Package ‘SLOPE’

April 16, 2020

Title Sorted L1 Penalized Estimation
Version 0.2.1
Description Efficient implementations for Sorted L-One Penalized Estimation (SLOPE): generalized linear models regularized with the sorted L1-norm (Bogdan et al. (2015) <doi:10/gfgwzt>). Supported models include ordinary least-squares regression, binomial regression, multinomial regression, and Poisson regression. Both dense and sparse predictor matrices are supported. In addition, the package features predictor screening rules that enable fast and efficient solutions to high-dimensional problems.
License GPL-3
LazyData true
Depends R (>= 3.3.0)
Imports foreach, lattice, Matrix, methods, Rcpp
LinkingTo Rcpp, RcppArmadillo (>= 0.9.850.1.0)
Suggests caret, covr, glmnet, knitr, rmarkdown, spelling, testthat (>= 2.1.0)
RoxygenNote 7.1.0
Language en-US
Encoding UTF-8
BugReports https://github.com/jolars/SLOPE/issues
VignetteBuilder knitr
NeedsCompilation yes
Author Johan Larsson [aut, cre] (<https://orcid.org/0000-0002-4029-5945>),
 Jonas Wallin [aut] (<https://orcid.org/0000-0003-0381-6593>),
 Malgorzata Bogdan [aut],
 Ewout van den Berg [aut],
 Chiara Sabatti [aut],
 Emmanuel Candès [aut],
 Evan Patterson [aut],
This data set contains observations of abalones, the common name for any of a group of sea snails. The goal is to predict the age of an individual abalone given physical measurements such as sex, weight, and height.

Usage

abalone
Format

A list with two items representing 211 observations from 9 variables

- **sex** sex of abalone, 1 for female
- **infant** indicates that the person is an infant
- **length** longest shell measurement in mm
- **diameter** perpendicular to length in mm
- **height** height in mm including meat in shell
- **weight_whole** weight of entire abalone
- **weight_shucked** weight of meat
- **weight_viscera** weight of viscera
- **weight_shell** weight of shell
- **rings** rings. +1.5 gives the age in years

Details

Only a stratified sample of 211 rows of the original data set are used here.

Source

<table>
<thead>
<tr>
<th>bodyfat</th>
<th>Bodyfat</th>
</tr>
</thead>
</table>

Description

The response (y) corresponds to estimates of percentage of body fat from application of Siri’s 1956 equation to measurements of underwater weighing, as well as age, weight, height, and a variety of body circumference measurements.

Usage

bodyfat

Format

A list with two items representing 252 observations from 14 variables

- **age** age (years)
- **weight** weight (lbs)
- **height** height (inches)
- **neck** neck circumference (cm)
Description

This function can be used in a call to `caret::train()` to enable model tuning using caret. Note that this function does not properly work with sparse feature matrices and standardization due to the way resampling is implemented in caret. So for these cases, please check out `trainSLOPE()` instead.

Usage

```r
caretSLOPE()
```

Value

A model description list to be used in the method argument in `caret::train()`.

See Also

`caret::train(), trainSLOPE(), SLOPE()`
coef.SLOPE

Obtain coefficients

Description

This function returns coefficients from a model fit by SLOPE().

Usage

S3 method for class 'SLOPE'
coef(object, sigma = NULL, exact = FALSE, simplify = TRUE, ...)

Arguments

object an object of class 'SLOPE'.
sigma penalty parameter for SLOPE models; if NULL, the values used in the original fit will be used
exact if TRUE and the given parameter values differ from those in the original fit, the model will be refit by calling stats::update() on the object with the new parameters. If FALSE, the predicted values will be based on interpolated coefficients from the original penalty path.
simplify if TRUE, base::drop() will be called before returning the coefficients to drop extraneous dimensions
...
arguments that are passed on to stats::update() (and therefore also to SLOPE()) if exact = TRUE and the given penalty is not in object

Details

If exact = FALSE and sigma is not in object, then the returned coefficients will be approximated by linear interpolation. If coefficients from another type of penalty sequence (with a different lambda) are required, however, please use SLOPE() to refit the model.

Value

Coefficients from the model.

Examples

fit <- SLOPE(mtcars$mpg, mtcars$vs, n_sigma = 1)
coef(fit)
create_lambda

Lambda sequences for SLOPE (deprecated)

Description

Computes \(\lambda \) sequences for SLOPE according to several pre-defined methods.

Usage

```r
create_lambda(n, p, fdr = 0.2, method = c("bhq", "gaussian"))
```

Arguments

- `n` number of observations
- `p` number of variables
- `fdr` target False Discovery Rate (FDR)
- `method` method to use for computing \(\lambda \) (see Details)

Details

The following methods for computing \(\lambda \) are supported:

- `bhq`: Computes sequence inspired by Benjamini-Hochberg (BHq) procedure
- `gaussian`: Computes modified BHq sequence inspired by Gaussian designs

deviance.SLOPE

Model deviance

Description

Model deviance

Usage

```r
## S3 method for class 'SLOPE'
deviance(object, ...)
```

Arguments

- `object` an object of class 'SLOPE'.
- `...` ignored

Value

For Gaussian models this is twice the residual sums of squares. For all other models, two times the negative loglikelihood is returned.
Examples

```r
fit <- SLOPE(abalone$x, abalone$y, family = "poisson")
deviance(fit)
```

heart

Heart disease

Description

Diagnostic attributes of patients classified as having heart disease or not.

Usage

`heart`

Format

270 observations from 17 variables represented as a list consisting of a binary factor response vector `y`, with levels 'absence' and 'presence' indicating the absence or presence of heart disease and `x`: a sparse feature matrix of class 'dgCMatrix' with the following variables:

- `age` age
- `bp` diastolic blood pressure
- `chol` serum cholesterol in mg/dl
- `hr` maximum heart rate achieved
- `old_peak` ST depression induced by exercise relative to rest
- `vessels` the number of major blood vessels (0 to 3) that were colored by fluoroscopy
- `sex` sex of the participant: 0 for male, 1 for female
- `angina` a dummy variable indicating whether the person suffered angina-pectoris during exercise
- `glucose_high` indicates a fasting blood sugar over 120 mg/dl
- `cp_typical` typical angina
- `cp_atypical` atypical angina
- `cp_nonanginal` non-anginal pain
- `ecg_abnormal` indicates a ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
- `ecg_estes` probable or definite left ventricular hypertrophy by Estes’ criteria
- `slope_flat` a flat ST curve during peak exercise
- `slope_downsloping` a downwards-sloping ST curve during peak exercise
- `thal_reversible` reversible defect
- `thal_fixed` fixed defect
Preprocessing

The original dataset contained 13 variables. The nominal of these were dummycoded, removing the first category. No precise information regarding variables chest_pain, thal and ecg could be found, which explains their obscure definitions here.

Source

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#heart

plot.SLOPE

Plot coefficients

Description

Plot the fitted model’s regression coefficients along the regularization path.

Usage

S3 method for class 'SLOPE'
plot(x, intercept = FALSE, ...)

Arguments

x an object of class "SLOPE"
intercept whether to plot the intercept
... parameters that will be used to modify the call to lattice::xyplot()

Value

An object of class "trellis", which will be plotted on the current device unless stored in a variable.

See Also

lattice::xyplot(), SLOPE(), plotDiagnostics()

Examples

fit <- SLOPE(heart$x, heart$y)
plot(fit)
plot.TrainedSLOPE
Plot results from cross-validation

Description

Plot results from cross-validation

Usage

```r
## S3 method for class 'TrainedSLOPE'
plot(
  x,
  measure = c("auto", "mse", "mae", "deviance", "auc", "misclass"),
  plot_min = TRUE,
  ci_alpha = 0.2,
  ci_border = FALSE,
  ci_col = lattice::trellis.par.get("superpose.line")$col,
  ...
)
```

Arguments

- `x`: an object of class 'TrainedSLOPE', typically from a call to `trainSLOPE()`
- `measure`: any of the measures used in the call to `trainSLOPE()`. If `measure = "auto"` then deviance will be used for binomial and multinomial models, whilst mean-squared error will be used for Gaussian and Poisson models.
- `plot_min`: whether to mark the location of the penalty corresponding to the best prediction score
- `ci_alpha`: alpha (opacity) for fill in confidence limits
- `ci_border`: color (or flag to turn off and on) the border of the confidence limits
- `ci_col`: color for border of confidence limits
- `...`: other arguments that are passed on to `lattice::xyplot()`

Value

An object of class "trellis" is returned and, if used interactively, will most likely have its print function `lattice::print.trellis()` invoked, which draws the plot on the current display device.

See Also

`trainSLOPE()`, `lattice::xyplot()`, `lattice::panel.xyplot()`
Examples

```r
# Cross-validation for a SLOPE binomial model
set.seed(123)
tune <- trainSLOPE(subset(mtcars, select = c("mpg", "drat", "wt")),
  mtcars$hp,
  q = c(0.1, 0.2),
  number = 10)
plot(tune, ci_col = "salmon", col = "black")
```

Plot results from diagnostics collected during model fitting

Description

This function plots various diagnostics collected during the model fitting resulting from a call to `SLOPE()` provided that `diagnostics = TRUE`.

Usage

```r
plotDiagnostics(
  object,
  ind = max(object$diagnostics$penalty),
  xvar = c("time", "iteration"),
  yvar,
  ...
)
```

Arguments

- `object` an object of class "SLOPE".
- `ind` either "last"
- `xvar` what to place on the x axis. `iteration` plots each iteration, `time` plots the wall-clock time.
- `yvar` deprecated (and ignored)
- `...` other arguments that will be used to modify the call to `lattice::xyplot()`

Value

An object of class "trellis", which, unless stored in a variable, will be plotted when its default `print()` method is called.

Examples

```r
x <- SLOPE(abalone$x, abalone$y, sigma = 2, diagnostics = TRUE)
plotDiagnostics(x)
```
predict.SLOPE

Generate predictions from SLOPE models

Description

Return predictions from models fit by SLOPE().

Usage

S3 method for class 'SLOPE'
predict(object, x, sigma = NULL, type = "link", simplify = TRUE, ...)

S3 method for class 'GaussianSLOPE'
predict(
 object,
 x,
 sigma = NULL,
 type = c("link", "response"),
 simplify = TRUE,
 ...
)

S3 method for class 'BinomialSLOPE'
predict(
 object,
 x,
 sigma = NULL,
 type = c("link", "response", "class"),
 simplify = TRUE,
 ...
)

S3 method for class 'PoissonSLOPE'
predict(
 object,
 x,
 sigma = NULL,
 type = c("link", "response"),
 exact = FALSE,
 simplify = TRUE,
 ...
)

S3 method for class 'MultinomialSLOPE'
predict(
 object,
 x,
sigma = NULL,
type = c("link", "response", "class"),
exact = FALSE,
simplify = TRUE,
...)

Arguments

object an object of class "SLOPE", typically the result of a call to SLOPE()
x new data
sigma penalty parameter for SLOPE models; if NULL, the values used in the original fit will be used
type type of prediction; "link" returns the linear predictors, "response" returns the result of applying the link function, and "class" returns class predictions.
simplify if TRUE, base::drop() will be called before returning the coefficients to drop extraneous dimensions
... ignored and only here for method consistency
exact if TRUE and the given parameter values differ from those in the original fit, the model will be refit by calling stats::update() on the object with the new parameters. If FALSE, the predicted values will be based on interpolated coefficients from the original penalty path.

Value

Predictions from the model with scale determined by type.

See Also

stats::predict(), stats::predict.glm()
prox_sorted_L1

Usage

```r
## S3 method for class 'SLOPE'
print(x, ...)

## S3 method for class 'TrainedSLOPE'
print(x, ...)
```

Arguments

- `x`: an object of class 'SLOPE' or 'TrainedSLOPE'
- `...`: other arguments passed to `print()`

Value

Prints output on the screen

Examples

```r
fit <- SLOPE(wine$x, wine$y, family = "multinomial")
print(fit, digits = 1)
```

prox_sorted_L1

Prox for sorted L1 norm (deprecated)

Description

Compute the prox for the sorted L1 norm. That is, given a vector \(x \) and a decreasing vector \(\lambda \), compute the unique value of \(y \) minimizing

\[
\frac{1}{2} \| x - y \|_2^2 + \sum_{i=1}^{n} \lambda_i |y_i|.
\]

Usage

```r
prox_sorted_L1(x, lambda, method)
```

Arguments

- `x`: input vector
- `lambda`: vector of \(\lambda \)'s, sorted in decreasing order
- `method`: deprecated

Details

At present, two methods for computing the sorted L1 prox are supported. By default, we use a fast custom C implementation. Since SLOPE can be viewed as an isotonic regression problem, the prox can also be computed using the `isotone` package. This option is provided primarily for testing.
Description

This function is a unified interface to return various types of loss for a model fit with \texttt{SLOPE()}.

Usage

\begin{verbatim}
score(object, x, y, measure)

S3 method for class 'GaussianSLOPE'
score(object, x, y, measure = c("mse", "mae"))

S3 method for class 'BinomialSLOPE'
score(object, x, y, measure = c("mse", "mae", "deviance", "misclass", "auc"))

S3 method for class 'MultinomialSLOPE'
score(object, x, y, measure = c("mse", "mae", "deviance", "misclass"))

S3 method for class 'PoissonSLOPE'
score(object, x, y, measure = c("mse", "mae"))
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{object} \hspace{1cm} an object of class "SLOPE"
 \item \texttt{x} \hspace{1cm} feature matrix
 \item \texttt{y} \hspace{1cm} response
 \item \texttt{measure} \hspace{1cm} type of target measure. "mse" returns mean squared error, "mae" returns mean absolute error, "misclass" returns misclassification rate, and "auc" returns area under the ROC curve.
\end{itemize}

Value

The measure along the regularization path depending on the value in \texttt{measure}.

Examples

\begin{verbatim}
x <- subset(infert, select = c("induced", "age", "pooled.stratum"))
y <- infert\$case
fit <- SLOPE(x, y, family = "binomial")
score(fit, x, y, measure = "auc")
\end{verbatim}
Description

Fit a generalized linear model regularized with the sorted L1 norm, which applies a non-increasing regularization sequence to the coefficient vector (β) after having sorted it in decreasing order according to its absolute values.

Usage

SLOPE(
 x,
 y,
 family = c("gaussian", "binomial", "multinomial", "poisson"),
 intercept = TRUE,
 center = !inherits(x, "sparseMatrix"),
 scale = c("l2", "l1", "sd", "none"),
 sigma = c("path", "estimate"),
 lambda = c("gaussian", "bh", "oscar", "bhq"),
 lambda_min_ratio = if (NROW(x) < NCOL(x)) 0.01 else 1e-04,
 n_sigma = if (sigma[1] == "estimate") 1 else 100,
 q = 0.1 * min(1, NROW(x)/NCOL(x)),
 screen = TRUE,
 screen_alg = c("strong", "previous"),
 tol_dev_change = 1e-05,
 tol_dev_ratio = 0.995,
 max_variables = NROW(x),
 solver = c("fista", "admm", "matlab", "default"),
 max_passes = 1e+06,
 tol_abs = 1e-05,
 tol_rel = 1e-04,
 tol_rel_gap = 1e-05,
 tol_infeas = 0.001,
 diagnostics = FALSE,
 verbosity = 0,
 X,
 fdr,
 normalize
)

Arguments

x the design matrix, which can be either a dense matrix of the standard matrix class, or a sparse matrix inheriting from Matrix::sparseMatrix. Data frames will be converted to matrices internally.
the response, which for family = "gaussian" must be numeric; for family = "binomial" or family = "multinomial", it can be a factor.

family model family (objective); see Families for details.

intercept whether to fit an intercept

center whether to center predictors or not by their mean. Defaults to TRUE if x is dense and FALSE otherwise.

scale type of scaling to apply to predictors; "l1" scales predictors to have L1-norm of one, "l2" scales predictors to have L2-norm one, "sd" scales predictors to have standard deviation one.

sigma regularization path: either a decreasing numeric vector or a character vector; in the latter case, the choices are:
 • sigma = "path", which computes a sigma sequence where the first value corresponds to the intercept-only (null) model, and
 • sigma = "estimate", which estimates a single sigma using a technique outlined in Bogdan et al. (2015).

lambda either a character vector indicating the method used to construct the lambda path or a numeric non-decreasing vector with length equal to the number of coefficients in the model; see section Regularization sequences for details.

lambda_min_ratio smallest value for lambda as a fraction of lambda_max; used in the selection of sigma when sigma = "path".

n_sigma length of regularization path

q parameter controlling the shape of the lambda sequence, with usage varying depending on the type of path used and has no effect is a custom lambda sequence is used.

screen whether to use predictor screening rules (rules that allow some predictors to be discarded prior to fitting), which improve speed greatly when the number of predictors is larger than the number of observations.

screen_alg what type of screening algorithm to use.
 • "strong" uses the set from the strong screening rule and check against the full set
 • "previous" first fits with the previous active set, then checks against the strong set, and finally against the full set if there are no violations in the strong set

tol_dev_change the regularization path is stopped if the fractional change in deviance falls below this value; note that this is automatically set to 0 if a sigma is manually entered

tol_dev_ratio the regularization path is stopped if the deviance ratio \(1 - \text{deviance}/(\text{null} - \text{deviance})\) is above this threshold

max_variables criterion for stopping the path in terms of the maximum number of unique, nonzero coefficients in absolute value in model. For the multinomial family, this value will be multiplied internally with the number of levels of the response minus one.
solver type of solver use, either "fista" or "admm". ("default" and "matlab" are deprecated); all families currently support FISTA but only family = "gaussian" supports ADMM.

max_passes maximum number of passes (outer iterations) for solver

tol_abs absolute tolerance criterion for ADMM solver

tol_rel relative tolerance criterion for ADMM solver

tol_rel_gap stopping criterion for the duality gap; used only with FISTA solver.

tol_infeas stopping criterion for the level of infeasibility; used with FISTA solver and KKT checks in screening algorithm.

diagnostics whether to save diagnostics from the solver (timings and other values depending on type of solver)

verbosity level of verbosity for displaying output from the program. Setting this to 1 displays basic information on the path level, 2 a little bit more information on the path level, and 3 displays information from the solver.

X deprecated. please use x instead

fdr deprecated. please use q instead

normalize deprecated. please use scale and center instead

Details

SLOPE() solves a convex minimization problem with the following composite objective:

\[f(\beta) + \sigma \sum_{i=1}^{p} \lambda_i |\beta_{(i)}|, \]

where \(f(\beta) \) is a smooth and convex function of \(\beta \) and the second part is the sorted L1-norm. In ordinary least-squares regression, \(f(\beta) \) is simply the squared norm of the least-squares residuals. See section **Families** for specifics regarding the various types of \(f(\beta) \) (model families) that are allowed in SLOPE().

By default, SLOPE() fits a path of models, each corresponding to a separate regularization sequence, starting from the null (intercept-only) model to an almost completely unregularized model. These regularization sequences are parameterized using \(\lambda \) and \(\sigma \), with only \(\sigma \) varying along the path. The length of the path can be manually, but will terminate prematurely depending on arguments tol_dev_change, tol_dev_ratio, and max_variables. This means that unless these arguments are modified, the path is not guaranteed to be of length n_sigma.

Value

An object of class "SLOPE" with the following slots:

coefficients a three-dimensional array of the coefficients from the model fit, including the intercept if it was fit. There is one row for each coefficient, one column for each target (dependent variable), and one slice for each penalty.

nonzeros a three-dimensional logical array indicating whether a coefficient was zero or not
lambda the lambda vector that when multiplied by a value in sigma gives the penalty vector at that point along the regularization path
sigma the vector of sigma, indicating the scale of the lambda vector
class_names a character vector giving the names of the classes for binomial and multinomial families
passes the number of passes the solver took at each step on the path
violations the number of violations of the screening rule at each step on the path; only available if diagnostics = TRUE in the call to SLOPE()
active_sets a list where each element indicates the indices of the coefficients that were active at that point in the regularization path
unique the number of unique predictors (in absolute value)
deviance_ratio the deviance ratio (as a fraction of 1)
null_deviance the deviance of the null (intercept-only) model
family the name of the family used in the model fit
diagnostics a data.frame of objective values for the primal and dual problems, as well as a measure of the infeasibility, time, and iteration; only available if diagnostics = TRUE in the call to SLOPE()
call the call used for fitting the model

Families

Gaussian
The Gaussian model (Ordinary Least Squares) minimizes the following objective:
\[\frac{1}{2} \| y - X \beta \|_2^2 \]

Binomial
The binomial model (logistic regression) has the following objective:
\[\sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \left(x_i^T \beta + \alpha \right) \right) \right) \]
with \(y \in \{-1, 1\} \).

Poisson
In poisson regression, we use the following objective:
\[- \sum_{i=1}^{n} \left(y_i \left(x_i^T \beta + \alpha \right) - \exp \left(x_i^T \beta + \alpha \right) \right) \]

Multinomial
In multinomial regression, we minimize the full-rank objective
\[- \sum_{i=1}^{n} \left(\sum_{k=1}^{m-1} y_{ik} (x_i^T \beta_k + \alpha_k) - \log \sum_{k=1}^{m-1} \exp (x_i^T \beta_k + \alpha_k) \right) \]
with \(y_{ik} \) being the element in a \(n \) by \((m - 1)\) matrix, where \(m \) is the number of classes in the response.
Regularization sequences

There are multiple ways of specifying the lambda sequence in SLOPE(). It is, first of all, possible to select the sequence manually by using a non-increasing numeric vector as argument instead of a character. If all lambda are the same value, this will lead to the ordinary lasso penalty. The greater the differences are between consecutive values along the sequence, the more clustering behavior will the model exhibit. Note, also, that the scale of the lambda vector makes no difference if sigma = NULL, since sigma will be selected automatically to ensure that the model is completely sparse at the beginning and almost unregularized at the end. If, however, both sigma and lambda are manually specified, both of the scales will matter.

Instead of choosing the sequence manually, one of the following automatically generated sequences may be chosen.

BH (Benjamini–Hochberg)

If lambda = "bh", the sequence used is that referred to as $\lambda^{(BH)}$ by Bogdan et al, which sets lambda according to

$$\lambda_i = \Phi^{-1}(1 - iq/(2p)),$$

for $i = 1, \ldots, p$, where Φ^{-1} is the quantile function for the standard normal distribution and q is a parameter that can be set by the user in the call to SLOPE().

Gaussian

This penalty sequence is related to BH, such that

$$\lambda_i = \lambda_i^{(BH)} \sqrt{1 + w(i - 1) \cdot \text{cumsum}(\lambda^2)_i},$$

for $i = 1, \ldots, p$, where $w(k) = 1/(n - k - 1)$. We let $\lambda_1 = \lambda_1^{(BH)}$ and adjust the sequence to make sure that it’s non-increasing. Note that if p is large relative to n, this option will result in a constant sequence, which is usually not what you would want.

OSCAR

This sequence comes from Bondell and Reich and is a linearly non-increasing sequence such that

$$\lambda_i = q(p - i) + 1.$$

for $i = 1, \ldots, p$.

Solvers

There are currently two solvers available for SLOPE: FISTA (Beck and Teboulle 2009) and ADMM (Boyd et al. 2008). FISTA is available for families but ADMM is currently only available for family = "gaussian".

References

SLOPE_solver

Solved L1 solver (deprecated)

Description

Solves the sorted L1 penalized regression problem: given a matrix \(A \), a vector \(b \), and a decreasing vector \(\lambda \), find the vector \(x \) minimizing

\[
\frac{1}{2} \| Ax - b \|_2^2 + \sum_{i=1}^{p} \lambda_i |x|_{(i)}.
\]
Usage

SLOPE_solver(
 A,
 b,
 lambda,
 initial = NULL,
 prox = prox_sorted_L1,
 max_iter = 10000,
 grad_iter = 20,
 opt_iter = 1,
 tol_infeas = 1e-06,
 tol_rel_gap = 1e-06
)

Arguments

A an n-by-p matrix
b vector of length n
lambda vector of length p, sorted in decreasing order
initial initial guess for x
prox function that computes the sorted L1 prox
max_iter maximum number of iterations in the gradient descent
grad_iter number of iterations between gradient updates
opt_iter number of iterations between checks for optimality
tol_infeas tolerance for infeasibility
tol_rel_gap tolerance for relative gap between primal and dual problems

Details

This optimization problem is convex and is solved using an accelerated proximal gradient descent method.

Value

An object of class SLOPE_solver.result. This object is a list containing at least the following components:

x solution vector x
optimal logical: whether the solution is optimal
iter number of iterations
Description

A data set of the attributes of 382 students in secondary education collected from two schools. The goal is to predict the grade in math and Portuguese at the end of the third period. See the cited sources for additional information.

Usage

student

Format

382 observations from 13 variables represented as a list consisting of a binary factor response matrix y with two responses: portugese and math for the final scores in period three for the respective subjects. The list also contains x: a sparse feature matrix of class 'dgCMatrix' with the following variables:

- **school_ms** student’s primary school, 1 for Mousinho da Silveira and 0 for Gabriel Pereira
- **sex** sex of student, 1 for male
- **age** age of student
- **urban** urban (1) or rural (0) home address
- **large_family** whether the family size is larger than 3
- **cohabitation** whether parents live together
- **Medu** mother’s level of education (ordered)
- **Fedu** father’s level of education (ordered)
- **Mjob_health** whether the mother was employed in health care
- **Mjob_other** whether the mother was employed as something other than the specified job roles
- **Mjob_services** whether the mother was employed in the service sector
- **Mjob_teacher** whether the mother was employed as a teacher
- **Fjob_health** whether the father was employed in health care
- **Fjob_other** whether the father was employed as something other than the specified job roles
- **Fjob_services** whether the father was employed in the service sector
- **Fjob_teacher** whether the father was employed as a teacher
- **reason_home** school chosen for being close to home
- **reason_other** school chosen for another reason
- **reason_rep** school chosen for its reputation
- **nursery** whether the student attended nursery school
- **internet** whether the student has internet access at home
Preprocessing
All of the grade-specific predictors were dropped from the data set. (Note that it is not clear from the source why some of these predictors are specific to each grade, such as which parent is the student’s guardian.) The categorical variables were dummy-coded. Only the final grades (G3) were kept as dependent variables, whilst the first and second period grades were dropped.

Source

trainSLOPE

Train a SLOPE model

Description
This function trains a model fit by SLOPE() by tuning its parameters through cross-validation.

Usage

trainSLOPE(
 x,
 y,
 q = 0.2,
 number = 10,
 repeats = 1,
 measure = c("mse", "mae", "deviance", "missclass", "auc"),
 ...
)

Arguments

x the design matrix, which can be either a dense matrix of the standard matrix class, or a sparse matrix inheriting from Matrix::sparseMatrix. Data frames will be converted to matrices internally.

y the response, which for family = "gaussian" must be numeric; for family = "binomial" or family = "multinomial", it can be a factor.

q parameter controlling the shape of the lambda sequence, with usage varying depending on the type of path used and has no effect if a custom lambda sequence is used.

number number of folds (cross-validation)
repeats number of repeats for each fold (for repeated k-fold cross validation)
measure measure to try to optimize; note that you may supply multiple values here and
that, by default, all the possible measures for the given model will be used.
... other arguments to pass on to SLOPE()

Details

Note that by default this method matches all of the available metrics for the given model family
against those provided in the argument measure. Collecting these measures is not particularly
demanding computationally so it is almost always best to leave this argument as it is and then
choose which argument to focus on in the call to plot.TrainedSLOPE().

Value

An object of class "TrainedSLOPE", with the following slots:

summary a summary of the results with means, standard errors, and 0.95 confidence levels
data the raw data from the model training
optima a data.frame of the best (mean) values for the different metrics and their cor-
responding parameter values
measure a data.frame listing the used metrics and their labels
model the model fit to the entire data set
call the call

Parallel operation

This function uses the foreach package to enable parallel operation. To enable this, simply register
a parallel backend using, for instance, doParallel::registerDoParallel() from the doParallel
package before running this function.

See Also

foreach::foreach(), plot.TrainedSLOPE()

Examples

8-fold cross-validation repeated 5 times
tune <- trainSLOPE(subset(mtcars, select = c("mpg", "drat", "wt")),
 mtcars$hp,
 q = c(0.1, 0.2),
 number = 8,
 repeats = 5)
Wine

Wine cultivars

Description

A data set of results from chemical analysis of wines grown in Italy from three different cultivars.

Usage

wine

Format

178 observations from 13 variables represented as a list consisting of a categorical response vector \(y \) with three levels: \(A, B, \) and \(C \) representing different cultivars of wine as well as \(x \): a sparse feature matrix of class 'dgCMatrix' with the following variables:

- **alcohol** alcoholic content
- **malic** malic acid
- **ash** ash
- **alcalinity** alcalinity of ash
- **magnesium** magnesium
- **phenols** total phenols
- **flavanoids** flavanoids
- **nonflavanoids** nonflavanoid phenols
- **proanthocyanins** proanthocyanins
- **color** color intensity
- **hue** hue
- **dilution** OD280/OD315 of diluted wines
- **proline** proline

Source

https://raw.githubusercontent.com/hadley/rminds/master/1-data/wine.csv

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#wine
Index

*Topic datasets
 abalone, 2
 bodyfat, 3
 heart, 7
 student, 22
 wine, 25

abalone, 2
base::drop(), 5, 12
bodyfat, 3
caret::train(), 4
caretSLOPE, 4
coeff.SLOPE, 5
coeff.SLOPE(), 20
create_lambda, 6
deviance.SLOPE, 6
foreach::foreach(), 24
heart, 7
lattice::panel.xyplot(), 9
lattice::print.trellis(), 9
lattice::xyplot(), 8–10
Matrix::sparseMatrix, 15, 23
plot.SLOPE, 8
plot.SLOPE(), 20
plot.TrainedSLOPE, 9
plot.TrainedSLOPE(), 24
plotDiagnostics, 10
plotDiagnostics(), 8, 20
predict.BinomialSLOPE (predict.SLOPE), 11
predict.GaussianSLOPE (predict.SLOPE), 11
predict.MultinomialSLOPE (predict.SLOPE), 11
predict.PoissonSLOPE (predict.SLOPE), 11
predict.SLOPE, 11
predict.SLOPE(), 20
print(), 13
print.SLOPE, 12
print.SLOPE(), 20
print.TrainedSLOPE (print.SLOPE), 12
prox_sorted_L1, 13
score, 14
score(), 20
SLOPE, 15
SLOPE(), 4, 5, 8, 10–12, 14, 18, 23, 24
SLOPE_solver, 20
stats::predict(), 12
stats::predict.glm(), 12
stats::update(), 5, 12
student, 22
trainSLOPE, 23
trainSLOPE(), 4, 9, 20
wine, 25