Package ‘SOPC’

April 16, 2022

Title The Sparse Online Principal Component Estimation Algorithm

Date 2022-04-16

Version 0.0.3

Description The sparse online principal component can not only process the online data set, but also obtain a sparse solution of the online data set. The philosophy of the package is described in Guo G. (2018) <doi:10.1080/10485252.2018.1531130>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Imports elasticnet, stats

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Maintainer Guangbao Guo <ggb11111111@163.com>

NeedsCompilation no

Author Guangbao Guo [aut, cre], Chunjie Wei [aut], Guoqi Qian [aut]

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2022-04-16 13:12:29 UTC

R topics documented:

Heart ... 2
Hugging .. 3
IPC ... 4
OPC ... 4
PC ... 5
PPC ... 6
Heart failure

Description
Heart failure

Usage
data("Heart")

Format
A data frame with 299 observations on the following 13 variables.
age a numeric vector
anaemia a numeric vector
creatinine_phosphokinase a numeric vector
diabetes a numeric vector
ejection_fraction a numeric vector
high_blood_pressure a numeric vector
platelets a numeric vector
serum_creatinine a numeric vector
serum_sodium a numeric vector
sex a numeric vector
smoking a numeric vector
time a numeric vector
DEATH_EVENT a numeric vector

Details
This dataset contains the medical records of 299 patients who had heart failure, collected during their follow-up period, where each patient profile has 13 clinical features.

Source
The Heart failure data set comes from the UCI database.
References

Examples

```r
data(Heart)
## maybe str(Heart); plot(Heart) ...
```

Description

The EMG Physical Action-Hugging data set.

Usage

```r
data("Hugging")
```

Format

A data frame with 9752 observations on the following 8 variables.

- `A` a numeric vector
- `B` a numeric vector
- `C` a numeric vector
- `D` a numeric vector
- `E` a numeric vector
- `F` a numeric vector
- `G` a numeric vector
- `H` a numeric vector

Details

The data set is a body movement data set, including 10 normal and 10 aggressive body movements. The data frame with 9752 observations on the following 8 variables.

Source

The Hugging data set comes from the UCI database.

References

Examples

```
data(Hugging)
## maybe str(Hugging) ; plot(Hugging) ...
```

IPC

Description

The incremental principal component can handle online data sets with highly correlated.

Usage

```
IPC(data, m, eta)
```

Arguments

- `data` is a highly correlated online data set
- `m` is the number of principal component
- `eta` is the proportion of online data to total data

Value

`Ai,Di`

Examples

```
IPC(data=PSA, m=3, eta=0.8)
```

OPC

Description

The online principal component method refers to the IPC method with the best performance among the IPC, the PPC and the SAPC methods.

Usage

```
OPC(data, m, eta)
```
Arguments

data is a highly correlated online data set
m is the number of principal component
eta is the proportion of online data to total data

Value

Ahat, Dhat

Examples

OPC(data=PSA,m=3,eta=0.8)

PC

The traditional principal component method. This method can estimate the eigen space of the data set.

Description

The traditional principal component method. This method can estimate the eigen space of the data set.

Usage

PC(data, m = m)

Arguments

data is a highly correlated data set
m is the number of principal component

Value

Ahat, Dhat

Examples

PC(data=PSA,m=3)
PPC

The perturbation principal component can handle online data sets with highly correlated.

Description

The perturbation principal component can handle online data sets with highly correlated.

Usage

PPC(data, m, eta)

Arguments

data is a highly correlated online data set
m is the number of principal component
eta is the proportion of online data to total data

Value

Ap,Dp

Examples

PPC(data=PSA,m=3,eta=0.8)

PSA

Prostate Specific Antigen

Description

The prostate specific antigen (PSA) data set.

Usage

data("PSA")
Format

lcavol a numeric vector
lweight a numeric vector
age a numeric vector
lbph a numeric vector
svi a numeric vector
lcp a numeric vector
gleason a numeric vector
pgg45 a numeric vector
lpsa a numeric vector

Details

The data set comes from the prostate specific antigen (PSA) data of 96 patients collected by Stanford University Medical Center. These patients all underwent radical prostatectomy.

Source

The Stanford University Medical Center.

References

NA

Examples

data(PSA)
maybe str(PSA) ; plot(PSA) ...

SAPC

The stochastic approximation principal component can handle online data sets with highly correlated.

Description

The stochastic approximation principal component can handle online data sets with highly correlated.

Usage

SAPC(data, m, eta)
Arguments

- **data**: is a highly correlated online data set
- **m**: is the number of principal component
- **eta**: is the proportion of online data to total data

Value

- \(\text{Asa}, \text{Dsa} \)

Examples

\[
\text{SAPC(data=PSA, m=3, eta=0.8)}
\]

SOPC

The sparse online principal component can not only process online data sets, but also obtain a sparse solution of online data sets.

Description

The sparse online principal component can not only process online data sets, but also obtain a sparse solution of online data sets.

Usage

\[
\text{SOPC(data, m, gamma, eta)}
\]

Arguments

- **data**: is a highly correlated online data set
- **m**: is the number of principal component
- **gamma**: is a sparse parameter
- **eta**: is the proportion of online data to total data

Value

- \(\text{Aso}, \text{Dso} \)

Examples

\[
\text{SOPC(data=PSA, m=3, gamma=0.03, eta=0.6)}
\]
The sparse principal component can obtain sparse solutions of the eigenmatrix to better explain the relationship between principal components and original variables.

Description

The sparse principal component can obtain sparse solutions of the eigenmatrix to better explain the relationship between principal components and original variables.

Usage

SPC(data, m, gamma)

Arguments

- **data** is a highly correlated data set
- **m** is the number of principal component
- **gamma** is a sparse parameter

Value

As,Ds

Examples

SPC(data=PSA,m=3,gamma=0.03)
Index

* datasets
 Heart, 2
 Hugging, 3
 PSA, 6
 Heart, 2
 Hugging, 3
 IPC, 4
 OPC, 4
 PC, 5
 PPC, 6
 PSA, 6
 SAPC, 7
 SOPC, 8
 SPC, 9