Package ‘SNSSequate’

December 20, 2022

Version 1.3-4
Date 2022-12-16
Title Standard and Nonstandard Statistical Models and Methods for Test Equating
Author Jorge Gonzalez [cre, aut],
Daniel Leon Acuna [ctb]
Maintainer Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>
Depends R (>= 3.1.0), magic, stats
Imports methods, emdbook, plyr, statmod, knitr, progress
Description Contains functions to perform various models and methods for test equating. It currently implements the traditional mean, linear and equipercentile equating methods. Both IRT observed-score and true-score equating are also supported, as well as the mean-mean, mean-sigma, Haebara and Stocking-Lord IRT linking methods. It also supports newest methods such that local equating, kernel equating (using Gaussian, logistic, Epanechnikov, uniform and adaptive kernels) with presmoothing, and IRT parameter linking methods based on asymmetric item characteristic functions. Functions to obtain both standard error of equating (SEE) and standard error of equating differences between two equating functions (SEED) are also implemented for the kernel method of equating.
License GPL (>= 2)
URL https://www.mat.uc.cl/~jorge.gonzalez/
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2022-12-20 17:30:09 UTC

R topics documented:

SNSSequate-package ... 2
The package contains functions to perform various models and methods for test equating. It currently implements the traditional mean, linear and equipercentile equating methods. Both IRT observed-score and true-score equating are also supported, as well as the mean-mean, mean-sigma, Haebara and Stocking-Lord IRT linking methods. It also supports newest methods such that local equating, kernel equating (using Gaussian, logistic, Epanechnikov, uniform and adaptive kernels) with presmoothing, and IRT parameter linking methods based on asymmetric item characteristic functions. Functions to obtain both standard error of equating (SEE) and standard error of equating differences between two equating functions (SEED) are also implemented for the kernel method of equating.
Details

Package: SNSequate
Type: Package
Version: 1.3.3
Date: 2020-02-23
License: GPL (>= 2)

Author(s)

Jorge Gonzalez
Maintainer: Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>

References

ACTmKB

Scores on two 40-items ACT mathematics test forms

Description

The data set contains raw sample frequencies of number-right scores for two multiple choice 40-items mathematics tests forms. Form X was administered to 4329 examinees and form Y to 4152 examinees. This data has been described and analyzed by Kolen and Brennan (2004).

Usage

data(ACTmKB)

Format

A 41x2 matrix containing raw sample frequencies (raws) for two tests (columns).

Source

The data come with the distribution of the RAGE-RGEQUATE software which is freely available at https://education.uiowa.edu/casma/computer-programs

References

Examples

data(ACTmKB)
maybe str(ACTmKB) ; plot(ACTmKB) ...

bandwidth

Automatic selection of the bandwidth parameter h

Description

This function implements the minimization of the combined penalty function described by Holland and Thayer (1989); Von Davier et al. (2004). It returns the optimal value of h for kernel continuization, according to the above mentioned criteria. Different types of kernels (others than the gaussian) are accepted.

Usage

bandwidth(scores, kert, degree, design, Kp = 1, scores2, degreeXA, degreeYA, J, K, L, wx, wy, w)
Arguments

Note that depending on the specified equating design, not all arguments are necessary as detailed below.

If the "EG" design is specified, a vector containing the raw sample frequencies coming from one group taking the test.

If the "SG" design is specified, a matrix containing the (joint) bivariate sample frequencies for X (rows) and Y (columns).

If the "CB" design is specified, a two column matrix containing the observed scores of the sample taking test X first, followed by test Y. The scores2 argument is then used for the scores of the sample taking test Y first followed by test X.

If either the "NEAT_CB" or "NEAT_PSE" design is selected, a two column matrix containing the observed scores on test X (first column) and the observed scores on the anchor test A (second column). The scores2 argument is then used for the observed scores on test Y.

keotes

A character string giving the type of kernel to be used for continuization. Current options include "gauss", "logis", and "uniform" for the gaussian, logistic and uniform kernels, respectively

degree

Either a number or vector indicating the number of power moments to be fitted to the marginal distributions, or the number or cross moments to be fitted to the joint distributions, respectively. For the "EG" design it will be a number (see Details).

design

A character string indicating the equating design (one of "EG", "SG", "CB", "NEAT_CE", "NEAT_PSE")

Kp

A number which acts as a weight for the second term in the combined penalization function used to obtain h (see details).

scores2

Only used for the "CB", "NEAT_CE" and "NEAT_PSE" designs. See the description of scores.

degreeXA

A vector indicating the number of power moments to be fitted to the marginal distributions X and A, and the number or cross moments to be fitted to the joint distribution \((X, A)\) (see details). Only used for the "NEAT_CE" and "NEAT_PSE" designs.

degreeYA

Only used for the "NEAT_CE" and "NEAT_PSE" designs (see the description for degreeXA)

J

The number of possible X scores. Only needed for "CB", "NEAT_CB" and "NEAT_PSE" designs

K

The number of possible Y scores. Only needed for "CB", "NEAT_CB" and "NEAT_PSE" designs

L

The number of possible A scores. Needed for "NEAT_CB" and "NEAT_PSE" designs

wx

A number that satisfies \(0 \leq w_X \leq 1\) indicating the weight put on the data that is not subject to order effects. Only used for the "CB" design.

wy

A number that satisfies \(0 \leq w_Y \leq 1\) indicating the weight put on the data that is not subject to order effects. Only used for the "CB" design.
A number that satisfies $0 \leq w \leq 1$ indicating the weight given to population P. Only used for the "NEAT" design.

Details

To automatically select h, the function minimizes

$$PEN_1(h) + K \times PEN_2(h)$$

where $PEN_1(h) = \sum_j (\hat{r}_j - \hat{f}_h(x_j))^2$, and $PEN_2(h) = \sum_j A_j (1 - B_j)$. The terms A and B are such that PEN_2 acts as a smoothness penalty term that avoids rapid fluctuations in the approximated density (see Chapter 10 in Von Davier, 2011 for more details). The K term corresponds to the Kp argument of the bandwidth function. The \hat{r} values are assumed to be estimated by polynomial loglinear models of specific degree, which come from a call to `loglin.smooth`.

Value

A number which is the optimal value of h.

Author(s)

Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>

References

See Also

`loglin.smooth`

Examples

#Example: The "Standard" column and firsts two rows of Table 10.1 in #Chapter 10 of Von Davier 2011

data(Math20EG)

hx.logis <- bandwidth(scores=Math20EG[,1], kert="logis", degree=2, design="EG")$h
hx.unif <- bandwidth(scores=Math20EG[,1], kert="unif", degree=2, design="EG")$h
hx.gauss <- bandwidth(scores=Math20EG[,1], kert="gauss", degree=2, design="EG")$h

hy.logis <- bandwidth(scores=Math20EG[,2], kert="logis", degree=3, design="EG")$h
hy.unif <- bandwidth(scores=Math20EG[,2], kert="unif", degree=3, design="EG")$h
hy.gauss <- bandwidth(scores=Math20EG[,2], kert="gauss", degree=3, design="EG")$h
The Bayesian nonparametric (BNP) approach starts by focusing on spaces of distribution functions, so that uncertainty is expressed on F itself. The prior distribution $p(F)$ is defined on the space F of all distribution functions defined on X. If X is an infinite set then F is infinite-dimensional, and the corresponding prior model $p(F)$ on F is termed nonparametric. The prior probability model is also referred to as a random probability measure (RPM), and it essentially corresponds to a distribution on the space of all distributions on the set X. Thus Bayesian nonparametric models are probability models defined on a function space.
Value
A `BNP.eq` object, which is list containing the following items:
Y Response variable.
X Design Matrix.
fit DPpackage object. Fitted model with raw samples.
max_score Maximum score of test.
patterns A matrix describing the different patterns formed from the factors in the covariables.
patterns_freq The normalized frequency of each pattern.

Author(s)
Daniel Leon <dnacuna@uc.cl>, Felipe Barrientos <afb26@stat.duke.edu>.

References

BNP.eq.predict

Prediction step for Bayesian non-parametric model for test equating

Description
This function implements the prediction step in the Bayesian non-parametric model for test equating

Usage

```
BNP.eq.predict(model, from = NULL, into = NULL, alpha = 0.05)
```

Arguments

- `model` A `BNP.eq` object.
- `from` Numeric. A vector of indices indicating from which patterns equating should be performed. The covariates involved are integrated out.
- `into` Numeric. A vector of indices indicating into which patterns equating should be performed. The covariates involved are integrated out.
- `alpha` Numeric. Level of significance for credible bands.

Details
Predictions of the score probability distributions are obtained under the Bayesian nonparametric model and are used to compute the equating function.
Value

A `BNP.eq.predict` object, which is a list containing the following items:

- `pdf` A list of PDF’s.
- `cdf` A list of CDF’s.
- `equ` Numeric. Equated values.
- `grid` Numeric. Grid used to evaluate pdf’s and cdf’s.

Author(s)

Daniel Leon <dnacuna@uc.cl>, Felipe Barrientos <afb26@stat.duke.edu>.

References

CBdata

Observed (raw) score values for two different tests

Description

The data set is from a small field study from an international testing program. It contains the observed scores for two tests X (with 75 items) and Y (with 76 items) administered to two independent, random samples of examinees from a single population P. For more details, see Chapter 9 in Von Davier et al. (2004) from where the data were obtained.

Usage

data(CBdata)

Format

A list with elements containing the observed scores of the sample taking test X first, followed by test Y (datX1Y2), and the scores of the sample taking test Y first followed by test X (datX2Y1).

References

Examples

data(CBdata)

maybe str(CBdata) ; ...
The equipercentile method of equating

Description
This function implements the equipercentile method of test equating as described in Kolen and Brennan (2004).

Usage
```r
eqp.eq(sx, sy, X, Ky = max(sy))
```

Arguments
- `sx`: A vector containing the observed scores on test `X`
- `sy`: A vector containing the observed scores on test `Y`
- `X`: Either an integer or vector containing the values on the scale to be equated.
- `Ky`: The total number of items in test form `Y` to which form `X` scores will be equated

Details
The function implements the equipercentile method of equating as described in Kolen and Brennan (2004). Given observed scores `sx` and `sy`, the function calculates

$$
\phi(x) = G^{-1}(F(x))
$$

where F and G are the cdf of scores on test forms `X` and `Y`, respectively.

Value
A two column matrix with the values of $\phi()$ (second column) for each scale value x (first column)

Author(s)
Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>

References

See Also
- `mea.eq`, `lin.eq`, `ker.eq`
Examples

Example from Kolen and Brennan (2004), pages 41-42:
(scores distributions have been transformed to vectors of scores)

```r
sx<-c(0,0,1,1,2,2,3,3,4)
sy<-c(0,1,1,2,2,3,3,3,4,4)
x<-2
eqp.eq(sx,sy,2)

# Whole scale range (Table 2.3 in KB)
eqp.eq(sx,sy,0:4)
```

gof

Functions to assess model fitting.

Description

This function contains various measures to assess the model’s goodness of fit.

Usage

```r
gof(obs, fit, methods=c("FT"), p.out=FALSE)
```

Arguments

- **obs**: A vector containing the observed values.
- **fit**: A vector containing the fitted values.
- **methods**: A character vector containing one or many of the following methods:
 - "FT": Freeman-Tukey Residuals. This is the default test.
 - "Chisq": Pearson’s Chi-squared test.
 - "KL": Symmetrised Kullback-Leibler divergence.
- **p.out**: Boolean. Decides whether or not to display plots (on corresponding methods).

Author(s)

Daniel Leon Acuna. <dnacuna@uc.cl>

References

Examples

```r
data(Math20EG)
mod <- ker.eq(scores=Math20EG,kert="gauss",degree=c(2,3),design="EG")
gof(Math20EG[,1], mod$rj*mod$nx, method=c("FT", "KL"))
```

Description

Implements methods to perform Test Equating over IRT models.

Usage

```r
irt.eq(n_items, param_x, param_y, theta_points=NULL, weights=NULL, n_points=10, w=1,
A=NULL, B=NULL, link=NULL, method_link=NULL, common=NULL, method="TS", D=1.7)
```

Arguments

- **n_items**: Number of items of the test.
- **param_x**: Estimated parameters for IRT model on test X. This list must have the following structure: list(a, b, c), where each parameter is a vector with the respective estimate for each subject. If you want to perform other models (i.e. Rasch), replace according with a vector of zeros.
- **param_y**: Estimated parameters for IRT model on test Y. This list must have the following structure: list(a, b, c), where each parameter is a vector with the respective estimate for each subject. If you want to perform other models (i.e. Rasch), replace according with a vector of zeros.
- **method**: A string, either "TS" or "OS". Each one stands for "True Score Equating" and "Observed score equating". Notice that OS requires the additional arguments "theta_points" and "weights".
- **theta_points**: For "OS" only. Points over a grid of possible values of \(\theta \) to integrate out the ability term.
- **weights**: For "OS" only. Weights for integrate out the ability term. If is NULL, the method assumes the distribution of ability is characterized by a finite number of abilities (Kolen and Brennan 2013, pg 199).
- **n_points**: In case theta_points is not provided, is the length of the grid for the gaussian quadrature.
- **A, B**: Scaling parameters. In the case they are not provided, they will be calculated depending on the next described inputs.
- **link**: An irt.link object.
- **method_link**: Method used to estimate A and B. Default is "mean/sigma". Others are "mean/mean", "Haebara" and "Stocklord". For more information see irt.link
Common items to estimate A and B. Default assume all items are common.

Common items to estimate A and B. Default assume all items are common.

Weight of the synthetic population.

Scaling constant

Details

This function implements two methods to perform Test Equating over Item Response Theory models (Kolen and Brennan 2013).

"True Score Equating" relate number-correct scores on Form X and Form Y. Assumes that the true score associated with each θ is equivalent to the true score on another form associated with that θ.

"Observed Score Equating" uses the IRT model to produce an estimated distribution of observed number-correct scores on each form. Using the compound binomial distribution (Lord and Wingersky 1984) to find the conditional distributions $f(x \mid \theta)$, and then integrate out the θ parameter. Afterwards, an Equipercentile Equating process is done over the estimated distributions.

Value

An object of the class `irt.eq` is returned. Depending on the method used, the outputs are:

True Score Equating A list$(n_items, \theta_equivalent, \tau_y)$ containing the number of items, the θ equivalent values on Form X to Form Y and the equivalent scores.

Observed Score Equating A list$(n_items, f_hat, g_hat, e_Y_x)$ containing the number of items, the estimated distributions and the equated values.

Author(s)

Daniel Acuna Leon. <dnacuna@uc.cl>

References

See Also

`irt.link`

Examples

data(KB36_t)
dfo <- KB36_t

param_x <- list(a=dfo[,3],b=dfo[,4],c=dfo[,5])
param_y <- list(a=dfo[,7],b=dfo[,8],c=dfo[,9])

theta_points=c(-5.2086,-4.163,-3.1175,-2.072,-1.0269,0.0184,1.0635,2.109,3.1546,4.2001)
weights=c(0.000101,0.00276,0.03021,0.142,0.3149,0.3158,0.1542,0.03596,0.003925,0.000186)
irt.eq(36, param_x, param_y, method="TS", A=1, B=0)
irt.eq(36, param_x, param_y, theta_points, weights, method="OS", A=1, B=0)

irt.link

IRT parameter linking methods

Description

The function implements parameter linking methods to transform IRT scales. Mean-mean, mean-sigma, Haebara, and Stocking and Lord methods are available (see details).

Usage

irt.link(parm, common, model, icc, D)

Arguments

- `parm`: A 6 column matrix containing item parameter estimates from an IRT model. The first three columns contain the parameters for the form Y fit, and the last three those of form X. The order for item parameters in the matrix is discrimination, difficulty, and guessing. See details.
- `common`: A vector indicating the position where common items are located
- `model`: A character string indicating the underlying IRT model: "1PL", "2PL", "3PL".
- `icc`: A character string indicating the type of icc used in the characteristic curve methods (see details). Available options are "logistic" and "cloglog".
- `D`: A number indicating the value of the constant D (see details)

Details

The function implements various methods of IRT parameter linking (a.k.a, scale transformation methods). It calculates the linking constants A and B to transform parameter estimates. When assuming a 1PL model, the matrix parm should contain a column of ones and a column of zeroes in the places where discrimination and guessing parameters are located, respectively.

The characteristic curve methods (Haebara and Stocking and Lord) rely on the item characteristic curve p_{ij} assumed for the probability of a correct answer

$$p_{ij} = P(Y_{ij} = 1 \mid \theta_i) = c_j + (1 - c_j) \frac{\exp[Da_j(\theta_i - \beta_j)]}{1 + \exp[Da_j(\theta_i - \beta_j)]}$$

Besides the traditional logistic model, the irt.link() function allows the use of an asymmetric cloglog ICC. See the help for KB36.1PL data set, where some details on how to fit a 1PL model with cloglog link in lmer are given.

For more details on characteristic curve methods see Kolen and Brennan (2004).
Value
A list with the constants A and B calculated using the four different methods

Note
Currently, the cloglog ICC is only implemented for the 1PL model. A 1PL model with asymmetric cloglog link can be fitted in R using the \texttt{lmer()} function in package \texttt{lme4}

Author(s)
Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>

References

See Also
\texttt{mea.eq, lin.eq, ker.eq}

Examples
```r
### Example. KB, Table 6.6
data(KB36)
parm.x = KB36$KBformX_par
parm.y = KB36$KBformY_par
comitems = seq(3,36,3)
parm = as.data.frame(cbind(parm.y, parm.x))

# Table 6.6 KB
irt.link(parm,comitems,model="3PL",icc="logistic",D=1.7)

# Same data but assuming a 1PL model. The parameter estimates are load from
# the KB36.1PL data set. See the help for KB36.1PL data for details on how these
# estimates were obtained using \texttt{lmer()} (see also Table 6.13 in KB)
data(KB36.1PL)

#preparing the input data matrices for irt.link() function
b.log.y<-KB36.1PL$b.logistic[,2]
b.log.x<-KB36.1PL$b.logistic[,1]
b.clog.y<-KB36.1PL$b.cloglog[,2]
b.clog.x<-KB36.1PL$b.cloglog[,1]
```
parm2 = as.data.frame(cbind(1,b.log.y,0, 1,b.log.x, 0))
parm3 = as.data.frame(cbind(1,b.clog.y,0, 1,b.clog.x,0))

#vector indicating common items
comitems = seq(3,36,3)

#Calculating the B constant under the logistic-link model
irt.link(parm2,comitems,model="1PL",icc="logistic",D=1.7)

#Calculating the B constant under the cloglog-link model
irt.link(parm3,comitems,model="1PL",icc="cloglog",D=1.7)

KB36

Data on two 36-items test forms

Description

The data set contains both response patterns and item parameters estimates following a 3PL model for two 36-items tests forms. Form X was administered to 1655 examinees and form Y to 1638 examinees. Also, 12 out of the 36 items are common between both test forms (items 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36). This data has been described and analyzed by Kolen and Brennan (2004).

Usage

data(KB36)

Format

A list with four elements containing binary data matrices of responses (KBformX and KBformY) and the corresponding parameter estimates which result from a 3PL fit to both data matrices (KBformX_par and KBformY_par).

Source

The data come with the distribution of the CIPE software which is freely available at https://education.uiowa.edu/casma/computer-programs. The list of item parameters estimates can be found in Table 6.5 of Kolen and Brennan (2004).

References

Examples

data(KB36)
maybe str(KB36) ; plot(KB36) ...
Description

This data set contains the estimated item difficulty parameters for the KB36 data, assuming a 1PL model. Two sets of parameters estimates for test forms X and Y are available: one that results from a fit assuming the traditional logistic link, and one which comes from the fit using a cloglog (asymmetric) link.

Usage

```r
data(KB36.1PL)
```

Format

A list of 2 elements containing item (difficulty) parameters estimates for test forms X and Y under the logistic-link model (b.logistic), and under the cloglog-link model (b.cloglog).

Details

This data set is used to illustrate the characteristic curve methods (Haabara and Stocking-Lord) which can use an asymmetric cloglog ICC for the calculations, as described in Estay (2012).

A 1PL model using both logistic and cloglog link can be fitted using the `lmer()` function in the `lme4` R package (see De Boeck et. al, 2011 for details).

Source

The item parameter estimates for the 1PL model with logistic link are also shown in Table 6.13 of Kolen and Brennan (2004).

References

Examples

```r
data(KB36.1PL)
## maybe str(KB36.1PL) ; plot(KB36.1PL) ...
**KB36_t**

*Data on two 36-items test forms*

**Description**

The data set contains item parameters estimates following a 3PL model for two 36-items tests forms, rescaled using mean-sigma method’s A and B using all common items except item 27. This data has been described and analized by Kolen and Brennan (2004), Table 6.8.

**Usage**

```r
data(KB36_t)
```

**Format**

A dataframe where each column represent item parameter estimates of forms X and Y, with their respective p-values.

**References**


**See Also**

KB36

**Examples**

```r
data(KB36_t)
```

---

**ker.eq**

*The Kernel method of test equating*

**Description**

This function implements the kernel method of test equating as described in Holland and Thayer (1989), and Von Davier et al. (2004). Nonstandard kernels others than the gaussian are available. Associated standard error of equating are also provided.

**Usage**

```r
ker.eq(scores, kert, hx = NULL, hy = NULL, degree, design, Kp = 1, scores2,
 degreeXA, degreeYA, J, K, L, wx, wy, w, gapsX, gapsY, gapsA, lumpX, lumpY,
 lumpA, alpha, h.adap)
```
Arguments

Note that depending on the specified equating design, not all arguments are necessary as detailed below.

If the "EG" design is specified, a two column matrix containing the raw sample frequencies coming from the two groups of scores to be equated. It is assumed that the data in the first and second columns come from tests $X$ and $Y$, respectively.

If the "SG" design is specified, a matrix containing the (joint) bivariate sample frequencies for $X$ (raws) and $Y$ (columns).

If the "CB" design is specified, a two column matrix containing the observed scores of the sample taking test $X$ first, followed by test $Y$. The scores2 argument is then used for the scores of the sample taking test $Y$ first followed by test $X$.

If either the "NEAT_CB" or "NEAT_PSE" design is selected, a two column matrix containing the observed scores on test $X$ (first column) and the observed scores on the anchor test $A$ (second column). The scores2 argument is then used for the observed scores on test $Y$.

**ker.eq**

A character string giving the type of kernel to be used for continuization. Current options include "gauss", "logis", "uniform", "epan" and "adap" for the gaussian, logistic, uniform, Epanechnikov and Adaptative kernels, respectively.

**hx**
An integer indicating the value of the bandwidth parameter to be used for kernel continuization of $F(x)$. If not provided (Default), this value is automatically calculated (see details).

**hy**
An integer indicating the value of the bandwidth parameter to be used for kernel continuization of $G(y)$. If not provided (Default), this value is automatically calculated (see details).

**degree**
A vector indicating the number of power moments to be fitted to the marginal distributions ("EG" design), and/or the number or cross moments to be fitted to the joint distributions (see Details).

**design**
A character string indicating the equating design (one of "EG", "SG", "CB", "NEAT_CE", "NEAT_PSE")

**Kp**
A number which acts as a weight for the second term in the combined penalization function used to obtain $h$ (see details).

**scores2**
Only used for the "CB", "NEAT_CE" and "NEAT_PSE" designs. See the description of scores.

**degreeXA**
A vector indicating the number of power moments to be fitted to the marginal distributions $X$ and $A$, and the number or cross moments to be fitted to the joint distribution $(X, A)$ (see details). Only used for the "NEAT_CE" and "NEAT_PSE" designs.

**degreeYA**
Only used for the "NEAT_CE" and "NEAT_PSE" designs (see the description for degreeXA).

**J**
The number of possible $X$ scores. Only needed for "CB", "NEAT_CB" and "NEAT_PSE" designs

**K**
The number of possible $Y$ scores. Only needed for "CB", "NEAT_CB" and "NEAT_PSE" designs
The number of possible \( A \) scores. Needed for "NEAT_Cb" and "NEAT_PSE" designs.

\( w_x \) A number that satisfies \( 0 \leq w_x \leq 1 \) indicating the weight put on the data that is not subject to order effects. Only used for the "CB" design.

\( w_y \) A number that satisfies \( 0 \leq w_y \leq 1 \) indicating the weight put on the data that is not subject to order effects. Only used for the "CB" design.

\( w \) A number that satisfies \( 0 \leq w \leq 1 \) indicating the weight given to population \( P \). Only used for the "NEAT" design.

\( \text{gapsX} \) A list object containing:
- \( \text{index} \) A vector of indices between 0 and \( J \) to smooth "gaps", usually occurring at regular intervals due to scores rounded to integer values and other methodological factors.
- \( \text{degree} \) An integer indicating the maximum degree of the moments fitted by the log-linear model.

Only used for the "NEAT" design.

\( \text{gapsY} \) A list object containing:
- \( \text{index} \) A vector of indices between 0 and \( K \).
- \( \text{degree} \) An integer indicating the maximum degree of the moments fitted.

Only used for the "NEAT" design.

\( \text{gapsA} \) A list object containing:
- \( \text{index} \) A vector of indices between 0 and \( L \).
- \( \text{degree} \) An integer indicating the maximum degree of the moments fitted.

Only used for the "NEAT" design.

\( \text{lumpX} \) An integer to represent the index where an artificial "lump" is created in the marginal distribution of frequencies for \( X \) due to recording of negative rounded formulas or any other methodological artifact.

\( \text{lumpY} \) An integer to represent the index where an artificial "lump" is created in the marginal distribution of frequencies for \( Y \).

\( \text{lumpA} \) An integer to represent the index where an artificial "lump" is created in the marginal distribution of frequencies for \( A \).

\( \alpha \) Only for Adaptative Kernel. Sensitivity parameter.

\( \text{h.adap} \) Only for Adaptative Kernel. A list(hx, hy) containing bandwidths for Adaptative kernel for each Form.

**Details**

This is a generic function that implements the kernel method of test equating as described in Von Davier et al. (2004). Given test scores \( X \) and \( Y \), the functions calculates

\[
\hat{e}_Y(x) = G_{P_{-1}}(F_{h_X}(x; \hat{r}), \hat{s})
\]

where \( \hat{r} \) and \( \hat{s} \) are estimated score probabilities obtained via loglinear smoothing (see \text{loglin.smooth}). The value of \( h_X \) and \( h_Y \) can either be specified by the user or left unspecified (default) in which case they are automatically calculated. For instance, one can specifies large values of \( h_X \) and \( h_Y \), so that the \( \hat{e}_Y(x) \) tends to the linear equating function (see Theorem 4.5 in Von Davier et al, 2004 for more details).
Value

An object of class `ker.eq` representing the kernel equating process. Generic functions such as `print`, and `summary` have methods to show the results of the equating. The results include summary statistics, equated values, standard errors of equating, and others.

The function `SEED` can be used to obtain standard error of equating differences (SEED) of two objects of class `ker.eq`. The function `PREp` can be used on a `ker.eq` object to obtain the percentage relative error measure (see Von Davier et al, 2004).

Scores: The possible values of $x_j$ and $y_k$

eqYx: The equated values of test $X$ in test $Y$ scale

eqXy: The equated values of test $Y$ in test $X$ scale

SEEYx: The standard error of equating for equating $X$ to $Y$

SEEXy: The standard error of equating for equating $Y$ to $X$

Author(s)

Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>

References


See Also

`loglin.smooth, SEED, PREp`

Examples

```
Kernel equating under the "EG" design
data(Math20EG)
mod<-ker.eq(scores=Math20EG,kert="gauss",hx=NULL,hy=NULL,degree=c(2,3),design="EG")
summary(mod)

Reproducing Table 7.6 in Von Davier et al, (2004)

scores<-0:20
SEEXy<-mod$SEEXy
SEEYx<-mod$SEEYx
Table7.6<-cbind(scores,SEEXy,SEEYx)
```
# Other nonstandard kernels. Table 10.3 in Von Davier (2011).

```r
mod.logis <- ker.eq(scores=Math20EG,kert="logis",hx=NULL,hy=NULL,degree=c(2,3),design="EG")
mod.unif <- ker.eq(scores=Math20EG,kert="unif",hx=NULL,hy=NULL,degree=c(2,3),design="EG")
mod.gauss <- ker.eq(scores=Math20EG,kert="gauss",hx=NULL,hy=NULL,degree=c(2,3),design="EG")
```

```r
XtoY <- cbind(mod.logis$eqYx,mod.unif$eqYx,mod.gauss$eqYx)
YtoX <- cbind(mod.logis$eqXy,mod.unif$eqXy,mod.gauss$eqXy)

Table 10.3 <- cbind(XtoY,YtoX)
```

## Examples using Adaptive and Epanechnikov kernels

```r
x_sim = c(1,2,3,4,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1)
prob_sim = x_sim/sum(x_sim)
set.seed(1)
sim = rmultinom(1, p = prob_sim, size = 1000)

x_asimD = c(1,7,13,18,22,24,25,20,18,16,15,13,9,5,3,2.5,1.5,1.5,1,1)
probas_asimD = x_asimD/sum(x_asimD)
set.seed(1)
asim = rmultinom(1, p = probas_asimD, size = 1000)

scores = cbind(asim,sim)
mod.adap = ker.eq(scores,degree=c(2,2),design="EG",kert="adap")
mod.epan = ker.eq(scores,degree=c(2,2),design="EG",kert="epan")
```

---

### le.eq  

*Local equating methods*

#### Description

This function implements the local method of equating as described in van der Linden (2011).

#### Usage

```r
le.eq(S.X, It.X, It.Y, Theta)
```

#### Arguments

- **S.X**  
  A vector containing the observed scores of the sample taking test $X$.

- **It.X**  
  A matrix of item parameter estimates coming from an IRT model for test form $X$  
  (difficulty, discrimination and guessing parameters are located in the first, second and third column, respectively).

- **It.Y**  
  A matrix of item parameter estimates coming from an IRT model for test form $Y$.
Theta

Either a number or vector of values representing the value of theta where to condition on (see details)

Details

The function implements the local equating method as described in van der Linden (2011). Based on Lord (1980) principle of equity, local equating methods utilizes the conditional on abilities distributions of scores to obtain the transformation \( \varphi \). The method leads to a family of transformations of the form

\[
\varphi(x; \theta) = G_{Y|\theta}^{-1}(F_{X|\theta}(x)), \quad \theta \in \mathbb{R}
\]

The conditional distributions of \( X \) and \( Y \) are obtained using the algorithm described by Lord and Wingersky (1984). Among other possibilities, a value for \( \theta \) can be a EAP, ML or MAP estimation of it, for and underlying IRT model (for example, using the \texttt{ltm} R package (Rizopoulos, 2006)).

Value

A list containing the observed scores to be equated, the corresponding ability estimates where to condition on, and the equated values.

Author(s)

Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>

References


See Also

\texttt{mea.eq, eqp.eq, lin.eq, ker.eq}

Examples

```r
Artificial data for two 5-items tests forms. Both forms are assumed
being fitted by a 3PL model.

Create (artificial) item parameters matrices for test form X and Y
ai<-c(1,0.8,1.2,1.1,0.9)
bi<-c(-2,-1,0,1,2)
ci<-c(0,1,0.15,0.05,0.1,0.2)
```
\begin{verbatim}

itx<-rbind(bi,ai,ci)
ai<-c(0.5,1.4,1.2,0.8,1)
bi<-c(-1,-0.5,1,1.5,0)
ct<-c(0.1,0.2,0.1,0.15,0.1)
ity<-rbind(bi,ai,ci)

#Two individuals with different ability (1 and 2) obtain the same score 2.
#Their corresponding equated scores values are:
le.eq(c(2,2),itx,ity,c(1,2))
\end{verbatim}

\section*{lin.eq}

\textit{The linear method of equating}

\subsection*{Description}
This function implements the linear method of test equating as described in Kolen and Brennan (2004).

\subsection*{Usage}
\begin{verbatim}
lin.eq(sx, sy, scale)
\end{verbatim}

\subsection*{Arguments}
\begin{description}
\item[sx] A vector containing the observed scores of the sample taking test \textit{X}.
\item[sy] A vector containing the observed scores of the sample taking test \textit{Y}.
\item[scale] Either an integer or vector containing the values on the scale to be equated.
\end{description}

\subsection*{Details}
The function implements the linear method of equating as described in Kolen and Brennan (2004). Given observed scores \textit{sx} and \textit{sy}, the functions calculates

$$\varphi(x; \mu_x, \mu_y, \sigma_x, \sigma_y) = \frac{\sigma_x}{\sigma_y} (x - \mu_x) + \mu_y$$

where \(\mu_x, \mu_y, \sigma_x, \sigma_y\) are the score means and standard deviations on test \textit{X} and \textit{Y}, respectively.

\subsection*{Value}
A two column matrix with the values of \(\varphi()\) (second column) for each scale value \(x\) (first column)

\subsection*{Author(s)}
Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>
loglin.smooth

Pre-smoothing using log-linear models.

Description

This function fits log-linear models to score data and provides estimates of the (vector of) score probabilities as well as the C matrix decomposition of their covariance matrix, according to the specified equating design (see Details).

Usage

loglin.smooth(scores, degree, design, scores2, degreeXA, degreeYA, J, K, L, wx, wy, w, gapsX, gapsY, gapsA, lumpX, lumpY, lumpA,...)
**Arguments**

Note that depending on the specified equating design, not all arguments are necessary as detailed below.

If the "EG" design is specified, a vector containing the raw sample frequencies coming from one group taking the test.

If the "SG" design is specified, a matrix containing the (joint) bivariate sample frequencies for \( X \) (rows) and \( Y \) (columns).

If the "CB" design is specified, a two column matrix containing the observed scores of the sample taking test \( X \) first, followed by test \( Y \). The `scores2` argument is then used for the scores of the sample taking test \( Y \) first followed by test \( X \).

If either the "NEAT_CB" or "NEAT_PSE" design is selected, a two column matrix containing the observed scores on test \( X \) (first column) and the observed scores on the anchor test \( A \) (second column). The `scores2` argument is then used for the observed scores on test \( Y \).

**degree**

Either a number or vector indicating the number of power moments to be fitted to the marginal distributions, or the number or cross moments to be fitted to the joint distributions, respectively. For the "EG" design it will be a number (see Details).

**design**

A character string indicating the equating design (one of "EG", "SG", "CB", "NEAT_CE", "NEAT_PSE")

**scores2**

Only used for the "CB", "NEAT_CE" and "NEAT_PSE" designs. See the description of `scores`.

**degreeXA**

A vector indicating the number of power moments to be fitted to the marginal distributions \( X \) and \( A \), and the number or cross moments to be fitted to the joint distribution \( (X,A) \) (see details). Only used for the "NEAT_CE" and "NEAT_PSE" designs.

**degreeYA**

Only used for the "NEAT_CE" and "NEAT_PSE" designs (see the description for `degreeXA`)

**J**

The number of possible \( X \) scores. Only needed for "CB", "NEAT_CB" and "NEAT_PSE" designs

**K**

The number of possible \( Y \) scores. Only needed for "CB", "NEAT_CB" and "NEAT_PSE" designs

**L**

The number of possible \( A \) scores. Needed for "NEAT_CB" and "NEAT_PSE" designs

**wx**

A number that satisfies \( 0 \leq w_X \leq 1 \) indicating the weight put on the data that is not subject to order effects. Only used for the "CB" design.

**wy**

A number that satisfies \( 0 \leq w_Y \leq 1 \) indicating the weight put on the data that is not subject to order effects. Only used for the "CB" design.

**w**

A number that satisfies \( 0 \leq w \leq 1 \) indicating the weight given to population \( P \). Only used for the "NEAT" design.

**gapsX**

A list object containing:
index A vector of indices between 0 and J to smooth "gaps", usually occurring at regular intervals due to scores rounded to integer values and other methodological factors.
degree An integer indicating the maximum degree of the moments fitted by the log-linear model.

Only used for the "NEAT" design.
gapsY A list object containing:
index A vector of indices between 0 and K.
degree An integer indicating the maximum degree of the moments fitted.

Only used for the "NEAT" design.
gapsA A list object containing:
index A vector of indices between 0 and L.
degree An integer indicating the maximum degree of the moments fitted.

Only used for the "NEAT" design.
lumpX An integer to represent the index where an artificial "lump" is created in the marginal distribution of frequencies for X due to recording of negative rounded formulas or any other methodological artifact.
lumpY An integer to represent the index where an artificial "lump" is created in the marginal distribution of frequencies for Y.
lumpA An integer to represent the index where an artificial "lump" is created in the marginal distribution of frequencies for A.

Details

This function fits loglinear models as described in Holland and Thayer (1987), and Von Davier et al. (2004). The following general equation can be used to represent the models according to the different designs used, in which the vector o (or matrix) of (marginal or bivariate) score probabilities satisfies the log-linear model:

\[
\log(o_{gh}) = \alpha_m + Z_m(z_g) + W_m(w_h) + ZW_m(z_g, w_h)
\]

where \( Z_m(z_g) = \sum_{i=1}^{T_x} \beta_{zm_i}(z_g)^i \), \( W_m(w_h) = \sum_{i=1}^{T_w} \beta_{Wm_i}(w_h)^i \), and, \( ZW_m(z_g, w_h) = \sum_{i=1}^{T_x} \sum_{j=1}^{T_w} \beta_{ZWm_{ij}(z_g)^i(w_h)^j} \).

The symbols will vary according to the different equating designs specified. Possible values are:

\( o = p_{(12)}, p_{(21)}, p, q; Z = X, Y; W = Y, A; z = x, y; w = y, a; m = (12), (21), P, Q; g = j, k; h = l, k. \)

Particular cases of this general equation for each of the equating designs can be found in Von Davier et al (2004) (e.g., Equations (7.1) and (7.2) for the "EG" design, Equation (8.1) for the "SG" design, Equations (9.1) and (9.2) for the "CB" design).

Value

sp.est The estimated score probabilities
C The C matrix which is so that \( \Sigma = CC^t \)
Math20EG

Scores on two 20-items mathematics tests.

Description

The data set contains raw sample frequencies of number-right scores for two parallel 20-items mathematics tests given to two samples from a national population of examinees. This data has been described and analyzed by Holland and Thayer (1989); Von Davier et al., (2004) (see also Von Davier, 2011 where other applications using these data set are shown).
Math20SG

Usage

data(Math20EG)

Format

A 21x2 matrix containing raw sample frequencies (raws) for two parallel tests (columns)

References


Examples

data(Math20EG)

## maybe str(Math20EG) ; ...
The mean method of equating

Description

This function implements the mean method of test equating as described in Kolen and Brennan (2004).

Usage

mea.eq(sx, sy, scale)

Arguments

sx A vector containing the observed scores of the sample taking test X.
sy A vector containing the observed scores of the sample taking test Y.
scale Either an integer or vector containing the values on the scale to be equated.

Details

The function implements the mean method of equating as described in Kolen and Brennan (2004). Given observed scores sx and sy, the function calculates

\[ \varphi(x; \mu_x, \mu_y) = x - \mu_x + \mu_y \]

where \(\mu_x\) and \(\mu_y\) are the score means on test X and Y, respectively.

Value

A two column matrix with the values of \(\varphi()\) (second column) for each scale value x (first column)

Author(s)

Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>

References


See Also

lin.eq, eqp.eq, ker.eq, le.eq
### Examples

Artificial data for two two 100 item tests forms and 5 individuals in each group

```r
x1 <- c(67, 70, 77, 79, 65, 74)
y1 <- c(77, 75, 73, 89, 68, 80)
```

Score means

```r
mean(x1); mean(y1)
```

An equivalent form y1 score of 72 on form x1

```r
mea.eq(x1, y1, 72)
```

Equivalent form y1 score for the whole scale range

```r
mea.eq(x1, y1, 0:100)
```

---

<table>
<thead>
<tr>
<th>PREp</th>
<th>Percent relative error</th>
</tr>
</thead>
</table>

### Description

This function calculates the percent relative error as described in Von Davier et al. (2004).

### Usage

```r
PREp(eq, p)
```

### Arguments

- **eq**: An object of class `ker.eq` previously obtained using `ker.eq`
- **p**: The number of moments to be calculated.

### Details

PREp (when equating form X to Y) is calculated as

\[
\text{PREp} = 100 \left( \frac{\mu_p(e_Y(X)) - \mu_p(Y)}{\mu_p(Y)} \right)
\]

where \( \mu_p(Y) = \sum_k (y_k)^p s_k \) and \( \mu_p(e_Y(X)) = \sum_j (e_Y(x_j))^p r_j \). Similar formulas can be found when equating from Y to X.

### Value

A matrix containing the PREp for both X to Y (first column) and Y to X (second column) cases.

### Author(s)

Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>
rowBlockSum

References


See Also

ker.eq

Examples

# Example: Table 7.5 in Von Davier et al. (2004)

data(Math20EG)
mod.gauss<-ker.eq(scores=Math20EG,kert="gauss", hx = NULL, hy = NULL, degree=c(2, 3), design="EG")
PREp(mod.gauss,10)

rowBlockSum(mat, blocksize, w = NULL)

Description

This function implements a method to sum blocks of rows in a matrix

Usage

rowBlockSum(mat, blocksize, w = NULL)

Arguments

mat Input matrix
blocksize Size of the row blocks
w (Optional) Vector for weighted sum

Details

The original data set contains very long column headers. This function does a keyword search over the headers to find those column headers that match a particular keyword, e.g., mean, median, etc.

Value

A matrix.

Author(s)

Daniel Acuna Leon. <dnacuna@uc.cl>


**SEED**  
*Standard error of equating difference*

**Description**

This function calculates the standard error of equating difference (SEED) as described in Von Davier et al. (2004).

**Usage**

SEED(eq1, eq2)

**Arguments**

- **eq1**  
  An object of class `ker.eq` which contains one of the two estimated equated functions to be used for the SEED.

- **eq2**  
  An object of class `ker.eq` which contains one of the two estimated equated functions to be used for the SEED.

**Details**

The SEED can be used as a measure to choose whether to support or not a certain equating function on another or another one. For instance, when \( h_X \) and \( h_Y \) tends to infinity, then the (gaussian kernel) \( \hat{e}_Y(x) \) equating function tends to the linear equating function (see Theorem 4.5 in Von Davier et al, 2004 for more details). Thus, one can calculate the measure

\[
SEED_Y(x) = \sqrt{\text{Var}(\hat{e}_Y(x) - \hat{Lin}_Y(x))}
\]

to decide between \( \hat{e}_Y(x) \) and \( \hat{Lin}_Y(x) \).

**Value**

A two column matrix with the values of \( \text{SEED}_Y(x) \) for each \( x \) in the first column and the values of \( \text{SEED}_X(y) \) for each \( y \) in the second column

**Author(s)**

Jorge Gonzalez <jorge.gonzalez@mat.uc.cl>

**References**


See Also

ker.eq

Examples

#Example: Figure7.7 in Von Davier et al, (2004)
data(Math20EG)

mod.gauss<-ker.eq(scores=Math20EG,kert="gauss", hx = NULL, hy = NULL,degree=c(2, 3),design="EG")
mod.linear<-ker.eq(scores=Math20EG,kert="gauss", hx = 20, hy = 20,degree=c(2, 3),design="EG")

Rx<-mod.gauss$eqYx-mod.linear$eqYx
seed<-SEED(mod.gauss,mod.linear)$SEEDYx

plot(0:20,Rx,ylim=c(-0.8,0.8),pch=15)
abline(h=0)
points(0:20,2*seed,pch=0)
points(0:20,-2*seed,pch=0)

#Example Figure 10.4 in Von Davier (2011)
mod.unif<-ker.eq(scores=Math20EG,kert="unif", hx = NULL, hy = NULL,degree=c(2, 3),design="EG")
mod.logis<-ker.eq(scores=Math20EG,kert="logis", hx = NULL, hy = NULL,degree=c(2, 3),design="EG")

Rx1<-mod.logis$eqYx-mod.gauss$eqYx
Rx2<-mod.unif$eqYx-mod.gauss$eqYx

seed1<-SEED(mod.logis,mod.gauss)$SEEDYx
seed2<-SEED(mod.unif,mod.gauss)$SEEDYx

plot(0:20,Rx1,ylim=c(-0.2,0.2),pch=15,main="LK vs GK",ylab="",xlab="Scores")
abline(h=0)
points(0:20,2*seed1,pch=0)
points(0:20,-2*seed1,pch=0)

plot(0:20,Rx2,ylim=c(-0.2,0.2),pch=15,main="UK vs GK",ylab="",xlab="Scores")
abline(h=0)
points(0:20,2*seed2,pch=0)
points(0:20,-2*seed2,pch=0)

---

SEPA

A sample of observed score values for two different forms of the SEPA test.

Description

The data set is from a private national evaluation system called SEPA. It contains two test forms X and Y both composed of 50 items. The SEPA data is a list containing two samples with 1,458 test takers who took test form X and 2,619 test takers who took test form Y.
sim_unimodal

Usage

data(SEPA)

Format

A list with elements containing the observed scores in test forms X and Y.

References


Examples

data(SEPA)
### maybe str(SEPA); ...

________
sim_unimodal  Simulate test scores.

Description

Simulate test scores from a negative-hypergeometric (beta-binomial) distribution, according to Keats & Lord (1962).

Usage

sim_unimodal(n, x_mean, x_var, N_item, seed = NULL, name = NULL)

Arguments

n  Size of the resulting sample.

x_mean  Mean of the target distribution.

x_var  Variance of the target distribution.

N_item  Number of items in the test.

seed  Optional. Seed for the random number generator.

name  Optional. Generate X and Y scores from the data according 5 of the proposed distributions in Keats & Lord (1967). Overrides any other previous parameter input set.

Details

Simulate test scores from a negative-hypergeometric (beta-binomial) distribution, according to Keats & Lord (1962).

Value

Simulated values.
Author(s)

Daniel Leon Acuna, <dnacuna@uc.cl>

References


Examples

sim_unimodal(2354, 27.06, 8.19^2, 40) # GANA
sim_unimodal(name="TQS8")
Index

* Bayesian
  BNP.eq, 7
  BNP.eq.predict, 8
* IRT parameter linking
  irt.link, 14
* Scores
  sim_unimodal, 35
* Simulation
  sim_unimodal, 35
* Traditional equating methods
  eqp.eq, 10
  gof, 11
  lin.eq, 24
  mea.eq, 30
* datasets
  ACTmKB, 4
  CBdata, 9
  KB36, 16
  KB36.1PL, 17
  KB36_t, 18
  Math20EG, 28
  Math20SG, 29
  SEPA, 34
* equating
  BNP.eq, 7
  BNP.eq.predict, 8
* kernel equating
  bandwidth, 4
  irt.eq, 12
  ker.eq, 18
  PREp, 31
  SEED, 33
* local equating
  le.eq, 22
* nonparametric
  BNP.eq, 7
  BNP.eq.predict, 8
* package
  SNSSequate-package, 2
* smoothing
  loglin.smooth, 25
  ACTmKB, 4
  bandwidth, 4
  BNP.eq, 7
  BNP.eq.predict, 8
  CBdata, 9
  eqp.eq, 10, 23, 25, 30
  glm, 28
  gof, 11
  irt.eq, 12
  irt.link, 12, 13, 14
  KB36, 16
  KB36.1PL, 17
  KB36_t, 18
  ker.eq, 10, 15, 18, 23, 25, 28, 30–32, 34
  le.eq, 22, 30
  lin.eq, 10, 15, 23, 24, 30
  loglin.smooth, 6, 20, 21, 25
  Math20EG, 28
  Math20SG, 29
  mea.eq, 10, 15, 23, 25, 30
  PREp, 21, 31
  rowBlockSum, 32
  SEED, 21, 33
  SEPA, 34
  sim_unimodal, 35
  SNSSequate(SNSSequate-package), 2
  SNSSequate-package, 2