_prev_cp` is FALSE.

Value

`SKFCPD` returns a S4 object of class `SKFCPD` (see `SKFCPD-class`).

Author(s)

Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]

Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>

References

Examples

```r
library(SKFCPD)

# Example: fast online changepoint detection with DEPENDENT data.
#
# Data generation: Data follows a multidimensional Gaussian process with Matern 2.5 kernel.
#---------------------------------------------------------------
# Data Generation
set.seed(1)

n_obs = 150
n_dim = 2
seg_len = c(70, 30, 20,30)
mean_each_seg = c(0,1,-1,0)

x_mat = matrix(1:n_obs)
y_mat = matrix(NA, nrow=n_obs, ncol=n_dim)

gamma = rep(5, n_dim) # range parameter of the covariance matrix

# compute the matern 2.5 kernel
construct_cor_matrix = function(input, gamma){
  n = length(input)
  R0 = abs(outer(input,input,'-'))
  matrix_one = matrix(1, n, n)
  const = sqrt(5) * R0 / gamma
  Sigma = (matrix_one + const + const^2/3) * (exp(-const))
  return(Sigma)
}

for(j in 1:n_dim){
  y_each_dim = c()
  for(i in 1:length(seg_len)){
    nobs_per_seg = seg_len[i]
    Sigma = construct_cor_matrix(1:nobs_per_seg, gamma[j])
    L = t(chol(Sigma))
    theta = rep(mean_each_seg[i], nobs_per_seg)+L%*%rnorm(nobs_per_seg)
    y_each_dim = c(y_each_dim, theta+0.1*rnorm(nobs_per_seg))
  }
  y_mat[,j] = y_each_dim
}
```
Detect changepoints by SKFCPD

```r
Online_CPD_1 = SKFCPD(design = x_mat,
                      response = y_mat,
                      train_prop = 1/3)
```

visualize the results

```r
plot_SKFCPD(Online_CPD_1)
```

SKFCPD-class

Class "SKFCPD"

Description

S4 class for SKFCPD where the range parameter and noise-to-signal parameters are estimated from the training samples.

Objects from the Class

Objects of this class are created and initialized with the function `SKFCPD` that computes the calculations needed for setting up the analysis.

Slots

- **design**: Object of class "matrix" with dimension n x p. The design of the experiment.
- **response**: Object of class "matrix" with dimension n x q. The observations.
- **test_start**: Object of class "numeric". The starting index of test period.
- **kernel_type**: Object of class "character" to specify the type of kernel to use.
- **gamma**: Object of class "vector" with dimension q x 1. The range parameters.
- **eta**: Object of class "vector" with dimension q x 1. The noise-to-signal ratio.
- **sigma_2**: Object of class "vector" with dimension q x 1. The variance parameters.
- **hazard_vec**: Object of class "numeric". The n x 1 hazard vector in the FastCPD method.
- **KF_params_list**: Object of class "list". The list of Kalman filter parameters from the previous run of the algorithm.
- **prev_L_params_list**: Object of class "list". The list of parameters for calculating the quadratic form of the inverse covariance matrix from the previous run of the algorithm.
- **run_length_posterior_mat**: Object of class "matrix" with dimension n x n. The posterior distribution of the run length.
- **run_length_joint_mat**: Object of class "matrix" with dimension n x n. The joint distribution of the run length and the observations.
- **log_pred_dist_mat**: Object of class "matrix" with dimension n x n. The logarithm of the predictive distribution of observations.
- **cp**: Object of class "vector" with length m. The location of estimated changepoints.
Author(s)

Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]
Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>

References

See Also

SKFCPD for more details about how to create a SKFCPD object.
Index

* classes
 SKFCPD-class, 10
Estimate_GP_params, 4
plot_SKFCPD, 6
SKFCPD, 3, 7, 10, 11
SKFCPD-class, 10
SKFCPD-package, 2