Package ‘SOMEnv’

October 12, 2022

Type Package

Title SOM Algorithm for the Analysis of Multivariate Environmental Data

Version 1.1.2

Maintainer Sabina Licen <slicen@units.it>

Description Analysis of multivariate environmental high frequency data by Self-Organizing Map and k-means clustering algorithms. By means of the graphical user interface it provides a comfortable way to elaborate by self-organizing map algorithm rather big datasets (txt files up to 100 MB) obtained by environmental high-frequency monitoring by sensors/instruments. The functions present in the package are based on 'kohonen' and 'openair' packages implemented by functions embedding Vesanto et al. (2001) <http://www.cis.hut.fi/projects/somtoolbox/package/papers/techrep.pdf> heuristic rules for map initialization parameters, k-means clustering algorithm and map features visualization. Cluster profiles visualization as well as graphs dedicated to the visualization of time-dependent variables Licen et al. (2020) <doi:10.4209/aaqr.2019.08.0414> are provided.

License GPL-3

Encoding UTF-8

Depends R (>= 3.6.0)

RoxygenNote 7.1.1

Imports rlist, kohonen, shiny, dplyr, plyr, openair, colourpicker, shinycssloaders, shinycustomloader

URL https://github.com/SomEnv/somenv

BugReports https://github.com/SomEnv/somenv/issues

Author Sabina Licen [aut, cre],
Marco Franzon [aut],
Tommaso Rodani [aut],
Pierluigi Barbieri [aut]

NeedsCompilation no

Repository CRAN

Date/Publication 2021-07-26 13:30:02 UTC
BmusCentr

Description

The function finds the Best Matching Units of the cluster centroids

Usage

```r
BmusCentr(centroids, som_model, k)
```
BmusClus

Arguments

- **centroids**: Centroids array (output of kmeans_clustersR function)
- **som_model**: An object of class kohonen
- **k**: Number of clusters

Value

An array containing the BMU for each centroid

Author(s)

Sabina Licen

References

BmusClus
Cluster assignment for the experimental data

Description

Generate a vector containing the cluster assignment to experimental data

Usage

`BmusClus(Bmus, Cluster)`

Arguments

- **Bmus**: Best Matching Unit assignment to the experimental data
- **Cluster**: Vector containing cluster number assignment for prototypes

Value

A vector containing the cluster assignment to experimental data

Author(s)

Sabina Licen

References

BoxClus

Boxplot of prototype variables split by cluster and variable

Description

Boxplot function is used, box whiskers are omitted

Usage

BoxClus(Dms, codebook, Cluster, Centroids)

Arguments

Dms
A vector of length 2, where the first argument specifies the number of rows and
the second the number of columns of plots (see mfrow in par)

codebook
De-normalized prototype codebook

Cluster
Vector containing cluster number assignment for prototypes

Centroids
Centroids matrix

Value

Boxplot of prototype variables split by cluster

Author(s)

Sabina Licen

References

10.4209/aaqr.2019.08.0414

See Also

boxplot, par
BoxUnits

Boxplot of prototype variables split by cluster

Description

Boxplot function is used, box whiskers are omitted

Usage

BoxUnits(codebook, Cluster, Centroids, Ylim = NA, pitch = NA, xdim = 0.75)

Arguments

codebook Prototype codebook normalized by variable
Cluster Vector containing cluster number assignment for prototypes
Centroids Centroids matrix
Ylim Vector of length 2 for y-axis limits
pitch Vector containing the position of horizontal grid lines
xdim x axes label dimensions

Value

Boxplot of prototype variables split by cluster

Author(s)

Sabina Licen

References

See Also

boxplot
ClusCol

Custom color sequence for clusters

Description

Generate the sequence of colors to plot the SOM map according to clusters

Usage

```r
ClusCol(Centroids, Cluster, colSeq = rainbow(nrow(data.frame(Centroids))))
```

Arguments

- **Centroids**
 Centroids matrix

- **Cluster**
 Vector containing cluster number assignment for prototypes

- **colSeq**
 Color sequence for the clusters

Value

A vector of colors with length equal to Cluster

Author(s)

Sabina Licen

References

CodeCoord

Prototype coordinates for graph

Description

Generate X and Y coordinates for plotting a SOM map shaped according to Vesanto visualization fashion

Usage

```r
CodeCoord(Row, Col)
```

Arguments

- **Row**
 Number of SOM map rows

- **Col**
 Number of SOM map columns
Value

This function returns a data.frame including columns:

- X
- Y

Author(s)

Sabina Licen, Pierluigi Barbieri

References

Examples

Coord<-CodeCoord(10,5)

DailyBar

Plot of daily percentages for each cluster

Description

The function produces a plot representing the the daily percentage for each cluster

Usage

DailyBar(
 experimental,
 TrainClus,
 Centroids,
 colSeq = rainbow(nrow(data.frame(Centroids))),
 Total = 1440,
 xdim = 0.7,
 ydim = 0.8
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>experimental</td>
<td>Experimental data (must contain variable "date")</td>
</tr>
<tr>
<td>TrainClus</td>
<td>Vector containing cluster number assignment for experimental data</td>
</tr>
<tr>
<td>Centroids</td>
<td>Centroids matrix</td>
</tr>
<tr>
<td>colSeq</td>
<td>Color sequence for the clusters</td>
</tr>
<tr>
<td>Total</td>
<td>Number of observations per day</td>
</tr>
<tr>
<td>xdim</td>
<td>x axes label dimensions</td>
</tr>
<tr>
<td>ydim</td>
<td>y axes label dimensions</td>
</tr>
</tbody>
</table>
Value
Plot of daily percentages for each cluster, the latter element in the legend represents percentage of not determined data

Author(s)
Sabina Licen

References

\texttt{db_indexR} \hspace{2cm} \textit{Evaluate Davis-Bouldin index for the cluster split of data input}

Description
The function has been coded in R code starting from \texttt{db_index.m} script present in somtoolbox for Matlab by Vesanto and adapted for the use in the shiny app

Usage
\begin{verbatim}
db_indexR(codebook, k_best, c_best)
\end{verbatim}

Arguments
\begin{itemize}
 \item \texttt{codebook} \quad SOM codebook
 \item \texttt{k_best} \quad Vector with cluster number assignment for each sample
 \item \texttt{c_best} \quad Matrix with cluster centroids
\end{itemize}

Value
The mean DB-index for the clustering

Author(s)
Sabina Licen, Pierluigi Barbieri

References

See Also
\texttt{som_mdistR}, \texttt{kmeans_clustersRProg}
Freq

Percentage frequency for each cluster

Description

Percentage frequency for each cluster

Usage

Freq(Cluster, Centroids)

Arguments

- **Cluster**: Vector containing cluster number assignment for experimental data
- **Centroids**: Centroids matrix

Value

A data frame containing the percentage frequency of each cluster

Author(s)

Sabina Licen

References

FreqD

Daily percentage frequency for each cluster

Description

Daily percentage frequency for each cluster

Usage

FreqD(Date, Cluster, Centroids, Total = 1440)

Arguments

- **Date**: Vector containing date/time variable for experimental data
- **Cluster**: Vector containing cluster number assignment for experimental data
- **Centroids**: Centroids matrix
- **Total**: Number of observations per day
Value

A data frame containing the daily percentage frequency of each cluster

Author(s)

Sabina Licen

References

FreqM

Monthly percentage frequency for each cluster

Description

Monthly percentage frequency for each cluster

Usage

FreqM(Date, Cluster, Centroids)

Arguments

- **Date**: Vector containing date/time variable for experimental data
- **Cluster**: Vector containing cluster number assignment for experimental data
- **Centroids**: Centroids matrix

Value

A data frame containing the monthly percentage frequency of each cluster

Author(s)

Sabina Licen

References

Hexa

Function to draw an hexagon around a point

Description

Draws an hexagon around a point of x and y coordinates

Usage

`Hexa(x, y, color = NA, border = "gray", unitcell = 1)`

Arguments

- `x`: X-coordinate of the hexagon center
- `y`: Y-coordinate of the hexagon center
- `color`: Filling color of the hexagon (default NA)
- `border`: Border color of the hexagon (default "gray")
- `unitcell`: The distance side to side between two parallel sides of the hexagon (default 1)

Value

This function draws an hexagon on a plot

Author(s)

Sabina Licen

Hexagons

Function to draw an hexagonal SOM map

Description

Draws an hexagonal SOM map using x, y coordinates for the hexagon centers

Usage

`Hexagons(Coords, Row, Col, color = NA, border = "gray", unitcell = 1)`

Arguments

- `Coords`: matrix containing the x and y coordinates of the hexagon centers
- `Row`: Number of SOM map rows
- `Col`: Number of SOM map columns
- `color`: Filling color of the hexagons (default NA)
- `border`: Border color of the hexagons (default "gray")
- `unitcell`: The distance side to side between two parallel sides of the hexagon (default 1)
Value

A hexagonal SOM map

Author(s)

Sabina Licen

References

Examples

```r
Coord<-CodeCoord(10,5)
Hexagons(Coord,10,5)
```

Description

Generates a SOM map colored according to cluster splitting

Usage

```r
HexagonsClus(
    Centroids,
    Cluster,
    BCentr,
    Coord,
    Row,
    Col,
    colSeq = rainbow(nrow(Centroids))
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centroids</td>
<td>Centroids matrix</td>
</tr>
<tr>
<td>Cluster</td>
<td>Vector containing cluster number assignment for prototypes</td>
</tr>
<tr>
<td>BCentr</td>
<td>Best Matching Unit of the cluster centroids</td>
</tr>
<tr>
<td>Coord</td>
<td>Prototype coordinates for plotting the map</td>
</tr>
<tr>
<td>Row</td>
<td>Number of SOM map rows</td>
</tr>
<tr>
<td>Col</td>
<td>Number of SOM map columns</td>
</tr>
<tr>
<td>colSeq</td>
<td>Color sequence for the clusters</td>
</tr>
</tbody>
</table>
HexagonsVar

Value
A SOM map colored according to cluster splitting

Author(s)
Sabina Licen

References

Description
Multiple plots that show the distribution of the modeled variables on the SOM map

Usage
HexagonsVar(Dms, codebook, Coords, Row, Col)

Arguments
Dms A vector of length 2, where the first argument specifies the number of rows and the second the number of columns of plots (see mfrow in par)
codebook SOM codebook
Coords Prototype coordinates for plotting the map
Row Number of SOM map rows
Col Number of SOM map columns

Details
The function plots a SOM map for the values of each modeled variable using a grayscale according to quartiles, from white (lower outliers), followed by grayscale (quartiles) and black (upper outliers). The outliers and quartiles are evaluated by boxplot function applying default parameters.

Value
SOM map plots for the values of each modeled variable using a grayscale according to quartiles

Author(s)
Sabina Licen
References

See Also

boxplot, par

HexaHits

Hits distribution on the SOM map

Description

Plot a SOM map with filled hexagons according to the number of hits

Usage

```r
HexaHits(hits, Coord, Row, Col, color = "black")
```

Arguments

- `hits`: Vector with number of hits for each prototype
- `Coord`: Prototype coordinates for plotting the map
- `Row`: Number of SOM map rows
- `Col`: Number of SOM map columns
- `color`: color filling of the hexagons

Value

Plot a SOM map with filled hexagons according to the number of hits

Author(s)

Sabina Licen

References

HexaHitsQuant

Hits distribution on the SOM map

Description

Plot a SOM map with hits plotted as grayscale according to quartiles

Usage

HexaHitsQuant(hits, Coord, Row, Col)

Arguments

- hits: Vector with number of hits for each prototype
- Coord: Prototype coordinates for plotting the map
- Row: Number of SOM map rows
- Col: Number of SOM map columns

Details

The function plots a SOM map with hits represented as grayscale according to quartiles, from white (lower outliers) followed by grayscale (quartiles) and black (upper outliers). The prototype with the maximum number of hits is represented by a red hexagon. The outliers and quartiles are evaluated by boxplot function applying default parameters.

Value

Plot a SOM map with hits represented as grayscale according to quartiles

Author(s)

Sabina Licen

References

See Also

boxplot
HexaQerrs

Relative quantization error distribution on the SOM map

Description

Plot a SOM map with relative quantization error plotted as grayscale according to quartiles

Usage

HexaQerrs(bmus, qerrs, Coord, Row, Col, color = "black")

Arguments

bmus Vector with Best Matching Unit for each experimental sample
qerrs Vector with quantization error for each experimental sample
Coord Prototype coordinates for plotting the map
Row Number of SOM map rows
Col Number of SOM map columns
color color filling of the hexagons

Details

The function evaluate the relative quantization error for each prototype dividing the sum of quantization errors for experimental samples represented by the single prototype by the number of hits of the same prototype, then plots a SOM map with filled hexagons according to the relative quantization error.

Value

Plot a SOM map with filled hexagons according to the relative quantization error

Author(s)

Sabina Licen

References

HexaQerrsQuant

Realtime quantization error distribution on the SOM map

Description
Plot a SOM map with relative quantization error plotted as grayscale according to quartiles

Usage
HexaQerrsQuant(bmus, qerrs, Coord, Row, Col)

Arguments
- **bmus**: Vector with Best Matching Unit for each experimental sample
- **qerrs**: Vector with quantization error for each experimental sample
- **Coord**: Prototype coordinates for plotting the map
- **Row**: Number of SOM map rows
- **Col**: Number of SOM map columns

Details
The function evaluates the relative quantization error for each prototype dividing the sum of quantization errors for experimental sample represented by the single prototype by the number of hits of the same prototype, then plots a SOM map with the relative quantization error represented as grayscale according to quartiles, from white (lower outliers) followed by grayscale (quartiles) and black (upper outliers). The outliers and quartiles are evaluated by boxplot function applying default parameters.

Value
Plot a SOM map with relative quantization error represented as grayscale according to quartiles

Author(s)
S. Licen

References

See Also
boxplot
kmeans_clustersRProg
K-means algorithm applied for different values of clusters

Description

The `som_kmeansR` function with 100 epochs training is run for a custom number of times for each k value of clusters and the best of these is selected based on sum of squared errors (err). The Davies-Bouldin index is calculated for each k-clustering. The function has been coded in R code starting from `kmeans_clusters.m` script present in somtoolbox for Matlab by Vesanto and adapted to show a progress bar when working embedded in the shiny app.

Usage

```r
kmeans_clustersRProg(codebook, k = 5, times = 5, seed = NULL)
```

Arguments

- `codebook`
 SOM codebook
- `k`
 Maximum number of clusters (the function will be run from 2 to k clusters)
- `times`
 Number of times the `som_kmeansR` function is iterated
- `seed`
 Number for `set.seed` function

Value

This function returns a list containing the cluster number assignment for each sample, the cluster centroids, the total quantization error, the DB-index for each number of clusters, and the random seed number used

Author(s)

Sabina Licen, Pierluigi Barbieri

References

See Also

`som_mdistR`, `som_kmeansRProg`, `db_indexR`
NClusChange \hspace{1cm} Custom number sequence for clusters

Description

Changes the input vector according the custom number sequence for clusters

Usage

\[\text{NClusChange}(\text{Vector, Centroids, NCh}) \]

Arguments

- **Vector**: Vector containing cluster number assignment for prototypes or experimental data
- **Centroids**: Centroids matrix
- **NCh**: Vector with custom sequence of numbers for clusters

Value

A vector of same length as input vector with cluster numbers changed according to custom input

Author(s)

Sabina Licen

paramQuant \hspace{1cm} Basic statistics of values present in the input vector

Description

Generate basic statistics for the input vector

Usage

\[\text{paramQuant}(\text{param}) \]

Arguments

- **param**: Numeric vector

Details

The outliers and quartiles are evaluated by boxplot function applying default parameters.
Description
The function starts the SOMEnv GUI

Usage
SomEnvGUI()

Value
This function starts the graphical user interface with the default system browser. The main help suggestion for using the tool are embedded in the GUI

Author(s)
Sabina Licen, Marco Franzon, Tommaso Rodani

References

Examples
Not run:
SomEnvGUI()

End(Not run)
SOMtopol

Topographical error for the SOM map

Description

Calculate topographical error for the SOM map

Usage

SOMtopol(dataset, codebook, grid)

Arguments

- **dataset**: Experimental data used for training the map
- **codebook**: SOM codebook
- **grid**: SOM grid expressed as a matrix of x and y coordinates of the map units

Value

This function returns the topographical error

Author(s)

Sabina Licen

References

som_dimR

Calculate map dimensions

Description

Generate SOM map dimensions according to Vesanto heuristic rules based on the first two eigenvalues of the experimental data and their related eigenvectors. The function has been coded in R code starting from som_dim.m script present in somtoolbox for Matlab by Vesanto and adapted for the use in the shiny app

Usage

som_dimR(dataset, type = "regular")
som_initR

Calculate initialization matrix for SOM training

Description

Generate SOM map initialization matrix according to Vesanto heuristic rules related to map dimensions, the first two eigenvalues of the experimental data and their related eigenvectors. The function has been coded in R code starting from som_init.m script present in somtoolbox for Matlab by Vesanto and adapted for the use in the shiny app.

Usage

som_initR(dataset, Row, Col, munits)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataset</td>
<td>Experimental data</td>
</tr>
<tr>
<td>Row</td>
<td>Number of SOM map rows</td>
</tr>
<tr>
<td>Col</td>
<td>Number of SOM map columns</td>
</tr>
<tr>
<td>munits</td>
<td>Number of SOM map units (Row*Col)</td>
</tr>
</tbody>
</table>

Author(s)

Sabina Licen, Pierluigi Barbieri

References

See Also
eigen, cor

Examples

library(datasets)
som_dimR(iris[,1:4], type="small")
som_kmeansRProg

Value
This function returns an initialization matrix for SOM training

Author(s)
Sabina Licen, Pierluigi Barbieri

References

Examples
```r
SOMdim<-som_dimR(iris[,1:4], type="small")
SOMinit<-som_initR(iris[,1:4],SOMdim$Row,SOMdim$Col,SOMdim$munits)
```

som_kmeansRProg

K-means algorithm applied for a specific number of clusters

Description
The training is run for a custom number of epochs for k number of clusters

Usage
```
som_kmeansRProg(codebook, k, epochs, seed = NULL)
```

Arguments
- `codebook` SOM codebook
- `k` Number of clusters
- `epochs` Number of training epochs
- `seed` Number for set.seed function

Details
The function has been coded in R code starting from som_kmeans.m script present in somtoolbox for Matlab by Vesanto and adapted to show a progress bar when working embedded in the shiny app.

Value
This function returns a list containing the cluster number assignment for each sample, the cluster centroids, the total quantization error, and the random seed number used
Author(s)
Sabina Licen, Pierluigi Barbieri

References

See Also
set.seed

<table>
<thead>
<tr>
<th>som_mdistR</th>
<th>Evaluate pairwise distance matrix for the given codebook</th>
</tr>
</thead>
</table>

Description
The function has been coded in R code starting from som_mdist.m script present in somtoolbox for Matlab by Vesanto and adapted for the use in the shiny app

Usage
som_mdistR(codebook)

Arguments
codebook SOM codebook

Value
Distance matrix

Author(s)
Sabina Licen, Pierluigi Barbieri

References

See Also
db_indexR
som_umatR

Unified distance matrix for the SOM map

Description

The function has been coded in R code starting from `som_umat.m` script present in `somtoolbox` for Matlab by Vesanto and adapted for the use in the shiny app.

Usage

```r
som_umatR(codebook, Row, Col)
```

Arguments

- `codebook` : SOM codebook
- `Row` : Number of SOM map rows
- `Col` : Number of SOM map columns

Value

The unified distance matrix for the SOM map

Author(s)

Sabina Licen, Pierluigi Barbieri

References

UmatGraph

U-matrix plot

Description

Plot of Unified Distance Matrix using a colored scale according to quartiles

Usage

```r
UmatGraph(umat, Row, Col, colorscale = c("bw", "gs"))
```
Arguments

umat Unified Distance Matrix
Row Number of SOM map rows
Col Number of SOM map columns
colorscale Either "bw" for grayscale or "gs" for green-white scale

Details

The function plots a U-matrix map for the values of each modeled variable using a grayscale according to quartiles, from darker color (lower distances) to lighter color (higher distances). The quartiles are evaluated by boxplot function applying default parameters.

Value

Plot of Unified Distance Matrix using a grayscale or (green-white scale) according to quartiles

Author(s)

Sabina Licen

References

See Also

boxplot, som_umatR
Index

BmusCentr, 2
BmusClus, 3
BoxClus, 4
BoxUnits, 5

ClusCol, 6
CodeCoord, 6

DailyBar, 7
db_indexR, 8

Freq, 9
FreqD, 9
FreqM, 10

Hexa, 11
Hexagons, 11
HexagonsClus, 12
HexagonsVar, 13
HexaHits, 14
HexaHitsQuant, 15
HexaQerrs, 16
HexaQerrsQuant, 17

kmeans_clustersRProg, 18

NClusChange, 19

paramQuant, 19

som_dimR, 21
som_initR, 22
som_kmeansRProg, 23
som_mdistR, 24
som_umatR, 25
SomEnvGUI, 20
SOMtopol, 21

UmatGraph, 25