Package ‘SPOT’

December 14, 2019

License GPL (>= 2)
Title Sequential Parameter Optimization Toolbox
Type Package
LazyLoad yes
LazyData true
Description A set of tools for model based optimization and tuning of algorithms. It includes surrogate models, optimizers and design of experiment approaches. The main interface is spot, which uses sequentially updated surrogate models for the purpose of efficient optimization. The main goal is to ease the burden of objective function evaluations, when a single evaluation requires a significant amount of resources.
Version 2.0.5
Date 2019-12-12
Depends R (>= 3.0.0)
Imports randomForest, ranger, stats, utils, graphics, grDevices, MASS,
 DEoptim, rgenoud, plotly, rsm, nloptr, ggplot2
RoxygenNote 7.0.2
Suggests testthat, batchtools
NeedsCompilation no
Author Thomas Bartz-Beielstein [aut],
 Joerg Stork [aut],
 Martin Zaefferer [aut, cre],
 Margarita Rebolledo [ctb],
 Christian Lasarczyk [ctb],
 Joerg Ziegenhirt [ctb],
 Wolfgang Konen [ctb],
 Oliver Flasch [ctb],
 Patrick Koch [ctb],
 Martina Friese [ctb],
 Lorenzo Gentile [ctb],
 Frederik Rehbach [aut]
Maintainer Martin Zaefferer <martin.zaefferer@gmx.de>
Repository CRAN
Date/Publication 2019-12-14 17:40:23 UTC

R topics documented:

SPOT-package .. 3
buildCVModel .. 4
build EnsembleStack 5
buildKriging .. 6
buildKrigingDACE ... 9
buildLM .. 10
buildLOESS .. 11
buildRandomForest ... 12
buildRanger .. 13
buildRSM .. 14
dataGasSensor .. 15
descentSpotRSM ... 17
designLHD .. 17
designUniformRandom 19
expectedImprovement 20
funCyclone .. 20
funOptimLecture .. 22
funSphere .. 22
infillExpectedImprovement 23
optimDE .. 24
optimES .. 25
optimGenoud ... 26
optimLBFGSB ... 27
optimLHD .. 28
optimNLOPTR ... 29
plotData ... 30
plotFunction ... 32
plotModel .. 34
predict.cvModel ... 35
repeatsOCBA .. 36
satter ... 37
spot ... 37
spotAlgEs ... 40
spotLoop .. 42
wrapBatchTools .. 43
wrapFunction ... 44
wrapFunctionParallel 45
wrapSystemCommand 45

Index 47
Description

Sequential Parameter Optimization Toolbox

Details

SPOT uses a combination statistic models and optimization algorithms for the purpose of parameter optimization. Design of Experiment methods are employed to generate an initial set of candidate solutions, which are evaluated with a user-provided objective function. The resulting data is used to fit a model, which in turn is subject to an optimization algorithm, to find the most promising candidate solution(s). These are again evaluated, after which the model is updated with the new results. This sequential procedure of modeling, optimization and evaluation is iterated until the evaluation budget is exhausted.

Note, that versions >= 2.0.1 of the package are a complete rewrite of the interfaces and conventions in SPOT. The rewritten SPOT package aims to improve the following issues of the older package:
- A more modular architecture is provided, that allows the user to easily customize parts of the SPO procedure.
- Core functions for modeling and optimization use interfaces more similar to algorithms from other packages / core-R, hence making them easier accessible for new users. Also, these can now be more easily used separately from the main SPO approach, e.g., only for modeling.
- Reducing the unnecessarily large number of choices and parameters.
- Removal of extremely rarely used / un-used features, to reduce overall complexity of the package.
- Improving documentation and accessibility in general.
- Speed-up of frequently used procedures.

We appreciate feedback about any bugs or other issues with the package. Feel free to send feedback by mail to the maintainer.

Acknowledgments

This work has been partially supported by the Federal Ministry of Education and Research (BMBF) under the grants CIMO (FKZ 17002X11) and MCIOP (FKZ 17N0311).

Maintainer

Martin Zaefferer <martin.zaefferer@gmx.de>
buildCVModel

Author(s)
Thomas Bartz-Beielstein <thomas.bartz-beielstein@th-koeln.de>, Joerg Stork, Martin Zaefferer (Maintainer, <martin.zaefferer@gmx.de>) with contributions from: C. Lasarczyk, M. Rebolledo, J. Ziegenhirt, W. Konen, O. Flasch, P. Koch, M. Friese, L. Gentile, F. Rehbach.

See Also
Main interface function is `spot`.

Description
Build a set of models trained on different folds of cross-validated data. Can be used to estimate the uncertainty of a given model type at any point.

Usage
```r
buildCVModel(x, y, control = list())
```

Arguments
- `x`: design matrix (sample locations)
- `y`: vector of observations at `x`
- `control` (list), with the options for the model building procedure:
 - `types`: a character vector giving the data type of each variable. All but "factor" will be handled as numeric, "factor" (categorical) variables will be subject to the hamming distance.
 - `target`: target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation. This can also be changed after the model has been built, by manipulating the respective `object$target` value.
 - `uncertaintyEstimator`: a character vector specifying which uncertaintyEstimator should be used. "s" or the linearlyAdapted uncertainty "sLinear". Default is "sLinear"

Value
set of models (class `cvModel`)
buildEnsembleStack

Ensemble: Stacking

Description

Generates an ensemble of surrogate models with stacking (stacked generalization).

Usage

buildEnsembleStack(x, y, control = list())

Arguments

x
design matrix (sample locations), rows for each sample, columns for each variable.

y
vector of observations at x

control
(list), with the options for the model building procedure:

modelL1 Function for fitting the L1 model (default: buildLM) which combines the results of the L0 models.

modelL1Control List of control parameters for the L1 model (default: list()).

modelL0 A list of functions for fitting the L0 models (default: list(buildLM, buildRandomForest, buildKriging)).

modelL0Control List of control lists for each L0 model (default: list(list(), list(), list())).

Value

returns an object of class ensembleStack.

Note

Loosely based on the code by Emanuele Olivetti https://github.com/emanuele/kaggle_pbr/blob/master/blend.py

References

See Also

predict.ensembleStack
Examples

```r
## Create a test function: branin
braninFunction <- function (x) {
10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}
## Create design points
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))
## Create model with default settings
fit <- buildEnsembleStack(x,y)
## Predict new point
predict(fit,cbind(1,2))
## True value at location
braninFunction(c(1,2))
```

Build Kriging Model

Description

This function builds a Kriging model based on code by Forrester et al.. By default, exponents (p) are fixed at a value of two, and a nugget (or regularization constant) is used. To correct the uncertainty estimates in case of nugget, re-interpolation is also by default turned on.

Usage

```r
buildKriging(x, y, control = list())
```

Arguments

- **x**
 - design matrix (sample locations)
- **y**
 - vector of observations at x
- **control**
 - (list), with the options for the model building procedure:
 - `types` a character vector giving the data type of each variable. All but "factor" will be handled as numeric, "factor" (categorical) variables will be subject to the hamming distance.
 - `thetaLower` lower boundary for theta, default is `1e-4`
 - `thetaUpper` upper boundary for theta, default is `1e2`
 - `algTheta` algorithm used to find theta, default is `optimDE`
 - `budgetAlgTheta` budget for the above mentioned algorithm, default is `200`. The value will be multiplied with the length of the model parameter vector to be optimized.
 - `optimizeP` boolean that specifies whether the exponents (p) should be optimized. Else they will be set to two. Default is `FALSE`
useLambda whether or not to use the regularization constant lambda (nugget effect). Default is TRUE.

lambdaLower lower boundary for log10lambda, default is -6
lambdaUpper upper boundary for log10lambda, default is 0
startTheta optional start value for theta optimization, default is NULL
reinterpolate whether (TRUE, default) or not (FALSE) reinterpolation should be performed target target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation, "ei" for expected improvement. See also predict.kriging. This can also be changed after the model has been built, by manipulating the respective object$target value.

Details

The model uses a Gaussian kernel: \(k(x,z) = \exp(-\sum(\theta_i \times |x_i-z_i|^p_i)) \). By default, \(p_i = 2 \). Note that if dimension \(x_i \) is a factor variable (see parameter types), Hamming distance will be used instead of \(|x_i-z_i| \).

Value

an object of class kriging. Basically a list, with the options and found parameters for the model which has to be passed to the predictor function:
x sample locations (scaled to values between 0 and 1)
y observations at sample locations (see parameters)
thetaLower lower boundary for theta (see parameters)
thetaUpper upper boundary for theta (see parameters)
algTheta algorithm to find theta (see parameters)
budgetAlgTheta budget for the above mentioned algorithm (see parameters)
optimizeP boolean that specifies whether the exponents (\(p \)) were optimized (see parameters)
normalizeymin minimum in normalized space
normalizeymax maximum in normalized space
normalizexmin minimum in input space
normalizexmax maximum in input space
dmodeltheta vector of activity parameters
Theta log_10 vector of activity parameters (i.e. \(\log\theta_i \))
dmodellambda regularization constant (nugget)
Lambda log_10 of regularization constant (nugget) (i.e. \(\log\lambda \))
yonemu Ay-ones*mu
ssq sigma square
mu mean mu
Psi matrix large Psi
Psinv inverse of Psi
nevals number of Likelihood evaluations during MLE

References

Test-function:

```r
braninFunction <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
}
```

```r
## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braninFunction))
```

```r
## Create model with default settings
fit <- buildKriging(x,y,control = list(algTheta=optimLHD))
## Print model parameters
print(fit)
## Predict at new location
predict(fit,cbind(1,2))
## True value at location
braninFunction(c(1,2))
```

Next Example: Handling factor variables

```r
## create a test function:
braninFunctionFactor <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
  if(x[3]==1)
    y <- y +1
  else if(x[3]==2)
    y <- y -1
  y
}
```

```r
## create training data
set.seed(1)
x <- cbind(runif(50)*15-5,runif(50)*15,sample(1:3,50,replace=TRUE))
y <- as.matrix(apply(x,1,braninFunctionFactor))
```

```r
## fit the model (default: assume all variables are numeric)
fitDefault <- buildKriging(x,y,control = list(algTheta=optimDE))
```

```r
## fit the model (give information about the factor variable)
fitFactor <- buildKriging(x,y,control =
  list(algTheta=optimDE,types=c("numeric","numeric","factor")))
```

```r
## create test data
xtest <- cbind(runif(200)*15-5,runif(200)*15,sample(1:3,200,replace=TRUE))
ytest <- as.matrix(apply(xtest,1,braninFunctionFactor))
```

```r
## Predict test data with both models, and compute error
ypredDef <- predict(fitDefault,xtest)$y
ypredFact <- predict(fitFactor,xtest)$y
mean((ypredDef-ytest)^2)
```
mean((ypredFact-ytest)^2)

buildKrigingDACE
Build DACE model

Description

This Kriging meta model is based on DACE (Design and Analysis of Computer Experiments). It allows to choose different regression and correlation models. The optimization of model parameters is by default done with a bounded simplex method from the nloptr package.

Usage

```r
buildKrigingDACE(x, y, control = list())
```

Arguments

- `x`
 design matrix (sample locations), rows for each sample, columns for each variable.

- `y`
 vector of observations at `x`

- `control`
 (list), with the options for the model building procedure:
 - `startTheta` optional start value for theta optimization, default is `NULL`.
 - `algTheta` algorithm used to find theta, default is `optimDE`.
 - `budgetAlgTheta` budget for the above mentioned algorithm, default is 200. The value will be multiplied with the length of the model parameter vector to be optimized.
 - `nugget` Value for nugget. Default is -1, which means the nugget will be optimized during MLE. Else it can be fixed in a range between 0 and 1.
 - `regr` Regression function to be used: `regpoly0` (default), `regpoly1`, `regpoly2`. Can be a custom user function.
 - `corr` Correlation function to be used: `corrnoisykriging` (default), `corrkri1ing`, `corrnoisgyauss`, `corrgauss`, `corexpg`, `correxpg`, `corrlin`, `corrcubic`, `corrspherical`, `corrspline`. Can also be user supplied (if in the right form). `target` target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation, "ei" for expected improvement. See also `predict.kriging`. This can also be changed after the model has been build, by manipulating the respective object$target value.

Value

returns an object of class `dace` with the following elements:

- `model` A list, containing model parameters
- `like` Estimated likelihood value
- `theta` activity parameters theta (vector)
- `p` exponents p (vector)
- `lambda` nugget value (numeric)
- `nevals` Number of iterations during MLE
Author(s)

The authors of the original DACE Matlab toolbox are Hans Bruun Nielsen, Soren Nymand Lophaven and Jacob Søndergaard.

Extension of the Matlab code by Tobias Wagner <wagner@isf.de>.

Porting and adaptation to R and further extensions by Martin Zaefferer <martin.zaefferer@fh-koeln.de>.

References

See Also

`predict.dace`

Examples

```r
## Create design points
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points
y <- funSphere(x)
## Create model with default settings
fit <- buildKrigingDACE(x, y)
## Print model parameters
print(fit)
## Create with different regression and correlation functions
fit <- buildKrigingDACE(x, y, control=list(regr=regpoly2, corr=corrspline))
## Print model parameters
print(fit)
```

buildLM

Linear Model Interface

Description

This is a simple wrapper for the `lm` function, which fits linear models. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with linear models. The linear model is build with main effects. Optionally, the model is also subject to the AIC-based stepwise algorithm, using the `step` function from the `stats` package.

Usage

```r
buildLM(x, y, control = list())
```
Arguments

- **x**: matrix of input parameters. Rows for each point, columns for each parameter.
- **y**: one column matrix of observations to be modeled.
- **control**: list of control parameters, currently only with parameters `useStep` and `formula`. The `useStep` boolean specifies whether the step function is used. The `formula` is passed to the `lm` function. Without a formula, a second order model will be built.

Value

- an object of class "spotLinearModel", with a predict method and a print method.

Examples

```r
## Test-function:
braninFunction <- function (x) {
10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}
# Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
# Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braninFunction))
# Create model
fit <- buildLM(x,y,control = list(algTheta=optimLHD))
# Print model parameters
print(fit)
# Predict at new location
predict(fit,cbind(1,2))
# True value at location
braninFunction(c(1,2))
```

buildLOESS
Build LOESS Model

Description

Build an interpolation model using the `loess` function. Essentially a SPOT-style interface to that function.

Usage

```r
buildLOESS(x, y, control = list())
```
buildRandomForest

Arguments

x design matrix (sample locations), rows for each sample, columns for each variable.
y vector of observations at x
control named list, with the options for the model building procedure loess. These will be passed to loess as arguments. Please refrain from setting the formula or data arguments as these will be supplied by the interface, based on x and y.

Value

returns an object of class spotLOESS.

See Also

predict.spotLOESS

Examples

Create a test function: branin
braninFunction <- function (x) {
10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
}
Create design points
set.seed(1)
x <- cbind(runif(40)*15-5,runif(40)*15)
Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))
Create model with default settings
fit <- buildLOESS(x,y)
fit
Predict new point
predict(fit,cbind(1,2))
True value at location
braninFunction(c(1,2))
Change model control
fit <- buildLOESS(x,y,control=list(parametric=c(TRUE,FALSE)))
fit

buildRandomForest Random Forest Interface

Description

This is a simple wrapper for the randomForest function from the randomForest package. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with random forest.
Usage

buildRandomForest(x, y, control = list())

Arguments

x matrix of input parameters. Rows for each point, columns for each parameter.
y one column matrix of observations to be modeled.
control list of control parameters, currently not used.

Value

an object of class "spotRandomForest", with a predict method and a print method.

Examples

```r
## Not run:
## Test-function:
brainFunction <- function (x) {
10 * (1 - 1/(8 * pi)) * cos(x[1]) ) + 10
}
## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,brainFunction))
## Create model
fit <- buildRandomForest(x,y)
## Print model parameters
print(fit)
## Predict at new location
predict(fit,cbind(1,2))
## True value at location
brainFunction(c(1,2))
## End(Not run)
```

Description

This is a simple wrapper for the ranger function from the ranger package. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with ranger.

Usage

buildRanger(x, y, control = list())
Arguments

x matrix of input parameters. Rows for each point, columns for each parameter.

y one column matrix of observations to be modeled.

control list of control parameters. These are all configuration parameters of the ranger function, and will be passed on to it.

Value

an object of class "spotRanger", with a predict method and a print method.

Examples

```r
## Not run:
## Create a simple training data set
testfun <- function (x) x[1]^2
x <- cbind(sort(runif(30)*2-1))
y <- as.matrix(apply(x,1,testfun))
## test data:
x <- cbind(sort(runif(3000)*2-1))
## Example with default model (standard randomforest)
fit <- buildRanger(x,y)
yt <- predict(fit,data.frame(x=xt))
plot(xt,yt$y,type="l")
points(x,y,col="red",pch=20)
## Example with extratrees, an interpolating model
fit <- buildRanger(x,y,
control=list(rangerArguments =
  list(replace = F,
       sample.fraction=1,
       min.node.size = 1,
       splitrule = "extratrees")))
yt <- predict(fit,data.frame(x=xt))
plot(xt,yt$y,type="l")
points(x,y,col="red",pch=20)
## End(Not run)
```
Arguments

x
design matrix (sample locations), rows for each sample, columns for each variable.

y
vector of observations at x

control
(list), with the options for the model building procedure:

mainEffectsOnly Logical, defaults to FALSE. Set to TRUE if a model with
main effects only is desired (no interactions, second order effects).

canonical Logical, defaults to FALSE. If this is TRUE, use the canonical path
to descent from saddle points. Else, simply use steepest descent

Value

returns an object of class spotRSM.

See Also

predict.spotRSM

Examples

Create a test function: branin
braninFunction <- function (x) {
 10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
}

Create design points
x <- cbind(runif(20)*15-5,runif(20)*15)

Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))

Create model with default settings
fit <- buildRSM(x,y)

Predict new point
predict(fit,cbind(1,2))

True value at location
braninFunction(c(1,2))

plots
plot(fit)

descentSpotRSM(fit)
Usage
dataGasSensor

Format
A data frame with 280 rows and 20 columns (1 output, 7 input, 2 disturbance, 10 training/test split):

Y Measured Sensor Output
X1 Sensor Input 1
X2 Sensor Input 2
X3 Sensor Input 3
X4 Sensor Input 4
X5 Sensor Input 5
X6 Sensor Input 6
X7 Sensor Input 7
Batch Disturbance variable, measurement batch
Sensor Disturbance variable, sensor ID
Set1 test/training split, 1 is training data, 2 is test data
Set2 test/training split
Set3 test/training split
Set4 test/training split
Set5 test/training split
Set6 test/training split
Set7 test/training split
Set8 test/training split
Set9 test/training split
Set10 test/training split

Two different modeling tasks are of interest for this data set: Y~X1+X2+X3+X4+X5+X6+X7+Batch+Sensor and X1~Y+X7+Batch+Sensor.

References
Margarita A. Rebolledo C., Sebastian Krey, Thomas Bartz-Beielstein, Oliver Flasch, Andreas Fischbach and Joerg Stork.
2016.
Modeling and Optimization of a Robust Gas Sensor.
7th International Conference on Bioinspired Optimization Methods and their Applications (BIOMA 2016).
descentSpotRSM
Descent RSM model

Description

Generate steps along the path of steepest descent for a RSM model. This is only intended as a manual tool to use together with `buildRSM`.

Usage

```
descentSpotRSM(object)
```

Arguments

- `object`
 RSM model (settings and parameters) of class `spotRSM`.

Value

list with

- `x` list of points along the path of steepest descent
- `y` corresponding predicted values

See Also

`buildRSM`

designLHD
Latin Hypercube Design Generator

Description

Creates a latin Hypercube Design (LHD) with user-specified dimension and number of design points. LHDs are created repeatedly created at random. For each each LHD, the minimal pair-wise distance between design points is computed. The design with the maximum of that minimal value is chosen.

Usage

```
designLHD(x = NULL, lower, upper, control = list())
```
Arguments

- optional matrix `x`, rows for points, columns for dimensions. This can contain one or more points which are part of the design, but specified by the user. These points are added to the design, and are taken into account when calculating the pair-wise distances. They do not count for the design size. E.g., if `x` has two rows, `control$replicates` is one and `control$size` is ten, the returned design will have 12 points (12 rows). The first two rows will be identical to `x`. Only the remaining ten rows are guaranteed to be a valid LHD.

- vector with lower boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)

- vector with upper boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)

- list of controls:
 - `size` number of design points
 - `retries` number of retries during design creation
 - `types` this specifies the data type for each design parameter, as a vector of either "numeric","integer","factor". (here, this only affects rounding)
 - `inequalityConstraint` inequality constraint function, smaller zero for infeasible points. Used to replace infeasible points with random points.
 - `replicates` integer for replications of each design point. E.g., if replications is two, every design point will occur twice in the resulting matrix.

Value

- matrix `design`
 - `design` has `length(lower)` columns and `(size + nrow(x))*control$replicates` rows. All values should be within `lower <= design <= upper`

Author(s)

Original code by Christian Lasarczyk, adaptations by Martin Zaefferer

Examples

```R
set.seed(1) #set RNG seed to make examples reproducible
design <- designLHD(1,2) #simple, 1-D case
design <- designLHD(1,2,control=list(replicates=3)) #with replications
design <- designLHD(-1,-2,1,0),c(1,4,9,1),
control=list(size=5, retries=100, types=c("numeric","integer","factor","factor")))
design
x <- designLHD(1,-10),c(2,10),control=list(size=5,reties=100))
x2 <- designLHD(x,1,-10),c(2,10),control=list(size=5,reties=100))
plot(x2)
points(x, pch=19)
```
designUniformRandom
Uniform Design Generator

Description
Create a simple experimental design based on uniform random sampling.

Usage

```r
designUniformRandom(x = NULL, lower, upper, control = list())
```

Arguments

- **x**
 - optional data.frame `x` to be part of the design
- **lower**
 - vector with lower boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with `lower = 1` and `upper = number of levels`)
- **upper**
 - vector with upper boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with `lower = 1` and `upper = number of levels`)
- **control**
 - list of controls:
 - **size**
 - number of design points
 - **types**
 - this specifies the data type for each design parameter, as a vector of either "numeric", "integer", "factor". (here, this only affects rounding)
 - **replicates**
 - integer for replications of each design point. E.g., if `replications` is two, every design point will occur twice in the resulting matrix.

Value
- matrix `design`
- `design` has `length(lower)` columns and `(size + nrow(x))`*`control$replicates` rows. All values should be within `lower <= design <= upper`

Examples

```r
set.seed(1) # set RNG seed to make examples reproducible
design <- designUniformRandom(1, 2) # simple, 1-D case
design
design <- designUniformRandom(1, 2, control=list(replicates=3)) # with replications
design
design <- designUniformRandom(c(-1, -2, 1, 0), c(1, 4, 9, 1),
control=list(size=5, types=c("numeric", "integer", "factor", "factor")))
design
x <- designUniformRandom(1, -10, 2, 10, control=list(size=5))
x2 <- designUniformRandom(x, c(1, -10), c(2, 10), control=list(size=5))
plot(x2)
points(x, pch=19)
```
expectedImprovement

Description

Compute the negative logarithm of the Expected Improvement of a set of candidate solutions. Based on mean and standard deviation of a candidate solution, this estimates the expectation of improvement. Improvement considers the amount by which the best known value (best observed value) is exceeded by the candidates.

Usage

```r
expectedImprovement(mean, sd, min)
```

Arguments

- `mean` vector of predicted means of the candidate solutions.
- `sd` vector of estimated uncertainties / standard deviations of the candidate solutions.
- `min` minimal observed value.

Value

a vector with the negative logarithm of the expected improvement values, \(-\log_{10}(EI)\).

Examples

```r
mean <- 1:10  #mean of the candidates
sd <- 10:1    #st. deviation of the candidates
min <- 5      #best known value
EI <- expectedImprovement(mean, sd, min)
EI
```

funCyclone

Objective function - Cyclone Simulation: Barth/Muschelknautz

Description

Calculate cyclone collection efficiency. A simple, physics-based optimization problem (potentially bi-objective). See the references [1,2].
funCyclone

Usage

funCyclone(
 x,
 deterministic = c(T, T, T),
 cyclone = list(Da = 1.26, H = 2.5, Dt = 0.42, Ht = 0.65, He = 0.6, Be = 0.2),
 fluid = list(Mu = 1.85e-05, Ve = (50/36)/0.12, lambdag = 1/200, Rhop = 2000, Rhof = 1.2, Croh = 0.05),
 noiseLevel = list(Vp = 0.1, Rhop = 0.05),
 model = "Barth-Muschelknautz",
 intervals = c(0, 2, 4, 6, 8, 10, 15, 20, 30) * 1e-06,
 delta = c(0, 0.02, 0.03, 0.05, 0.1, 0.3, 0.3, 0.2)
)

Arguments

x vector of length at least one and up to six, specifying non-default geometrical parameters in [m]: Da, H, Dt, Ht, He, Be
deterministic binary vector. First element specifies whether volume flow is deterministic or not. Second element specifies whether particle density is deterministic or not. Third element specifies whether particle diameters are deterministic or not. Default: All are deterministic (TRUE).
cyclone list of a default cyclone’s geometrical parameters: fluid$Da, fluid$H, fluid$Dt, fluid$Ht, fluid$He and fluid$Be
fluid list of default fluid parameters: fluid$Mu, fluid$Vp, fluid$Rhop, fluid$Rhof and fluid$Croh
noiseLevel list of noise levels for volume flow (noiseLevel$Vp) and particle density (noiseLevel$Rhop), only used if non-deterministic.
model type of the model (collection efficiency only): either "Barth-Muschelknautz" or "Mothes"
intervals vector specifying the particle size interval bounds.
delta vector of densities in each interval (specified by intervals). Should have one element less than the intervals parameter.

Value

returns a function that calculates the fractional efficiency for the specified diameter, see example.

References

Examples

Call directly
funCyclone(c(1.26, 2.5))
create vectorized target function, vectorized, first objective only
Also: negated, since SPOT always does minimization.
tfunvecF1 <- function(x) {-apply(x, 1, funCyclone)[1,]
 tfunvecF1(matrix(c(1.26, 2.5, 1, 2), 2, 2, byrow=TRUE))
optimize with spot
res <- spot(fun=tfunvecF1, lower=c(1, 2), upper=c(2, 3),
 control=list(modelControl=list(target="ei"),
 model=buildKriging, optimizer=optimDE, plots=TRUE))
best found solution ...
res$xbest
... and its objective function value
res$ybest

funOptimLecture

Description

A testfunction used in the optimization lecture of the AIT Masters course at TH Koeln

Usage

funOptimLecture(vec)

Arguments

vec input vector or matrix of candidate solution

Value

vector of objective function values

funSphere

Sphere Test Function

Description

Sphere Test Function

Usage

funSphere(x)
Arguments

- **x**: matrix of points to evaluate with the sphere function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

Examples

funSphere(matrix(runif(18),,3))

Description

Compute the negative logarithm of the Expected Improvement of a set of candidate solutions. Based on mean and standard deviation of a candidate solution, this estimates the expectation of improvement. Improvement considers the amount by which the best known value (best observed value) is exceeded by the candidates. Expected Improvement infill criterion that can be passed to control$modelControl$infillCriterion in order to be used during the optimization in SPOT. Parameters don't have to be specified as this function is meant to be internally by SPOT.

Usage

infillExpectedImprovement(predictionList, model)

Arguments

- **predictionList**: The results of a predict.model call
- **model**: The surrogate model which was used for the prediction

Value

numeric vector, expected improvement results

Examples

spot(funSphere,c(-2,-3),c(1,2), control =
 list(infillCriterion = infillExpectedImprovement, modelControl = list(target = c("y","s"))))
optimDE

Minimization by Differential Evolution

Description

For minimization, this function uses the "DEoptim" method from the codeDEoptim package. It is basically a wrapper, to enable DEoptim for usage in SPOT.

Usage

```r
optimDE(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- `x` optional start point, not used in DEoptim
- `fun` objective function, which receives a matrix `x` and returns observations `y`
- `lower` boundary of the search space
- `upper` boundary of the search space
- `control` list of control parameters
 - `funEvals` Budget, number of function evaluations allowed. Default is 200.
 - `populationSize` Population size or number of particles in the population. Default is `10^dimension`.
- `...` passed to `fun`

Value

list, with elements

- `x` archive of the best member at each iteration
- `y` archive of the best value of fn at each iteration
- `xbest` best solution
- `ybest` best observation
- `count` number of evaluations of `fun`

Examples

```r
res <- optimDE(lower = c(-10,-20), upper=c(20,8), fun = funSphere)
res$ybest
```
Description

This is an implementation of an Evolution Strategy.

Usage

optimES(x = NULL, fun, lower, upper, control = list(), ...)

Arguments

x optional start point, not used
fun objective function, which receives a matrix x and returns observations y
lower is a vector that defines the lower boundary of search space (this also defines the
dimensionality of the problem)
upper is a vector that defines the upper boundary of search space (same length as lower)
control list of control parameters. The control list can contain the following settings:
 funEvals number of function evaluations, stopping criterion, default is 500
 mue number of parents, default is 10
 nu selection pressure. That means, number of offspring (lambda) is mue multiplied with nu. Default is 10
 mutation string of mutation type, default is 1
 sigmaInit initial sigma value (step size), default is 1.0
 nSigma number of different sigmas, default is 1
 tau0 number, default is 0.0. tau0 is the general multiplier.
 tau number, learning parameter for self adaption, i.e. the local multiplier for
 step sizes (for each dimension),default is 1.0
 rho number of parents involved in the procreation of an offspring (mixing number), default is "bi"
 sel number of selected individuals, default is 1
 maxGen number of generations, stopping criterion, default is Inf
 seed number, random seed, default is 1
 noise number, value of noise added to fitness values, default is 0.0
 verbosity defines output verbosity of the ES, default is 0
 plotResult boolean, specifies if results are plotted, default is FALSE
optimGenoud

Minimization by GENetic Optimization Using Derivatives

Description

For minimization, this function uses the "genoud" method from the codergenoud package. It is basically a wrapper, to enable genoud for usage in SPOT.

Usage

```
optimGenoud(x = NULL, fun, lower, upper, control = list(), ...)  
```

Arguments

- **x**: optional start point, not used
- **fun**: objective function, which receives a matrix `x` and returns observations `y`
- **lower**: boundary of the search space
- **upper**: boundary of the search space
- **control**: list of control parameters
 - **funEvals**: Budget, number of function evaluations allowed. Default is 100.
 - **populationSize**: Population size, number of individuals in the population. Default is 10*dimension.

Value

list, with elements

- `x`: NULL, currently not used
- `y`: NULL, currently not used
- `xbest`: best solution
- `ybest`: best observation
- `count`: number of evaluations of `fun`

Examples

```
cont <- list(funEvals=100)
optimES(fun=funSphere,lower=rep(0,2), upper=rep(1,2), control= cont)
```

logPlotResult boolean, defines if plot results should be logarithmic, default is FALSE

sigmaRestart number, value of sigma on restart, default is 0.1

preScanMult initial population size is multiplied by this number for a pre-scan, default is 1

globalOpt termination criterion on reaching a desired optimum value, default is `rep(0,dimension)`

... additional parameters to be passed on to `fun`
Value

- list, with elements
 - x NULL, currently not used
 - y NULL, currently not used
 - xbest best solution
 - ybest best observation
 - count number of evaluations of fun

Examples

```r
res <- optimGenoud(fun = funSphere, lower = c(-10, -20), upper = c(20, 8))
res$ybest
```

optimLBFGSB
Minimization by L-BFGS-B

Description

For minimization, this function uses the "L-BFGS-B" method from the optim function, which is part of the codestats package. It is basically a wrapper, to enable L-BFGS-B for usage in SPOT.

Usage

```r
optimLBFGSB(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- **x**
 optional matrix of points. Only first point (row) is used as startpoint.

- **fun**
 objective function, which receives a matrix x and returns observations y

- **lower**
 boundary of the search space

- **upper**
 boundary of the search space

- **control**
 list of control parameters
 - **funEvals**
 Budget, number of function evaluations allowed. Default is 100.
 All other control parameters accepted by the optim function can be used, too, and are passed to optim.

- **...**
 passed to fun
Value

- list, with elements
- \(x \) NA, not used
- \(y \) NA, not used
- \(x_{\text{best}} \) best solution
- \(y_{\text{best}} \) best observation
- \(\text{count} \) number of evaluations of \(\text{fun} \) (estimated from the more complicated "counts" variable returned by \text{optim})
- \(\text{message} \) termination message returned by \text{optim}

Examples

```r
res <- \text{optimLHD}(\text{fun} = \text{funSphere}, \text{lower} = c(-10,-20), \text{upper}=c(20,8))
res$y_{\text{best}}
```

\text{optimLHD} \quad \textit{Minimization by Latin Hypercube Sampling}

Description

This uses Latin Hypercube Sampling (LHS) to optimize a specified target function. A Latin Hypercube Design (LHD) is created with \text{designLHD}, then evaluated by the objective function. All results are reported, including the best (minimal) objective value, and corresponding design point.

Usage

\text{optimLHD}(x = \text{NULL}, \text{fun}, \text{lower}, \text{upper}, \text{control} = \text{list()}, \ldots)

Arguments

- \(x \) optional matrix of points to be included in the evaluation
- \(\text{fun} \) objective function, which receives a matrix \(x \) and returns observations \(y \)
- \(\text{lower} \) boundary of the search space
- \(\text{upper} \) boundary of the search space
- \(\text{control} \) list of control parameters
 - \(\text{funEvals} \) Budget, number of function evaluations allowed. Default: 100.
 - \(\text{retries} \) Number of retries for design generation, used by \text{designLHD}. Default: 100.
- \(\ldots \) passed to \(\text{fun} \)
Value

- list, with elements
 - `x` archive of evaluated solutions
 - `y` archive of observations
 - `xbest` best solution
 - `ybest` best observation
 - `count` number of evaluations of `fun`
 - `message` success message

Examples

```r
res <- optimLHD(fun = funSphere, lower = c(-10, -20), upper = c(20, 8))
res$ybest
```

optimNLOPTR

Minimization by NLOPT

Description

This is a wrapper that employs the `nloptr` function from the package of the same name. The `nloptr` function itself is an interface to the `nlopt` library, which contains a wide selection of different optimization algorithms.

Usage

```r
optimNLOPTR(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- `x` optional matrix of points to be included in the evaluation (only first row will be used)
- `fun` objective function, which receives a matrix `x` and returns observations `y`
- `lower` boundary of the search space
- `upper` boundary of the search space
- `control` named list, with the options for `nloptr`. These will be passed to `nloptr` as arguments. In addition, the following parameter can be used to set the function evaluation budget:
 - `funEvals` Budget, number of function evaluations allowed. Default: 100.
- `...` passed to `fun`

Note that the arguments `x`, `fun`, `lower` and `upper` will be mapped to the corresponding arguments of `nloptr`: `x0`, `eval_f`, `lb` and `ub`.
Value

list, with elements

x archive of evaluated solutions
y archive of observations
xbest best solution
ybest best observation
count number of evaluations of fun
message success message

Examples

Not run:
simple example:
res <- optimNLOPTR(fun = funSphere, lower = c(-10, -20), upper = c(20, 8))
res
with an inequality constraint:
contr <- list() # control list
specify constraint
corr$eval_g_ineq <- function(x) 1 + x[1] - x[2]
res <- optimNLOPTR(fun = funSphere, lower = c(-10, -20), upper = c(20, 8), control = contr)
res
End(Not run)

plotData Interpolated plot

Description

A (filled) contour or perspective plot of a data set with two independent and one dependent variable. The plot is generated by some interpolation or regression model. By default, the loess function is used.

Usage

plotData(
 x,
 y,
 which = 1:2,
 constant = x[which.min(y),],
 model = buildLOESS,
 modelControl = list(),
 xlab = c("x1", "x2"),
 ylab = "y",
 type = "filled.contour",
 ...
)
Arguments

- **x** independent variables, or input variables. This should be a matrix of at least two columns and several rows. If more than two columns are present, all will be used for fitting the model. The parameter which will determine which of these will be plotted, and the parameter constant will determine the values of all parameters that are not varied.

- **y** dependent, or observed output variable to be interpolated/regressed and plotted. This will be a vector with two elements, each an integer giving the two independent variables of the plot (the integers are indices of the respective data set, i.e., columns of x). All other parameters will be fixed to the best known solution, i.e., the one with minimal y-value.

- **which** a numeric vector that states for each variable a constant value that it will take on if it is not varied in the plot. This affects the parameters not selected by the which parameter. By default, this will be fixed to the best known solution, i.e., the one with minimal y-value, according to which.min(object$y). The length of this numeric vector should be the same as the number of columns in object$x.

- **constant** a numeric vector that states for each variable a constant value that it will take on if it is not varied in the plot. This affects the parameters not selected by the which parameter. By default, this will be fixed to the best known solution, i.e., the one with minimal y-value, according to which.min(object$y). The length of this numeric vector should be the same as the number of columns in object$x.

- **model** the model building function to be used, by default buildLOESS.

- **modelControl** control list of the chosen model building function.

- **xlab** a vector of characters, giving the labels for each of the two independent variables

- **ylab** character, the value of the dependent variable predicted by the corresponding model

- **type** string describing the type of the plot: "filled.contour" (default), "contour", "persp" (perspective), or "persp3d" plot. Note that "persp3d" is based on the plotly package and will work in RStudio, but not in the standard RGui.

- **...** additional parameters passed to the contour or filled.contour function

See Also

plotFunction, plotModel

Examples

```r
## generate random test data
testfun <- function (x) sum(x^2)
set.seed(1)
k <- 30
x <- cbind(runif(k)*15-5, runif(k)*15)
y <- as.matrix(apply(x, 1, testfun))
plotData(x, y)
plotData(x, y, type="contour")
plotData(x, y, type="persp")
```
Description

A (filled) contour plot or perspective / surface plot of a function.

Usage

plotFunction(
 f = function(x) { rowSums(x^2) },
 lower = c(0, 0),
 upper = c(1, 1),
 type = "filled.contour",
 s = 100,
 xlab = "x1",
 ylab = "x2",
 zlab = "y",
 color.palette = terrain.colors,
 title = " ",
 levels = NULL,
 points1,
 points2,
 pch1 = 20,
 pch2 = 8,
 lwd1 = 1,
 lwd2 = 1,
 cex1 = 1,
 cex2 = 1,
 col1 = "red",
 col2 = "black",
 theta = -40,
 phi = 40,
 ...
)

Arguments

f function to be plotted. The function should either be able to take two vectors or
 one matrix specifying sample locations. i.e. z=f(X) or z=f(x2,x1) where Z is
 a two column matrix containing the sample locations x1 and x2.
lower boundary for x1 and x2 (defaults to c(0,0)).
upper boundary (defaults to c(1,1)).
type string describing the type of the plot: "filled.contour" (default), "contour",
 "persp" (perspective), or "persp3d" plot. Note that "persp3d" is based on
 the plotly package and will work in RStudio, but not in the standard RGui.
plotFunction

- **s**: number of samples along each dimension. e.g. \(f \) will be evaluated \(s^2 \) times.
- **xlab**: label of first axis
- **ylab**: label of second axis
- **zlab**: label of third axis
- **color.palette**: colors used, default is `terrain.color`
- **title**: title of the plot
- **levels**: number of levels for the plotted function value. Will be set automatically with default NULL.. (contour plots only)
- **points1**: can be omitted, but if given the points in this matrix are added to the plot in form of dots. Contour plots and persp3d only. Contour plots expect matrix with two columns for coordinates. 3Dperspective expects matrix with three columns, third column giving the corresponding observed value of the plotted function.
- **points2**: can be omitted, but if given the points in this matrix are added to the plot in form of crosses. Contour plots and persp3d only. Contour plots expect matrix with two columns for coordinates. 3Dperspective expects matrix with three columns, third column giving the corresponding observed value of the plotted function.
- **pch1**: pch (symbol) setting for points1 (default: 20). (contour plots only)
- **pch2**: pch (symbol) setting for points2 (default: 8). (contour plots only)
- **lwd1**: line width for points1 (default: 1). (contour plots only)
- **lwd2**: line width for points2 (default: 1). (contour plots only)
- **cex1**: cex for points1 (default: 1). (contour plots only)
- **cex2**: cex for points2 (default: 1). (contour plots only)
- **col1**: color for points1 (default: "black"). (contour plots only)
- **col2**: color for points2 (default: "black"). (contour plots only)
- **theta**: angle defining the viewing direction. theta gives the azimuthal direction and phi the colatitude. (persp plot only)
- **phi**: angle defining the viewing direction. theta gives the colatitude. (persp plot only)
- **...**: additional parameters passed to `contour` or `filled.contour`

See Also

`plotData`, `plotModel`

Examples

```r
plotFunction(function(x)(rowSums(x^2)),c(-5,0),c(10,15))
plotFunction(function(x)(rowSums(x^2)),c(-5,0),c(10,15),type="contour")
plotFunction(function(x)(rowSums(x^2)),c(-5,0),c(10,15),type="persp")
```
plotModel

Surface plot of a model

Description

A (filled) contour or perspective plot of a fitted model.

Usage

plotModel(
 object,
 which = if (ncol(object$x) > 1 & tolower(type) != "singledim") { 1:2 } else { 1 },
 constant = object$x[which.min(object$y),],
 xlab = paste("x", which, sep = ""),
 ylab = "y",
 type = "filled.contour",
 ...
)

Arguments

object fit created by a modeling function, e.g., buildRandomForest.

which a vector with two elements, each an integer giving the two independent variables of the plot (the integers are indices of the respective data set).

constant a numeric vector that states for each variable a constant value that it will take on if it is not varied in the plot. This affects the parameters not selected by the which parameter. By default, this will be fixed to the best known solution, i.e., the one with minimal y-value, according to which.min(object$y). The length of this numeric vector should be the same as the number of columns in object$x

xlab a vector of characters, giving the labels for each of the two independent variables.

ylab character, the value of the dependent variable predicted by the corresponding model.

type string describing the type of the plot: "filled.contour" (default), "contour", "persp" (perspective), or "persp3d" plot. Note that "persp3d" is based on the plotly package and will work in RStudio, but not in the standard RGui.

... additional parameters passed to the contour or filled.contour function.

See Also

plotFunction, plotData
Examples

```r
## generate random test data
testfun <- function(x) sum(x^2)
set.seed(1)
k <- 30
x <- cbind(runif(k)*15-5, runif(k)*15, runif(k)*2-7, runif(k)*5+22)
y <- as.matrix(apply(x, 1, testfun))
fit <- buildLM(x, y)
plotModel(fit)
plotModel(fit, type="contour")
plotModel(fit, type="persp")
plotModel(fit, which=c(1, 4))
plotModel(fit, which=2:3)
```

Description

Predict with the cross validated model produced by `buildCVModel`.

Usage

```r
## S3 method for class 'cvModel'
predict(object, newdata, ...)
```

Arguments

- `object`: CV model (settings and parameters) of class `cvModel`.
- `newdata`: design matrix to be predicted
- `...`: Additional parameters passed to the model

Value

Prediction results: list with predicted mean ('y'), estimated uncertainty ('y'), linearly adapted uncertainty ('sLinear')
Description

A simple interface to the Optimal Computing Budget Allocation algorithm.

Usage

```r
repeatsOCBA(x, y, budget)
```

Arguments

- `x` matrix of samples. Identical rows indicate repeated evaluations. Any sample should be evaluated at least twice, to get an estimate of the variance.
- `y` observations of the respective samples. For repeated evaluations, `y` should differ (variance not zero).
- `budget` of additional evaluations to be allocated to the samples.

Value

A vector that specifies how often each solution should be evaluated.

References

See Also

`repeatsOCBA` calls `OCBA`, which also provides some additional details.

Examples

```r
x <- matrix(c(1:3,1:3),9,2)
y <- runif(9)
repeatsOCBA(x,y,10)
```
satter

Satterthwaite Function

Description

The Satterthwaite function can be used to estimate the magnitude of the variance component \((\sigma_{\beta})^2\), when the random factor has significant main effects.

Usage

```
satter(MScoeff, MSi, dfi, alpha = 0.05)
```

Arguments

- **MScoeff**: coefficients \(c_1, c_2\)
- **MSi**: mean squared values
- **dfi**: degrees of freedom
- **alpha**: error probability

Details

Note, the output from the `satter()` procedure is \(\sigma_{\beta}\).

Value

vector with 1. estimate of variance 2. degrees of freedom, 3. lower value of 1-alpha confint 4. upper value of 1-alpha confint

Examples

```
res <- satter(MScoeff = c(1/4, -1/4)
, MSi = c(394.9, 73.3)
, dfi = c(4,3)
, alpha = 0.1)
```

spot

Sequential Parameter Optimization

Description

This is one of the main interfaces for using the SPOT package. Based on a user-given objective function and configuration, `spot` finds the parameter setting that yields the lowest objective value (minimization). To that end, it uses methods from the fields of design of experiment, statistical modeling / machine learning and optimization.
Usage

spot(x = NULL, fun, lower, upper, control = list(), ...)

Arguments

- **x**: is an optional start point (or set of start points), specified as a matrix. One row for each point, and one column for each optimized parameter.
- **fun**: is the objective function. It should receive a matrix x and return a matrix y. In case the function uses external code and is noisy, an additional seed parameter may be used, see the `control$seedFun` argument below for details.
- **lower**: is a vector that defines the lower boundary of search space. This determines also the dimensionality of the problem.
- **upper**: is a vector that defines the upper boundary of search space.
- **control**: is a list with control settings for spot. See `spotControl`.
- **...**: additional parameters passed to `fun`.

Value

This function returns a list with:

- **xbest**: Parameters of the best found solution (matrix).
- **ybest**: Objective function value of the best found solution (matrix).
- **x**: Archive of all evaluation parameters (matrix).
- **y**: Archive of the respective objective function values (matrix).
- **count**: Number of performed objective function evaluations.
- **msg**: Message specifying the reason of termination.
- **modelFit**: The fit of the last build model, i.e., an object returned by the last call to the function specified by `control$model`.

Examples

```r
## Most simple example: Kriging + LHS + predicted
## mean optimization (not expected improvement)
res <- spot(funSphere, c(-2, -3), c(1, 2), control = list(funEvals = 15))
res$xbest

## With expected improvement
res <- spot(funSphere, c(-2, -3), c(1, 2),
            control = list(funEvals = 15, modelControl = list(target = "ei")))
res$xbest

## With additional start point:
res <- spot(matrix(c(0.05, 0.1), 1, 2), funSphere, c(-2, -3), c(1, 2))
res$xbest

## Use local optimization instead of LHS
res <- spot(funSphere, c(-2, -3), c(1, 2),
            control = list(funEvals = 50))
res$xbest
```
Random Forest instead of Kriging

```r
# res <- spot(funSphere, c(-2,-3), c(1,2),
#   control=list(model=buildRandomForest))
# res$xbest
```

LM instead of Kriging

```r
# res <- spot(funSphere, c(-2,-3), c(1,2),
#   control=list(model=buildLM)) # lm as surrogate
# res$xbest
```

LM and local optimizer (which for this simple example is perfect)

```r
# res <- spot(funSphere, c(-2,-3), c(1,2),
#   control=list(model=buildLM, optimizer=optimLBFGSB))
# res$xbest
```

Or a different Kriging model:

```r
# res <- spot(funSphere, c(-2,-3), c(1,2),
#   control=list(model=buildKrigingDACE, optimizer=optimLBFGSB))
# res$xbest
```

With noise: (this takes some time)

```r
# res1 <- spot(function(x) funSphere(x)+rnorm(nrow(x)), c(-2,-3), c(1,2),
#   control=list(funEvals=100, noise=TRUE)) # noisy objective
# res2 <- spot(function(x) funSphere(x)+rnorm(nrow(x)), c(-2,-3), c(1,2),
#   control=list(funEvals=100, noise=TRUE, replicates=2,
#   designControl=list(reps=2))) # noisy with replicated evaluations
# res3 <- spot(function(x) funSphere(x)+rnorm(nrow(x)), c(-2,-3), c(1,2),
#   control=list(funEvals=100, noise=TRUE, replicates=2, OCBA=T, OCBBudget=1,
#   designControl=list(reps=2))) # and with OCBA
```

Check results with non-noisy function:

```r
# funSphere(res1$xbest)
# funSphere(res2$xbest)
# funSphere(res3$xbest)
```

Next Example: Handling factor variables

Note: factors should be coded as integer values, i.e., 1, 2, ..., n

```r
# create a test function:
braninFunctionFactor <- function(x) {
    10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
  if(x[3]==1)
    y <- y +1
  else if(x[3]==2)
    y <- y -1
  y
}
# vectorize
objFun <- function(x) apply(x, 1, braninFunctionFactor)
set.seed(1)
res <- spot(fun=objFun, lower=c(-5,0,1), upper=c(10,15,3),
            control=list(model=buildKriging),
            OCBA=T, OCBBudget=1)
```
spotAlgEs

Evolution Strategy Implementation

Description

This function is used by optimES as a main loop for running the Evolution Strategy with the given parameter set specified by SPOT.

Usage

spotAlgEs(
 mue = 10,
 nu = 10,
 dimension = 2,
 mutation = 2,
 sigmaInit = 1,
 nSigma = 1,
 tau0 = 0,
 tau = 1,
 rho = "bi",
 sel = -1,
 stratReco = 1,
 objReco = 2,
 maxGen = Inf,
 maxIter = Inf,
 seed = 1,
 noise = 0,
 fName = funSphere,
 lowerLimit = -1,
 upperLimit = 1,
 verbosity = 0,
 plotResult = FALSE,
 logPlotResult = FALSE,
 sigmaRestart = 0.1,
 preScanMult = 1,
 globalOpt = NULL,
 ...
)

Arguments

mue number of parents, default is 10
spotAlgEs

nu

selection pressure. That means, number of offspring (lambda) is mue multiplied with nu. Default is 10

dimension
dimension number of the target function, default is 2

mutation
mutation type, either 1 or 2, default is 1

sigmaInit
initial sigma value (step size), default is 1.0

nSigma
number of different sigmas, default is 1

tau0
number, default is 0.0. tau0 is the general multiplier.

tau
number, learning parameter for self adaption, default is 1.0. tau is the local multiplier for step sizes (for each dimension).

rho
number of parents involved in the procreation of an offspring (mixing number), default is "bi"

sel
number of selected individuals, default is 1

stratReco

objReco

maxGen
number of generations, stopping criterion, default is Inf

maxIter
number of iterations (function evaluations), stopping criterion, default is 100

seed
number, random seed, default is 1

noise
number, value of noise added to fitness values, default is 0.0

fName
function, fitness function, default is funSphere

lowerLimit
number, lower limit for search space, default is -1.0

upperLimit
number, upper limit for search space, default is 1.0

verbosity
defines output verbosity of the ES, default is 0

plotResult
boolean, asks if results are plotted, default is FALSE

logPlotResult
boolean, asks if plot results should be logarithmic, default is FALSE

sigmaRestart
number, value of sigma on restart, default is 0.1

preScanMult
initial population size is multiplied by this number for a pre-scan, default is 1

globalOpt
termination criterion on reaching a desired optimum value, should be a vector of length dimension (LOCATION of the optimum). Default to NULL, which means it is ignored.

... additional parameters to be passed on to fName
spotLoop

Sequential Parameter Optimization Main Loop

Description

SPOT is usually started via the function `spot`. However, SPOT runs can be continued (i.e., with a larger budget specified in `control$funEvals`) by using `spotLoop`. This is the main loop of SPOT iterations. It requires the user to give the same inputs as specified for `spot`.

Usage

```
spotLoop(x, y, fun, lower, upper, control, ...)
```

Arguments

- `x` are the known candidate solutions that the SPOT loop is started with, specified as a matrix. One row for each point, and one column for each optimized parameter.
- `y` are the corresponding observations for each solution in `x`, specified as a matrix. One row for each point.
- `fun` is the objective function. It should receive a matrix `x` and return a matrix `y`. In case the function uses external code and is noisy, an additional seed parameter may be used, see the `control$seedFun` argument below for details.
- `lower` is a vector that defines the lower boundary of search space. This determines also the dimensionality of the problem.
- `upper` is a vector that defines the upper boundary of search space.
- `control` is a list with control settings for `spot`. See `spotControl`.
- `...` additional parameters passed to `fun`.

Value

This function returns a list with:

- `xbest` Parameters of the best found solution (matrix).
- `ybest` Objective function value of the best found solution (matrix).
- `x` Archive of all evaluation parameters (matrix).
- `y` Archive of the respective objective function values (matrix).
- `count` Number of performed objective function evaluations.
- `msg` Message specifying the reason of termination.
- `modelFit` The fit of the last build model, i.e., an object returned by the last call to the function specified by `control$model`.

Examples

```r
## Most simple example: Kriging + LHS + predicted
## mean optimization (not expected improvement)
control <- list(funEvals=20)
res <- spot(funSphere,c(-2,-3),c(1,2),control)
## now continue with larger budget
control$funEvals <- 25
res2 <- spotLoop(res$x,res$y,funSphere,c(-2,-3),c(1,2),control)
res2$xbest
res2$ybest
```

Description

Wrap a given objective function to be evaluated via the batchtools package and make it accessible for SPOT.

Usage

```r
wrapBatchTools(  
  fun,  
  reg = NULL,  
  clusterFunction = batchtools::makeClusterFunctionsInteractive(),  
  resources = NULL  
)
```

Arguments

- `fun`: function to wrap
- `reg`: batchtools registry, if none is provided, then one will be created automatically
- `clusterFunction`: batchtools clusterFunction, default: `makeClusterFunctionsInteractive()`
- `resources`: resource list that is passed to batchtools, default NULL

Value

callable function for SPOT
wrapFunction

Function Evaluation Wrapper

Description

This is a simple wrapper that turns a function of type \(y=f(x) \), where \(x \) is a vector and \(y \) is a scalar, into a function that accepts and returns matrices, as required by \texttt{spot}. Note that the wrapper essentially makes use of the \texttt{apply} function. This is effective, but not necessarily efficient. The wrapper is intended to make the use of \texttt{spot} easier, but it could be faster if the user spends some time on a more efficient vectorization of the target function.

Usage

\texttt{wrapFunction(fun)}

Arguments

- \texttt{fun} the function \(y=f(x) \) to be wrapped, with \(x \) a vector and \(y \) a numeric

Value

a function in the style of \(y=f(x) \), accepting and returning a matrix

Examples

```r
## example function
branin <- function (x) {
    10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
  y
}
## vectorize / wrap
braninWrapped <- wrapFunction(branin)
## test original
branin(c(1,2))
branin(c(2,2))
branin(c(2,1))
## test wrapped
braninWrapped(matrix(c(1,2,2,2,2,1),3,2,byrow=TRUE))
```
wrapFunctionParallel
Parallelized Function Evaluation Wrapper

Description
This is a simple wrapper that turns a function of type \(y = f(x) \), where \(x \) is a vector and \(y \) is a scalar, into a function that accepts and returns matrices, as required by **spot**. While doing so, the wrapper will use the parallel package in order to parallelize the execution of each function evaluation. This function will create a computation cluster if no cluster is specified and there is no default cluster setup!

Usage

```r
wrapFunctionParallel(fun, cl = NULL, nCores = NULL)
```

Arguments

- `fun` the function that shall be evaluated in parallel
- `cl` Optional, an existing computation cluster
- `nCores` Optional, amount of cores to use for creating a new computation cluster. Default is all cores.

Value
numeric vector, result of the parallelized evaluation

wrapSystemCommand
wrapSystemCommand

Description
Optimize parameters for a script that is accessible via Command Line

Usage

```r
wrapSystemCommand(systemCall)
```

Arguments

- `systemCall` String that calls the command line script.

Value
callable function for **SPOT**
Examples

```r
exampleScriptLocation <- system.file("consoleCallTrialScript.R", package = "SPOT")
f <- wrapSystemCommand(paste("Rscript", exampleScriptLocation))
spot(f, c(1,1), c(100,100))
```
Index

*Topic datasets
 dataGasSensor, 15
*Topic package
 SPOT-package, 3

buildCVModel, 4, 35
buildEnsembleStack, 5
buildKriging, 6
buildKrigingDACE, 9
buildLM, 10
buildLOESS, 11
buildRandomForest, 12, 34
buildRanger, 13
buildRSM, 14, 17

corrcubic, 9
correxp, 9
correxpG, 9
corr gauss, 9
corrkriging, 9
corr lin, 9
corr noisy gauss, 9
corr noisy kriging, 9
corr spher ical, 9
corr spline, 9
dataGasSensor, 15
descentSpotRSM, 17
designLHD, 17, 28
designUniformRandom, 19
expectedImprovement, 20

funCyclone, 20
funOptimLecture, 22
funSphere, 22, 41

infillExpectedImprovement, 23

OCBA, 36
optimDE, 24
optimES, 25, 40
optimGenoud, 26
optimLBFGB, 27
optimLHD, 28
optimNLOPTR, 29
plotData, 30, 33, 34
plotFunction, 31, 32, 34
plotModel, 31, 33, 34
predict.cvModel, 35
predict.dace, 10
predict.ensembleStack, 5
predict.kriging, 7–9
predict.spotLOESS, 12
predict.spotRSM, 15
regpoly0, 9
regpoly1, 9
regpoly2, 9
repeatsOCBA, 36
satter, 37
SPOT (SPOT-package), 3
spot, 4, 37, 42, 44, 45
SPOT-package, 3
spotAlgEs, 40
spotControl, 38, 42
spotLoop, 42
wrapBatchTools, 43
wrapFunction, 44
wrapFunctionParallel, 45
wrapSystemCommand, 45