Package ‘SPCAvRP’

May 4, 2019

Type Package

Title Sparse Principal Component Analysis via Random Projections (SPCAvRP)

Version 0.4

Date 2019-05-01

Author Milana Gataric, Tengyao Wang and Richard J. Samworth

Maintainer Milana Gataric <m.gataric@statslab.cam.ac.uk>

Depends R (>= 3.0.0), parallel, MASS

License GPL-3

NeedsCompilation no

Repository CRAN

RoxygenNote 6.1.1

Date/Publication 2019-05-03 23:00:04 UTC

R topics documented:

SPCAvRP .. 2
SPCAvRP_deflation ... 4
SPCAvRP_subspace ... 6

Index 9
SPCAvRP

Computes the leading eigenvector using the SPCAvRP algorithm

Description

Computes 1-sparse leading eigenvector of the sample covariance matrix, using $A \times B$ random axis-aligned projections of dimension d. For the multiple component estimation use \texttt{SPCAvRP_subspace} or \texttt{SPCAvRP_deflation}.

Usage

\begin{verbatim}
SPCAvRP(data, cov = FALSE, l = 20, A = 600, B = 200,
center_data = TRUE, parallel = FALSE,
cluster_type = "PSOCK", cores = 1, machine_names = NULL)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{data} Either the data matrix ($p \times n$) or the sample covariance matrix ($p \times p$).
 \item \texttt{cov} TRUE if data is given as a sample covariance matrix.
 \item \texttt{l} Desired sparsity level in the final estimator (see Details).
 \item \texttt{d} The dimension of the random projections (see Details).
 \item \texttt{A} Number of projections over which to aggregate (see Details).
 \item \texttt{B} Number of projections in a group from which to select (see Details).
 \item \texttt{center_data} TRUE if the data matrix should be centered (see Details).
 \item \texttt{parallel} TRUE if the selection step should be computed in parallel by uses package "parallel".
 \item \texttt{cluster_type} If parallel == TRUE, this can be "PSOCK" or "FORK" (cf. package "parallel").
 \item \texttt{cores} If parallel == TRUE and cluster_type == "FORK", number of cores to use.
 \item \texttt{machine_names} If parallel == TRUE, the names of the computers on the network.
\end{itemize}

Details

This function implements the SPCAvRP algorithm for the principal component estimation (Algorithm 1 in the reference given below).

If the true sparsity level k is known, use $l = k$ and $d = k$.

If the true sparsity level k is unknown, l can take an array of different values and then the estimators of the corresponding sparsity levels are computed. The final choice of l can then be done by the user via inspecting the explained variance computed in the output value or via inspecting the output \texttt{importance_scores}. The default choice for d is 20, but we suggest choosing d equal to or slightly larger than 1.

It is desirable to choose A (and $B = \text{ceiling}(A/3)$) as big as possible subject to the computational budget. In general, we suggest using $A = 300$ and $B = 100$ when the dimension of data is a few hundreds, while $A = 600$ and $B = 200$ when the dimension is on order of 1000.
If `center_data == TRUE` and data is given as a data matrix, the first step is to center it by executing `scale(data, center_data, FALSE)`, which subtracts the column means of data from their corresponding columns.

If `parallel == TRUE`, the parallelised SPCAvRP algorithm is used. We recommend to use this option if \(p, A \) and \(B \) are very large.

Value

Returns a list of three elements:

- **vector**: A matrix of dimension \(p \times \text{length}(l) \) with columns as the estimated eigenvectors of sparsity level \(l \).
- **value**: An array with \(\text{length}(l) \) eigenvalues corresponding to the estimated eigenvectors returned in vector.
- **importance_scores**: An array of length \(p \) with importance scores for each variable 1 to \(p \).

Author(s)

Milana Gataric, Tengyao Wang and Richard J. Samworth

References

Examples

```r
p <- 100  # data dimension
k <- 10   # true sparsity level
n <- 1000 # number of observations
v1 <- c(rep(1/sqrt(k), k), rep(0, p-k)) # true principal component
Sigma <- 2*tcrossprod(v1) + diag(p)   # population covariance
mu <- rep(0, p)                        # population mean
loss = function(u,v){
  # the loss function
  sqrt(abs(1-sum(v*u)^2))
}
set.seed(1)
X <- mvrnorm(n, mu, Sigma) # data matrix
spcavrp <- SPCAvRP(data = X, cov = FALSE, l = k, d = k, A = 200, B = 70)
spcavrp.loss <- loss(v1,spcavrp$vector)
print(paste0("estimation loss when l=d=k=10, A=200, B=70: ", spcavrp.loss))

# choosing sparsity level l if k unknown:
#spcavrp.choose1 <- SPCAvRP(data = X, cov = FALSE, l = c(1:30), d = 15, A = 200, B = 70)
#plot(1:p,spcavrp.choose1$importance_scores,xlab='variable',ylab='w',
#     main='choosing 1 when k unknown: \n importance scores w')
#plot(1:30,spcavrp.choose1$value,xlab='l',ylab='Var_l',
#     main='choosing 1 when k unknown: \n explained variance Var_l')
```
SPCAvRP_deflation

Description

Computes \(m \) leading eigenvectors of the sample covariance matrix which are sparse and orthogonal, using the modified deflation scheme in conjunction with the SPCAvRP algorithm.

Usage

```r
SPCAvRP_deflation(data, cov = FALSE, m, l = 20, A = 600, B = 200, center_data = TRUE)
```

Arguments

- `data`: Either the data matrix \((p \times n)\) or the sample covariance matrix \((p \times p)\).
- `cov`: TRUE if data is given as a sample covariance matrix.
- `m`: The number of principal components to estimate.
- `l`: The array of length \(m \) with the desired sparsity of \(m \) principle components (see Details).
- `d`: The dimension of the random projections (see Details).
- `A`: Number of projections over which to aggregate (see Details).
- `B`: Number of projections in a group from which to select (see Details).
- `center_data`: TRUE if the data matrix should be centered (see Details).

Details

This function implements the modified deflation scheme in conjunction with SPCAvRP (Algorithm 2 in the reference given below).

If the true sparsity level is known and for each component is equal to \(k \), use \(d = k \) and \(l = \text{rep}(k, m) \). Sparsity levels of different components may take different values. If \(k \) is unknown, appropriate \(k \) could be chosen from an array of different values by inspecting the explained variance for one component at the time and by using SPCAvRP in a combination with the deflation scheme implemented in SPCAvRP_deflation.

It is desirable to choose \(A \) (and \(B = \text{ceiling}(A/3) \)) as big as possible subject to the computational budget. In general, we suggest using \(A = 300 \) and \(B = 100 \) when the dimension of data is a few hundreds, while \(A = 600 \) and \(B = 200 \) when the dimension is on order of 1000.

If `center_data == TRUE` and data is given as a data matrix, the first step is to center it by executing `scale(data, center_data, FALSE)`, which subtracts the column means of data from their corresponding columns.
SPCAvRP_deflation

Value

Returns a list of two elements:

- **vector**: A matrix whose \(m \) columns are the estimated eigenvectors.
- **value**: An array with \(m \) estimated eigenvalues.

Author(s)

Milana Gataric, Tengyao Wang and Richard J. Samworth

References

See Also

SPCAvRP, SPCAvRP_subspace

Examples

\[
p <- 50 \# data dimension \\
k <- 8 \# true sparsity of each component \\
v1 <- 1/sqrt(k)*c(rep(1, k), rep(0, p-k)) \# first principal component (PC) \\
v2 <- 1/sqrt(k)*c(rep(0,4), 1, -1, 1, -1, rep(1,4), rep(0,p-12)) \# 2nd PC \\
v3 <- 1/sqrt(k)*c(rep(0,6), 1, -rep(1,4), rep(1,3), rep(0, p-14)) \# 3rd PC \\
Sigma <- diag(p) + 40*tcrossprod(v1) + 20*tcrossprod(v2) + 5*tcrossprod(v3) \# population covariance \\
mu <- rep(0, p) \# population mean \\
n <- 2000 \# number of observations \\
loss = function(u,v){ \\
 sqrt(abs(sum(v*u)^R)) \\
} \\
loss_sub = function(U,V){ \\
 U <- qr.Q(qr(U)); V <- qr.Q(qr(V)); \\
 norm(tcrossprod(U)-tcrossprod(V),"2") \\
} \\
set.seed(1) \\
X <- mvrnorm(n, mu, Sigma) \# data matrix \\
spcavrp.def <- SPCAvRP_deflation(data = X, cov = FALSE, m = 2, l = rep(k,2), \\
 d = k, A = 200, B = 70, center_data = FALSE) \\
subspace_estimation<-data.frame(
 loss_sub(matrix(c(v1,v2),ncol=2),spcavrp.def$vector),
 loss(spcavrp.def$vector[,1],v1),
 loss(spcavrp.def$vector[,2],v2),
 crossprod(spcavrp.def$vector[,1],spcavrp.def$vector[,2]))
rownames(subspace_estimation)<-c("loss_sub","loss_v1","loss_v2","inner_prod")
print(subspace_estimation)<-c("")
print(subspace_estimation)
SPCAvRP_subspace Computes the leading eigenspace using the SPCAvRP algorithm for the eigenspace estimation

Description

Computes \(m \) leading eigenvectors of the sample covariance matrix which are sparse and orthogonal, using \(A \times B \) random axis-aligned projections of dimension \(d \).

Usage

```r
SPCAvRP_subspace(data, cov = FALSE, m, l, d = 20,
A = 600, B = 200, center_data = TRUE)
```

Arguments

- `data` Either the data matrix \((p \times n)\) or the sample covariance matrix \((p \times p)\).
- `cov` TRUE if data is given as a sample covariance matrix.
- `m` The dimension of the eigenspace, i.e. the number of principal components to compute.
- `l` Desired sparsity level of the eigenspace (i.e. the number of non-zero rows in output$vector) (see Details).
- `d` The dimension of the random projections (see Details).
- `A` Number of projections over which to aggregate (see Details).
- `B` Number of projections in a group from which to select (see Details).
- `center_data` TRUE if the data matrix should be centered (see Details).

Details

This function implements the SPCAvRP algorithm for the eigenspace estimation (Algorithm 3 in the reference given below).

If the true sparsity level \(k \) of the eigenspace is known, use \(l = k \) and \(d = k \).

If the true sparsity level \(k \) of the eigenspace is unknown, the appropriate choice of \(l \) can be done, for example, by running the algorithm (for any \(l \)) and inspecting the computed output importance_scores. The default choice for \(d \) is 20, but we suggest choosing \(d \) equal to or slightly larger than \(l \).

It is desirable to choose \(A \) (and \(B = \text{ceiling}(A/3) \)) as big as possible subject to the computational budget. In general, we suggest using \(A = 300 \) and \(B = 100 \) when the dimension of data is a few hundreds, while \(A = 600 \) and \(B = 200 \) when the dimension is on order of 1000.

If `center_data == TRUE` and data is given as a data matrix, the first step is to center it by executing `scale(data, center_data, FALSE)`, which subtracts the column means of data from their corresponding columns.
SPCAvRP_subspace

Value

Returns a list of two elements:

- **vector**: A matrix whose \(m \) columns are the estimated eigenvectors.
- **value**: An array with \(m \) estimated eigenvalues.
- **importance_scores**: An array of length \(p \) with importance scores for each variable 1 to \(p \).

Author(s)

Milana Gataric, Tengyao Wang and Richard J. Samworth

References

See Also

SPCAvRP, SPCAvRP_deflation

Examples

```r
p <- 50 # data dimension
k1 <- 8 # sparsity of each individual component
v1 <- 1/sqrt(k1)*c(rep(1, k1), rep(0, p-k1)) # first principal component (PC)
v2 <- 1/sqrt(k1)*c(rep(0, 4), 1, -1, 1, -1, rep(1, 4), rep(0, p-12)) # 2nd PC
v3 <- 1/sqrt(k1)*c(rep(0, 6), 1, -rep(1, 4), rep(1, 3), rep(0, p-14)) # 3rd PC
Sigma <- diag(p) + 40*tcrossprod(v1) + 20*tcrossprod(v2) + 5*tcrossprod(v3) # population covariance
mu <- rep(0, p) # population mean
n <- 2000 # number of observations
loss = function(u,v){
  sqrt(abs(1-sum(v*u)^2))
}
loss_sub = function(U,V){
  U <- qr.Q(qr(U)); V <- qr.Q(qr(V))
  norm(tcrossprod(U)-tcrossprod(V),"2")
}
set.seed(1)
X <- mvrnorm(n, mu, Sigma) # data matrix

spcavrp_sub <- SPCAvRP_subspace(data = X, cov = FALSE, m = 2, l = 12, d = 12,
                                A = 200, B = 70, center_data = FALSE)

subspace_estimation<-data.frame(
  loss_sub(matrix(c(v1,v2),ncol=2),spcavrp_sub$vector),
  loss(spcavrp_sub$vector[,1],v1),
  loss(spcavrp_sub$vector[,2],v2),
  crossprod(spcavrp_sub$vector[,1],spcavrp_sub$vector[,2]))
colnames(subspace_estimation)<-c("loss_sub","loss_v1","loss_v2","inner_prod")
```
rownames(subspace_estimation)<-c"
"
print(subspace_estimation)

plot(1:p,spcavrp.sub$importance_scores,xlab='variable',ylab='w',
 main='importance scores w \n (may use to choose l when k unknown)')
Index

SPCAvRP, 2, 5, 7
SPCAvRP_deflation, 2, 4, 7
SPCAvRP_subspace, 2, 5, 6