Package ‘SPOT’

October 12, 2022

License GPL (>= 2)

Title Sequential Parameter Optimization Toolbox

Type Package

LazyLoad yes

LazyData true

LazyDataCompression gzip

Encoding UTF-8

Description A set of tools for model-based optimization and tuning of algorithms (hyperparameter tuning respectively hyperparameter optimization). It includes surrogate models, optimizers, and design of experiment approaches. The main interface is spot, which uses sequentially updated surrogate models for the purpose of efficient optimization. The main goal is to ease the burden of objective function evaluations, when a single evaluation requires a significant amount of resources.

Version 2.11.14

Date 2022-06-11

Depends R (>= 3.5.0)

Imports DEoptim, ggplot2, glmnet, graphics, grDevices, laGP, MASS, nloptr, plgp, plotly, rpart, randomForest, ranger, rgenoud, rsm, stats, utils

RoxygenNote 7.2.0

Suggests batchtools, car, farff, knitr, microbenchmark, rmarkdown, OpenML, party, RColorBrewer, readr, testthat

VignetteBuilder knitr

URL https://www.spotseven.de

NeedsCompilation no

Author Thomas Bartz-Beielstein [aut, cre]
 (<https://orcid.org/0000-0002-5938-5158>),
 Martin Zaefferer [aut] (<https://orcid.org/0000-0003-2372-2092>),
 Frederik Rehbach [aut] (<https://orcid.org/0000-0003-0922-8629>),
Margarita Rebolledo [ctb],
Joerg Stork [ctb] (0000-0002-7471-3498),
Christian Lasarczyk [ctb]

Maintainer Thomas Bartz-Beielstein <tbb@bartzundbartz.de>
Repository CRAN
Date/Publication 2022-06-25 20:00:02 UTC

R topics documented:

- SPOT-package ... 5
- buildBO .. 5
- buildCVModel .. 7
- buildEnsembleStack 8
- buildGaussianProcess 9
- buildKriging .. 10
- buildKrigingDACE 13
- buildLasso ... 14
- buildLM .. 15
- buildLOESS ... 16
- buildPCA ... 17
- buildRandomForest 18
- buildRanger .. 19
- buildrsdummy .. 21
- buildRSM ... 21
- buildTreeModel 22
- checkArrival .. 23
- checkFeasibilityNlopGnIngres 24
- code2nat ... 24
- dataGasSensor ... 25
- descentSpotRSM 26
- designLHD .. 27
- designUniformRandom 28
- diff0 ... 29
- doParallel .. 30
- expectedImprovement 30
- funBard ... 31
- funBeale ... 32
- funBox3d ... 32
- funBranin .. 33
- funBrownBs .. 34
- funCosts ... 35
- funCyclone ... 35
- funError ... 37
- funFreudRoth ... 38
- funGauss ... 39
- funGoldsteinPrice 39
- funGulf .. 40
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>funHelical</td>
</tr>
<tr>
<td>funIshigami</td>
</tr>
<tr>
<td>funJennSamp</td>
</tr>
<tr>
<td>funMeyer</td>
</tr>
<tr>
<td>funMoo</td>
</tr>
<tr>
<td>funNoise</td>
</tr>
<tr>
<td>funOptimLecture</td>
</tr>
<tr>
<td>funPowellBs</td>
</tr>
<tr>
<td>funPowellS</td>
</tr>
<tr>
<td>funRosen</td>
</tr>
<tr>
<td>funRosen2</td>
</tr>
<tr>
<td>funShiftedSphere</td>
</tr>
<tr>
<td>funSoblev99</td>
</tr>
<tr>
<td>funSphere</td>
</tr>
<tr>
<td>funSring</td>
</tr>
<tr>
<td>getCosts</td>
</tr>
<tr>
<td>getMultiStartPoints</td>
</tr>
<tr>
<td>getNatDesignFromCoded</td>
</tr>
<tr>
<td>getPerformanceStats</td>
</tr>
<tr>
<td>getPositions</td>
</tr>
<tr>
<td>getPower</td>
</tr>
<tr>
<td>getReplicates</td>
</tr>
<tr>
<td>getSampleSize</td>
</tr>
<tr>
<td>handleNAsKrigingWorst</td>
</tr>
<tr>
<td>handleNAsMax</td>
</tr>
<tr>
<td>handleNAsMean</td>
</tr>
<tr>
<td>imputeY</td>
</tr>
<tr>
<td>infillEI</td>
</tr>
<tr>
<td>infillExpectedImprovement</td>
</tr>
<tr>
<td>init_ring</td>
</tr>
<tr>
<td>makeMoreFunList</td>
</tr>
<tr>
<td>makeSpotFunList</td>
</tr>
<tr>
<td>normalizeMatrix</td>
</tr>
<tr>
<td>normalizeMatrix2</td>
</tr>
<tr>
<td>obj.plgpEI</td>
</tr>
<tr>
<td>objectiveFunctionEvaluation</td>
</tr>
<tr>
<td>ocbuRanking</td>
</tr>
<tr>
<td>optimDE</td>
</tr>
<tr>
<td>optimES</td>
</tr>
<tr>
<td>optimGenoud</td>
</tr>
<tr>
<td>optimLagp</td>
</tr>
<tr>
<td>optimLBFGSB</td>
</tr>
<tr>
<td>optimLHD</td>
</tr>
<tr>
<td>optimNLOPTPR</td>
</tr>
<tr>
<td>optimRSfun</td>
</tr>
<tr>
<td>perceptron</td>
</tr>
<tr>
<td>plgpEI</td>
</tr>
<tr>
<td>plot.spotSeverity</td>
</tr>
</tbody>
</table>
R topics documented:

- `plotBestObj` ... 83
- `plotData` .. 83
- `plotFunction` .. 85
- `plotModel` .. 87
- `plotPCA` .. 88
- `plotPCAvariance` ... 89
- `predict.cvModel` ... 91
- `predict.spotBOModel` 91
- `prepareBestObjectiveVal` 92
- `repeatsOCBA` .. 92
- `resBench01` ... 93
- `resSpot` ... 94
- `resSpot2` .. 94
- `ring` .. 95
- `runOptim` ... 96
- `runSpotBench` ... 97
- `sann2spot` .. 98
- `satter` ... 98
- `simulate.kriging` 99
- `simulateFunction` 100
- `spot` .. 102
- `spotAlgEs` .. 103
- `spotCleanup` .. 105
- `spotControl` .. 106
- `spotLoop` .. 108
- `spotPlotErrors` ... 109
- `spotPlotPower` .. 111
- `spotPlotSeverityBasic` 111
- `spotPlotTest` .. 112
- `spotPower` .. 113
- `spotSeverity` ... 114
- `spotSeverityBasic` 115
- `sring` .. 116
- `sringRes1` .. 116
- `sringRes2` .. 117
- `sringRes3` .. 117
- `thetaNugget` ... 118
- `thetaNuggetGradient` 118
- `transformX` .. 119
- `vmessage` ... 119
- `wrapBatchTools` ... 120
- `wrapFunction` .. 121
- `wrapFunctionParallel` 122
- `wrapSystemCommand` 122

Index 124
SPOT-package

Sequential Parameter Optimization Toolbox

Description

Sequential Parameter Optimization Toolbox

Details

SPOT uses a combination statistic models and optimization algorithms for the purpose of parameter optimization. Design of Experiment methods are employed to generate an initial set of candidate solutions, which are evaluated with a user-provided objective function. The resulting data is used to fit a model, which in turn is subject to an optimization algorithm, to find the most promising candidate solution(s). These are again evaluated, after which the model is updated with the new results. This sequential procedure of modeling, optimization, and evaluation is iterated until the evaluation budget is exhausted.

Maintainer

Thomas Bartz-Beielstein <tbb@bartzundbartz.de>

Author(s)

Thomas Bartz-Beielstein <tbb@bartzundbartz.de>, Martin Zaefferer, and F. Rehbach with contributions from: C. Lasarczyk, M. Rebolledo, Joerg Stork.

See Also

Main interface function is spot.

buildBO

Bayesian Optimization Model Interface

Description

Bayesian Optimization Model Interface

Usage

buildBO(x, y, control = list())
Arguments

- **x**: matrix of input parameters. Rows for each point, columns for each parameter.
- **y**: one column matrix of observations to be modeled.
- **control**: list of control parameters:
 - `thetaLower`: lower boundary for theta, default is $1e^{-4}$
 - `thetaUpper`: upper boundary for theta, default is $1e^2$
 - `algTheta`: algorithm used to find theta, default is `L-BFGS-B`
 - `budgetAlgTheta`: budget for the above mentioned algorithm, default is 200. The value will be multiplied with the length of the model parameter vector to be optimized.
 - `optimizeP`: boolean that specifies whether the exponents (p) should be optimized. Else they will be set to two. Default is `FALSE`.
 - `useLambda`: whether or not to use the regularization constant lambda (nugget effect). Default is `TRUE`.
 - `lambdaLower`: lower boundary for log10lambda, default is -6
 - `lambdaUpper`: upper boundary for log10lambda, default is 0
 - `startTheta`: optional start value for theta optimization, default is `NULL`.
 - `reinterpolate`: whether (`TRUE`, default) or not (`FALSE`) reinterpolation should be performed.
- **target**: target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation, "ei" for expected improvement. See also `predict.kriging`.

Value

An object of class "spotBOModel", with a predict method and a print method. Basically a list, with the options and found parameters for the model which has to be passed to the predictor function:

- `x`: sample locations
- `y`: observations at sample locations (see parameters)
- `min`: min y val
- `thetaLower`: lower boundary for theta (see parameters)
- `thetaUpper`: upper boundary for theta (see parameters)
- `algTheta`: algorithm to find theta (see parameters)
- `budgetAlgTheta`: budget for the above mentioned algorithm (see parameters)
- `lambdaLower`: lower boundary for log10lambda, default is -6
- `lambdaUpper`: upper boundary for log10lambda, default is 0
- `dmodeltheta`: vector of activity parameters
- `dmodellambda`: regularization constant (nugget)
- `mu`: mean mu
- `ssq`: sigma square
- `Psi`: matrix large Psi
- `Psinv`: inverse of Psi
- `nevals`: number of Likelihood evaluations during MLE
References

See Also

predict.spotBOModel

Examples

Reproduction of Gramacy's classic EI illustration with data from Jones et al.
Generates Fig. 7.6 from the Gramacy book "Surrogates".
x <- c(1, 2, 3, 4, 12)
y <- c(0, -1.75, -2, -0.5, 5)
Build BO Model
m1 <- buildBO(x = matrix(x, ncol = 1),
y = matrix(y, ncol=1),
control = list(target="ei"))
xx <- seq(0, 13, length = 1000)
yy <- predict(object = m1, newdata = xx)
m <- which.min(y)
fmin <- y[m]
mue <- matrix(yy$y, ncol = 1)
s2 <- matrix(yy$s, ncol = 1)
ei <- matrix(yy$ei, ncol = 1)
Plotting the Results (similar to Fig. 7.6 in Gramacy's Surrogate book)
par(mfrow = c(1, 2))
plot(x, y, pch = 19, xlim = c(0, 13), ylim = c(-4, 9), main = "predictive surface")
lines(xx, mue)
lines(xx, mue + 2*sqrt(s2), col = 2, lty = 2)
lines(xx, mue - 2*sqrt(s2), col = 2, lty = 2)
abline(h = fmin, col = 3, lty = 3)
legend("topleft", c("mean", "95% PI", "fmin"), lty = 1:3, col = 1:3, bty = "n")
plot(xx, ei, type = "l", col = "blue", main = "EI", xlab = "x", ylim = c(0, max(ei)))

Build a set of models trained on different folds of cross-validated data. Can be used to estimate the uncertainty of a given model type at any point.
buildEnsembleStack

Usage

buildEnsembleStack(x, y, control = list())

Arguments

x design matrix (sample locations)

y vector of observations at x

control (list), with the options for the model building procedure:

types a character vector giving the data type of each variable. All but "factor" will be handled as numeric, "factor" (categorical) variables will be subject to the hamming distance.

target target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation. This can also be changed after the model has been built, by manipulating the respective object$target value.

uncertaintyEstimator a character vector specifying which uncertaintyEstimator should be used. "s" or the linearlyAdapted uncertainty "sLinear". Default is "sLinear".

modellingFunction the model that shall be fitted to each data fold

Value

set of models (class cvModel)

buildEnsembleStack Ensemble: Stacking

Description

Generates an ensemble of surrogate models with stacking (stacked generalization).

Usage

buildEnsembleStack(x, y, control = list())

Arguments

x design matrix (sample locations), rows for each sample, columns for each variable.

y vector of observations at x

control (list), with the options for the model building procedure:

modelL1 Function for fitting the L1 model (default: buildLM) which combines the results of the L0 models.

modelL1Control List of control parameters for the L1 model (default: list()).

modelL0 A list of functions for fitting the L0 models (default: list(buildLM, buildRandomForest, buildKriging)).

modelL0Control List of control lists for each L0 model (default: list(list(), list(), list())).
Value
returns an object of class ensembleStack.

Note
Loosely based on the code by Emanuele Olivetti https://github.com/emanuele/kaggle_pbr/blob/master/blend.py

References

See Also
predict.ensembleStack

Examples
```r
## Create design points
x <- cbind(runif(20)*15-5, runif(20)*15)
## Compute observations at design points
y <- funBranin(x)
## Create model with default settings
fit <- buildEnsembleStack(x, y)
## Predict new point
predict(fit, cbind(1, 2))
## True value at location
funBranin(matrix(c(1, 2), 1))
```

buildGaussianProcess Gaussian Process Model Interface

Description
Gaussian Process Model Interface

Usage
```
buildGaussianProcess(x, y, control = list())
```

Arguments
- `x` matrix of input parameters. Rows for each point, columns for each parameter.
- `y` one column matrix of observations to be modeled.
- `control` list of control parameters. `n` subset size.
Value

an object of class "spotGaussianProcessModel", with a predict method and a print method.

Examples

```r
N <- 200
x <- matrix( seq(from=-1, to = 1, length.out = N), ncol = 1)
y <- funSphere(x) + rnorm(N, 0, 0.1)
fit <- buildGaussianProcess(x,y)
## Print model parameters
print(fit)
## Predict at new location
xNew <- matrix( c(-0.1, 0.1), ncol = 1)
predict(fit, xNew)
## True value at location
t(funSphere(xNew))
```

buildKriging
Build Kriging Model

Description

This function builds a Kriging model based on code by Forrester et al.. By default exponents (p) are fixed at a value of two, and a nugget (or regularization constant) is used. To correct the uncertainty estimates in case of nugget, re-interpolation is also by default turned on.

Usage

```r
buildKriging(x, y, control = list())
```

Arguments

- **x**: design matrix (sample locations)
- **y**: vector of observations at x
- **control** (list), with the options for the model building procedure. Note: This can also be changed after the model has been built, by manipulating the respective object$target value.
 - **types**: a character vector giving the data type of each variable. All but "factor" will be handled as numeric, "factor" (categorical) variables will be subject to the hamming distance.
 - **thetaLower**: lower boundary for theta, default is 1e-4
 - **thetaUpper**: upper boundary for theta, default is 1e2
 - **algTheta**: algorithm used to find theta, default is optimDE.
 - **budgetAlgTheta**: budget for the above mentioned algorithm, default is 200.
 The value will be multiplied with the length of the model parameter vector to be optimized.
optimizeP boolean that specifies whether the exponents (p) should be optimized. Else they will be set to two. Default is FALSE.

useLambda whether or not to use the regularization constant lambda (nugget effect). Default is TRUE.

lambdaLower lower boundary for log10lambda, default is -6

lambdaUpper upper boundary for log10lambda, default is 0

startTheta optional start value for theta optimization, default is NULL

reinterpolate whether (TRUE, default) or not (FALSE) reinterpolation should be performed.

target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation, "ei" for expected improvement. See also predict.kriging.

Details

The model uses a Gaussian kernel: \(k(x,z) = \exp(-\sum(\theta_i \times |x_i - z_i|^p_i)) \). By default, \(p_i = 2 \). Note that if dimension \(x_i \) is a factor variable (see parameter types), Hamming distance will be used instead of \(|x_i - z_i| \).

Value

an object of class kriging. Basically a list, with the options and found parameters for the model which has to be passed to the predictor function:

x sample locations (scaled to values between 0 and 1)
y observations at sample locations (see parameters)
thetaLower lower boundary for theta (see parameters)
thetaUpper upper boundary for theta (see parameters)
algTheta algorithm to find theta (see parameters)
budgetAlgTheta budget for the above mentioned algorithm (see parameters)
optimizeP boolean that specifies whether the exponents (p) were optimized (see parameters)
normalizeymin minimum in normalized space

normalizeymax maximum in normalized space

normalizexmin minimum in input space

normalizexmax maximum in input space

dmodeltheta vector of activity parameters

Theta log_10 vector of activity parameters (i.e. log10(dmodeltheta))

dmodellambda regularization constant (nugget)

Lambda log_10 of regularization constant (nugget) (i.e. log10(dmodellambda))

y one Ay - ones*mu

ssq sigma square

mu mean mu

Psi matrix large Psi

Psinv inverse of Psi

nevals number of Likelihood evaluations during MLE

References

See Also

predict.kriging

Examples

Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
y <- funBranin(x)
Create model with default settings
fit <- buildKriging(x,y,control = list(algTheta=optimLHD))
Print model parameters
print(fit)
Predict at new location
predict(fit,cbind(1,2))
True value at location
funBranin(matrix(c(1,2), 1))
##
Next Example: Handling factor variables

create a test function:
braninFunctionFactor <- function (x) {
10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
if(x[3]==1)
y <- y +1
else if(x[3]==2)
y <- y -1
y
}
create training data
set.seed(1)
x <- cbind(runif(50)*15-5,runif(50)*15,sample(1:3,50,replace=TRUE))
y <- as.matrix(apply(x,1,braninFunctionFactor))
fit the model (default: assume all variables are numeric)
fitDefault <- buildKriging(x,y,control = list(algTheta=optimDE))
fit the model (give information about the factor variable)
fitFactor <- buildKriging(x,y,control = list(algTheta=optimDE,types=c("numeric","numeric","factor")))
create test data
xtest <- cbind(runif(200)*15-5,runif(200)*15,sample(1:3,200,replace=TRUE))
ytest <- as.matrix(apply(xtest,1,braninFunctionFactor))
Predict test data with both models, and compute error
ypredDef <- predict(fitDefault,xtest)$y
ypredFact <- predict(fitFactor,xtest)$y
mean((ypredDef-ytest)^2)
mean((ypredFact-ytest)^2)
buildKrigingDACE
Build DACE model

Description

This Kriging meta model is based on DACE (Design and Analysis of Computer Experiments). It allows to choose different regression and correlation models. The optimization of model parameters is by default done with a bounded simplex method from the nloptr package.

Usage

```r
buildKrigingDACE(x, y, control = list())
```

Arguments

- **x**: design matrix (sample locations), rows for each sample, columns for each variable.
- **y**: vector of observations at x
- **control** (list), with the options for the model building procedure:
 - `startTheta` optional start value for theta optimization, default is NULL
 - `algTheta` algorithm used to find theta, default is optimDE
 - `budgetAlgTheta` budget for the above mentioned algorithm, default is 200. The value will be multiplied with the length of the model parameter vector to be optimized.
 - `nugget` Value for nugget. Default is -1, which means the nugget will be optimized during MLE. Else it can be fixed in a range between 0 and 1.
 - `regr` Regression function to be used: `regpoly0` (default), `regpoly1`, `regpoly2`. Can be a custom user function.
 - `corr` Correlation function to be used: `corrnoisykriging` (default), `corrkriging`, `corrnoisygauss`, `corrgauss`, `correxps`, `correxpg`, `corrlin`, `corrcubic`, `cortspherical`, `cort spline`. Can also be user supplied (if in the right form). target target values of the prediction, a vector of strings. Each string specifies a value to be predicted, e.g., "y" for mean, "s" for standard deviation, "ei" for expected improvement. See also `predict.kriging`. This can also be changed after the model has been build, by manipulating the respective object$target value.

Value

returns an object of class dace with the following elements:

- **model**: A list, containing model parameters
- **like**: Estimated likelihood value
- **theta**: activity parameters theta (vector)
- **p**: exponents p (vector)
- **lambda**: nugget value (numeric)
- **nevals**: Number of iterations during MLE
buildLasso

Lasso Model Interface

Description

The purpose of this function is to provide an interface as required by `spot`, to enable modeling and model-based optimization with Lasso models.

Usage

```r
buildLasso(x, y, control = list())
```
Arguments

- **x**: matrix of input parameters. Rows for each point, columns for each parameter.
- **y**: one column matrix of observations to be modeled.
- **control**: list of control parameters, currently only with parameter formula. The useStep boolean specifies whether the step function is used. The formula is passed to the lm function. Without a formula, a second order model will be built.

Value

an object of class "spotLassoModel", with a predict method and a print method.

Examples

```r
## Test-function:
braininFunction <- function(x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}
## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braininFunction))
## Create model
fit <- buildLasso(x,y,control = list(algTheta=optimLHD))
## Print model parameters
print(fit)
## Predict at new location
predict(fit,cbind(1,2))
## True value at location
braininFunction(c(1,2))
```

Description

This is a simple wrapper for the lm function, which fits linear models. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with linear models. The linear model is build with main effects. Optionally, the model is also subject to the AIC-based stepwise algorithm, using the step function from the stats package.

Usage

```r
buildLM(x, y, control = list())
```
Arguments

- **x**
 - matrix of input parameters. Rows for each point, columns for each parameter.
 - one column matrix of observations to be modeled.

- **control**
 - list of control parameters, currently only with parameters useStep and formula. The useStep boolean specifies whether the step function is used. The formula is passed to the lm function. Without a formula, a second order model will be built.

Value

- an object of class "spotLinearModel", with a predict method and a print method.

Examples

```r
## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points (for Branin function)
y <- funBranin(x)
## Create model
fit <- buildLM(x,y)
## Print model parameters
print(fit)
## Predict at new location
predict(fit,cbind(1,2))
## True value at location
funBranin(cbind(1,2))
```

Description

Build an interpolation model using the `loess` function. Essentially a SPOT-style interface to that function.

Usage

```r
buildLOESS(x, y, control = list())
```

Arguments

- **x**
 - design matrix (sample locations), rows for each sample, columns for each variable.
- **y**
 - vector of observations at x
- **control**
 - named list, with the options for the model building procedure loess. These will be passed to loess as arguments. Please refrain from setting the formula or data arguments as these will be supplied by the interface, based on x and y.
Value

returns an object of class \texttt{spotLOESS}.

See Also

\texttt{predict.spotLOESS}

Examples

```r
## Create a test function: branin
braninFunction <- function (x) {
10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}
## Create design points
set.seed(1)
x <- cbind(runif(40)*15-5,runif(40)*15)
## Compute observations at design points
y <- as.matrix(apply(x,1,braninFunction))
## Create model with default settings
fit <- buildLOESS(x,y)
fit
## Predict new point
predict(fit,cbind(1,2))
## True value at location
braninFunction(c(1,2))
## Change model control
fit <- buildLOESS(x,y,control=list(parametric=c(TRUE,FALSE)))
fit
```

Description

\texttt{buildPCA} builds principal components of given dataset. It is used inside \texttt{plotPCA} function to build necessary object to perform principal components analysis.

Usage

\texttt{buildPCA(x, control = list())}

Arguments

\begin{itemize}
\item \texttt{x} dataset of parameters to be transformed
\item \texttt{control} control list
\end{itemize}
Value

returns a list with the following elements:
sdev the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix).
rotation the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
x transformed matrix.
center, scale the centering and scaling used, or FALSE.

Author(s)

Alpar Gür <alpar.guer@smail.th-koeln.de>

Examples

#define objective function

spotConfig <-
list(types = c('numeric', 'numeric', 'numeric', 'numeric'),
funEvals = 15, #budget
noise = TRUE,
seedFun = 1,
replicated = 2,
seedSPOT = 1,
design = designLHD,
model = buildRandomForest, #surrogate model
optimizer = optimLHD, #LHD to optimize model
optimizerControl = list(funEvals=100)) #100 model evals in each step

lower <- c(-20, -20, -20, -20) #100 model evals in each step
upper <- c(20, 20, 20, 20)

res <- spot(x=NULL,
 fun=objFun,
 lower=lower,
 upper=upper,
 control=spotConfig)

resPCA <- buildPCA(res$x)
Description

This is a simple wrapper for the randomForest function from the randomForest package. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with random forest.

Usage

buildRandomForest(x, y, control = list())

Arguments

- x: matrix of input parameters. Rows for each point, columns for each parameter.
- y: one column matrix of observations to be modeled.
- control: list of control parameters, currently not used.

Value

an object of class "spotRandomForest", with a predict method and a print method.

Examples

```r
## Test-function:
braninFunction <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10
}
## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5,runif(20)*15)
## Compute observations at design points (for Branin function)
y <- as.matrix(apply(x,1,braninFunction))
## Create model
fit <- buildRandomForest(x,y)
## Print model parameters
print(fit)
## Predict at new location
predict(fit,cbind(1,2))
## True value at location
braninFunction(c(1,2))
```
Description

This is a simple wrapper for the ranger function from the ranger package. The purpose of this function is to provide an interface as required by SPOT, to enable modeling and model-based optimization with ranger.

Usage

buildRanger(x, y, control = list())

Arguments

x matrix of input parameters. Rows for each point, columns for each parameter.

y one column matrix of observations to be modeled.

control list of control parameters. These are all configuration parameters of the ranger function, and will be passed on to it.

Value

an object of class spotRanger, with a predict method and a print method. #'

Examples

Create a simple training data set
testfun <- function (x) x[1]^2
x <- cbind(sort(runif(30)*2-1))
y <- as.matrix(apply(x,1,testfun))
test data:
xr <- cbind(sort(runif(3000)*2-1))
Example with default model (standard randomforest)
fit <- buildRanger(x,y)
yt <- predict(fit,data.frame(x=xr))
plot(xr,yt$y,type="l")
points(x,y,col="red",pch=20)
Example with extra trees, an interpolating model
fit <- buildRanger(x,y,
 control=list(rangerArguments =
 list(replace = FALSE,
 sample.fraction=1,
 min.node.size = 1,
 splitrule = "extratrees")))
yt <- predict(fit,data.frame(x=xr))
plot(xr,yt$y,type="l")
points(x,y,col="red",pch=20)
buildrsdummy

Build random search dummy model

Description

This function is used to emulate uniform random search with SPOT. It is a placeholder for the surrogate model and simply returns an empty list, with class "rsdummy".

Usage

`buildrsdummy(x, y, control)`

Arguments

- `x`: x (independent variables), not used.
- `y`: y (dependent variable), not used.
- `control`: control, not used.

buildRSM

Build Response Surface Model

Description

Using the `rsm` package, this function builds a linear response surface model.

Usage

`buildRSM(x, y, control = list())`

Arguments

- `x`: design matrix (sample locations), rows for each sample, columns for each variable.
- `y`: vector of observations at x
- `control`: (list), with the options for the model building procedure:
 - `mainEffectsOnly`: Logical, defaults to FALSE. Set to TRUE if a model with main effects only is desired (no interactions, second order effects).
 - `canonical`: Logical, defaults to FALSE. If this is TRUE, use the canonical path to descent from saddle points. Else, simply use steepest descent

Value

returns an object of class `spotRSM`.
Regression Interface This is a simple wrapper for the \texttt{rpart} function from the \texttt{rpart} package. The purpose of this function is to provide an interface as required by \texttt{SPOT}, to enable modeling and model-based optimization with regression trees.

Usage

\begin{verbatim}
buildTreeModel(x, y, control = list())
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{x} \quad matrix of input parameters. Rows for each point, columns for each parameter.
 \item \texttt{y} \quad one column matrix of observations to be modeled.
 \item \texttt{control} \quad list of control parameters, currently not used.
\end{itemize}

Value

an object of class \texttt{spotTreeModel}, with a \texttt{predict} method and a \texttt{print} method.
Examples

```r
## Create design points
set.seed(1)
x <- cbind(runif(20)*15-5, runif(20)*15)
## Compute observations at design points (for Branin function)
y <- funBranin(x)
## Create model
fit <- buildTreeModel(x, y)
## Print model parameters
print(fit)
## Predict at new location
predict(fit, cbind(1, 2))
## True value at location
funBranin(matrix(c(1, 2), 1, ))
##
set.seed(123)
x <- seq(-1, 1, 1e-2)
y0 <- c(-10, 10)
sfun0 <- stepfun(0, y0, f = 0)
y <- sfun0(x)
fit <- buildTreeModel(x, y)
# plot(fit)
# plot(x, y, type = "l")
yhat <- predict(fit, newdata = 1)
yhat$y == 10
```

checkArrival

Description

Calculate arrival events for S-Ring.

Usage

`checkArrival(probNewCustomer)`

Arguments

- `probNewCustomer`:
 probability of an arrival of a new customer

Value

logical

Examples

```r
checkArrival(0.5)
```
checkFeasibilityNlopGnIngres

Check feasibility for NLOPT_GN_ISRES

Description
Returns TRUE if x does satisfy ineq constraint OR no constraint function is used

Usage
checkFeasibilityNlopGnIngres(x, control)

Arguments
- x (1 x n)-matrix to be tested
- control Control list for spot and spotLoop. Generated with spotControl.

Value
logical (TRUE if feasible)

code2nat
Transform coded values to natural values

Description
Input values from the interval from zero to one, i.e., normalized values, are mapped to the interval from a to b.

Usage
code2nat(x, a, b)

Arguments
- x matrix of m n-dimensional input values from the interval [0;1], i.e., dim(x) = m x n
- a vector of n-dimensional lower bound, i.e., length(a) = n
- b vector of n-dimensional upper bound, i.e., length(b) = n

Examples
x <- matrix(runif(10),2)
a <- c(-1,1,2,3,4)
b <- c(1,2,3,4,5)
R <- code2nat(x,a,b)
Description

A data set of a Gas Sensor, similar to the one used by Rebolledo et al. 2016. It also contains information of 10 different test/training splits, to enable comparable evaluation procedures.

Usage

dataGasSensor

Format

A data frame with 280 rows and 20 columns (1 output, 7 input, 2 disturbance, 10 training/test split):

<table>
<thead>
<tr>
<th>Y</th>
<th>Measured Sensor Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Sensor Input 1</td>
</tr>
<tr>
<td>X2</td>
<td>Sensor Input 2</td>
</tr>
<tr>
<td>X3</td>
<td>Sensor Input 3</td>
</tr>
<tr>
<td>X4</td>
<td>Sensor Input 4</td>
</tr>
<tr>
<td>X5</td>
<td>Sensor Input 5</td>
</tr>
<tr>
<td>X6</td>
<td>Sensor Input 6</td>
</tr>
<tr>
<td>X7</td>
<td>Sensor Input 7</td>
</tr>
<tr>
<td>Batch</td>
<td>Disturbance variable, measurement batch</td>
</tr>
<tr>
<td>Sensor</td>
<td>Disturbance variable, sensor ID</td>
</tr>
<tr>
<td>Set1</td>
<td>test/training split, 1 is training data, 2 is test data</td>
</tr>
<tr>
<td>Set2</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set3</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set4</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set5</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set6</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set7</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set8</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set9</td>
<td>test/training split</td>
</tr>
<tr>
<td>Set10</td>
<td>test/training split</td>
</tr>
</tbody>
</table>

Details

Two different modeling tasks are of interest for this data set: $Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + \text{Batch} + \text{Sensor}$ and $X1 \sim Y + X7 + \text{Batch} + \text{Sensor}$.
References

Margarita A. Rebolledo C., Sebastian Krey, Thomas Bartz-Beielstein, Oliver Flasch, Andreas Fischbach and Joerg Stork.
2016.
Modeling and Optimization of a Robust Gas Sensor.
7th International Conference on Bioinspired Optimization Methods and their Applications (BIOMA 2016).

\[
\text{descentSpotRSM} \quad \text{Descent RSM model}
\]

Description

Generate steps along the path of steepest descent for a RSM model. This is only intended as a manual tool to use together with \textit{buildRSM}.

Usage

\[
\text{descentSpotRSM}(\text{object})
\]

Arguments

\[
\begin{align*}
\text{object} & \quad \text{RSM model (settings and parameters) of class spotRSM.}
\end{align*}
\]

Value

list with

\[
\begin{align*}
\text{x} & \quad \text{list of points along the path of steepest descent} \\
\text{y} & \quad \text{corresponding predicted values}
\end{align*}
\]

See Also

\[
\text{buildRSM}
\]
designLHD

Latin Hypercube Design Generator

Description

Creates a latin Hypercube Design (LHD) with user-specified dimension and number of design points. LHDs are created repeatedly created at random. For each each LHD, the minimal pair-wise distance between design points is computed. The design with the maximum of that minimal value is chosen.

Usage

```r
designLHD(x = NULL, lower, upper, control = list())
```

Arguments

- **x** optional matrix x, rows for points, columns for dimensions. This can contain one or more points which are part of the design, but specified by the user. These points are added to the design, and are taken into account when calculating the pair-wise distances. They do not count for the design size. E.g., if x has two rows, control$replicates is one and control$size is ten, the returned design will have 12 points (12 rows). The first two rows will be identical to x. Only the remaining ten rows are guaranteed to be a valid LHD.

- **lower** vector with lower boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)

- **upper** vector with upper boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with lower = 1 and upper = number of levels)

- **control** list of controls:

 - **size** number of design points
 - **retries** number of retries during design creation
 - **types** this specifies the data type for each design parameter, as a vector of either "numeric", "integer", "factor". (here, this only affects rounding)
 - **inequalityConstraint** inequality constraint function, smaller zero for infeasible points. Used to replace infeasible points with random points.
 - **replicates** integer for replications of each design point. E.g., if replications is two, every design point will occur twice in the resulting matrix.

Value

- **matrix** design

 - design has length(lower) columns and (size + nrow(x))xcontrol$replicates rows. All values should be within lower <= design <= upper
Author(s)

Original code by Christian Lasarczyk, adaptations by Martin Zaefferer

Examples

```r
set.seed(1) # set RNG seed to make examples reproducible
design <- designLHD(1,2) # simple, 1-D case
design
design <- designLHD(1,2,control=list(replicates=3)) # with replications
design
design <- designLHD(c(-1,-2,1,0),c(1,4,9,1),
  control=list(size=5, retries=100, types=c("numeric","integer","factor","factor")))
design
x <- designLHD(c(1,-10),c(2,10),control=list(size=5,retries=100))
x2 <- designLHD(x,c(1,-10),c(2,10),control=list(size=5,retries=100))
plot(x2)
points(x, pch=19)
```

designUniformRandom

Uniform Design Generator

Description

Create a simple experimental design based on uniform random sampling.

Usage

```r
designUniformRandom(x = NULL, lower, upper, control = list())
```

Arguments

- `x` optional data.frame `x` to be part of the design
- `lower` vector with lower boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with `lower = 1` and `upper = number of levels`)
- `upper` vector with upper boundary of the design variables (in case of categorical parameters, please map the respective factor to a set of contiguous integers, e.g., with `lower = 1` and `upper = number of levels`)
- `control` list of controls:
 - `size` number of design points
 - `types` this specifies the data type for each design parameter, as a vector of either "numeric","integer","factor". (here, this only affects rounding)
 - `replicates` integer for replications of each design point. E.g., if replications is two, every design point will occur twice in the resulting matrix.
Value

matrix design
- design has length(lower) columns and (size + nrow(x))*control$replicates rows. All
values should be within lower <= design <= upper

Examples

set.seed(1) #set RNG seed to make examples reproducible
design <- designUniformRandom(,1,2) #simple, 1-D case
design
design <- designUniformRandom(,1,2,control=list(replicates=3)) #with replications
design
design <- designUniformRandom(,c(-1,-2,1,0),c(1,4,9,1),
control=list(size=5, types=c("numeric","integer","factor","factor")))
design
x <- designUniformRandom(,c(-1,-10),c(2,10),control=list(size=5))
x2 <- designUniformRandom(x,c(1,-10),c(2,10),control=list(size=5))
plot(x2)
points(x, pch=19)

diff0

diff0

Description
Calculate differences

Usage
diff0(x)

Arguments
x input vector

Details
Input vector length = output vector length

Value
vector of differences

Examples
x <- 1:10
diff0(x)
doParallel

Parallel execution of code, dependent on the operating system

Description

mclapply is only supported on linux and macOS. On Windows parlapply should be used. This function switches between both dependent on the operating system of the user.

Usage

```r
doParallel(X, FUN, nCores = 2, ...)
```

Arguments

- **X**: vector with arguments to parallelize over
- **FUN**: function that shall be applied to each element of X
- **nCores**: integer. Defines the number of cores.
- **...**: optional arguments to FUN

expectedImprovement

Expected Improvement

Description

Compute the negative logarithm of the Expected Improvement of a set of candidate solutions. Based on mean and standard deviation of a candidate solution, this estimates the expectation of improvement. Improvement considers the amount by which the best known value (best observed value) is exceeded by the candidates.

Usage

```r
expectedImprovement(mean, sd, min)
```

Arguments

- **mean**: vector of predicted means of the candidate solutions.
- **sd**: vector of estimated uncertainties / standard deviations of the candidate solutions.
- **min**: minimal observed value.

Value

a vector with the negative logarithm of the expected improvement values, -log10(EI).
funBard

Examples

```r
mean <- 1:10 #mean of the candidates
sd <- 10:1 #st. deviation of the candidates
min <- 5 #best known value
EI <- expectedImprovement(mean, sd, min)
EI
```

funBard

funBard (No. 14, More No. 8)

Description

3-dim Bard Test Function

x0 = (1,1,1) f = 8.21487...1e-3 f = 17.4286... at (0.8406..., -infty, -infty)

Usage

funBard(x)

Arguments

x matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(1,1),1,)
funBard(x1)
```
funBeale (No. 11, More No. 5)

Description

2-dim Beale Test Function

Usage
funBeale(x)

Arguments

x matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

x1 <- matrix(c(1,1),1,)
funBeale(x1)

res <- spot(,funBeale,c(1,-1),c(5,2),control=list(funEvals=15))
plotModel(res$model)

funBox3d (No. 18, More No. 12)

Description

Box three-dimensional Test Function

Usage
funBox3d(x)
funBranin

Arguments

- **x**

 matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References


```r
data <- matrix(c(-pi, 12.275),1,)
funBranin(data)
```

funBranin (No. 1)

Description

Branin Test Function

Usage

```r
funBranin(x)
```

Arguments

- **x**

 matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

Examples

```r
x1 <- matrix(c(-pi, 12.275),1,)
funBranin(x1)
```
funBrownBs

funBrownBs (No. 10, More No. 4)

Description

2-dim Brown badly scaled Test Function

Usage

funBrownBs(x)

Arguments

x matrix of points to evaluate with the function. Rows for points and columns for dimension.

Details

n=2, m=3 x0 = (1,1) f=0 at (1e6, 2e-6)

Value

1-column matrix with resulting function values

References

Examples

x1 <- matrix(c(1,1),1,)
funBrownBs(x1)

res <- spot(fun=funBrownBs,c(-10,-10),c(10,10),control=list(funEvals=20))
plotModel(res$model, points = rbind(c(res$xbest[1], res$xbest[2]),c(1.098e-5,9.106))))
funCosts

Description

optimWrapper for getCosts

Usage

funCosts(x)

Arguments

x vector: weight multiplier sigma and number of elevators ne

Details

Evaluate synthetic cost function that is based on the number of waiting customers and the number elevators

Value

fitness (costs) as matrix

Examples

sigma = 1
ne = 10
x <- matrix(c(sigma, ne), 1,)
funCosts(x)

funCyclone

Objective function - Cyclone Simulation: Barth/Muschelknautz

Description

Calculate cyclone collection efficiency. A simple, physics-based optimization problem (potentially bi-objective). See the references [1,2].
funCyclone

funCyclone(
 x,
 deterministic = c(TRUE, TRUE, TRUE),
 cyclone = list(Da = 1.26, H = 2.5, Dt = 0.42, Ht = 0.65, He = 0.6, Be = 0.2),
 fluid = list(Mu = 1.85e-05, Ve = (50/36)/0.12, lambdag = 1/200, Rhop = 2000, Rhof = 1.2, Croh = 0.05),
 noiseLevel = list(Vp = 0.1, Rhop = 0.05),
 model = "Barth-Muschelknautz",
 intervals = c(0, 2, 4, 6, 8, 10, 15, 20, 30) * 1e-06,
 delta = c(0, 0.02, 0.03, 0.05, 0.1, 0.3, 0.3, 0.2)
)

Arguments

x vector of length at least one and up to six, specifying non-default geometrical parameters in [m]: Da, H, Dt, Ht, He, Be
deterministic binary vector. First element specifies whether volume flow is deterministic or not. Second element specifies whether particle density is deterministic or not. Third element specifies whether particle diameters are deterministic or not. Default: All are deterministic (TRUE).
cyclone list of a default cyclone's geometrical parameters: fluid$Da, fluid$H, fluid$Dt, fluid$Ht, fluid$He and fluid$Be
fluid list of default fluid parameters: fluid$Mu, fluid$Vp, fluid$Rhop, fluid$Rhof and fluid$Croh
noiseLevel list of noise levels for volume flow (noiseLevel$Vp) and particle density (noiseLevel$Rhop), only used if non-deterministic.
model type of the model (collection efficiency only): either "Barth-Muschelknautz" or "Mothes"
intervals vector specifying the particle size interval bounds.
delta vector of densities in each interval (specified by intervals). Should have one element less than the intervals parameter.

Value

returns a function that calculates the fractional efficiency for the specified diameter, see example.

References

funError

Examples

```r
## Call directly
funCyclone(c(1.26,2.5))
## create vectorized target function, vectorized, first objective only
## Also: negated, since SPOT always does minimization.
tfunvecF1 <- function(x) {-apply(x,1,funCyclone)[1,]}
tfunvecF1(matrix(c(1.26,2.5,1,2),2,2,byrow=TRUE))
## optimize with spot
res <- spot(fun=tfunvecF1,lower=c(1,2),upper=c(2,3),
            control=list(modelControl=list(target="ei"),
                          model=buildKriging,optimizer=optimLBFGSB,plots=TRUE))
## best found solution ...
res$xbest
## ... and its objective function value
res$ybest
```

funError funError

Description

Simulate NAs, Infs, NaNs in results from objective function evaluations

Usage

```r
funError(x, prob = 0.1, errorList = list(NA, Inf, NaN), outDim = 1)
```

Arguments

- `x` : input vector or matrix of candidate solution
- `prob` : error probability (0<prob<1). Default: 0.1
- `errorList` : list with error types. Default: list(NA, Inf, NaN)
- `outDim` : dimension of the output matrix (number of columns)

Details

Results from `funSphere` are replaced with NA, NaN, and Inf values.

Value

vector of objective function values

See Also

`is.finite`
Examples

```r
set.seed(123)
require(SPOT)
x <- matrix(1:10, 5,2)
y <- funError(x)
any(is.na(y))
## two-dim output
funError(x,outDim=2)
funError(x,outDim=2, prob=0.1)
```

Description

2-dim Freudenstein and Roth Test Function

Usage

```r
funFreudRoth(x)
```

Arguments

- `x`: matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(1,1),1,)
funFreudRoth(x1)

# Running SPOT with 20 function evaluations with default configurations
res <- spot(,funFreudRoth,c(0,0),c(10,10),control=list(funEvals=20))
plotModel(res$model)
```
funGauss

funGauss

<table>
<thead>
<tr>
<th>funGauss</th>
<th>funGauss (No. 15, More No. 9)</th>
</tr>
</thead>
</table>

Description

3-dim Gaussian Test Function

Usage

`funGauss(x)`

Arguments

- `x`: matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Unpublished

Examples

```r
x1 <- matrix(c(1,1,1),1,)
funGauss(x1)

res1 <- spot(funGauss, c(-0.001,-0.007,-0.003), c(0.5,1.0,1.1), control=list(funEvals=15))
plotModel(res1$model, which = 1:2)
```

funGoldsteinPrice

funGoldsteinPrice

<table>
<thead>
<tr>
<th>funGoldsteinPrice</th>
<th>Goldstein-Price Test Function (No. 5)</th>
</tr>
</thead>
</table>

Description

An implementation of Booker et al.'s method on a re-scaled/coded version of the 2-dim Goldstein–Price function

Usage

`funGoldsteinPrice(x)`
Arguments

- **x**

 (m, 2)-matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

Examples

```r
x1 <- matrix(c(-pi, 12.275),1,)
funGoldsteinPrice(x1)
```

funGulf

funGulf (No.17, More No. 11)

Description

3-dim Gulf research and development Test Function

Usage

```r
funGulf(x, m = 99)
```

Arguments

- **x**

 matrix (n x 3) of points to evaluate with the function. Rows for points and columns for dimension. Values should be larger than 0.

- **m**

 additional parameter: . The Gulf function supports an additional parameter m in the range from 3 to 100

Value

1-column matrix with resulting function values

References

funHelical (No. 13, More No. 7)

Description

3-dim Helical Test Function

Usage

funHelical(x)

Arguments

x matrix (n x 3)-dim of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

funIshigami

Ishigami Test Function (No. 7)

Description

An implementation of the 3-dim Ishigami function.

\[f(x) = \sin(x_1) + a \sin^2(x_2) + b x_3^4 \sin(x_1) \]

The Ishigami function of Ishigami & Homma (1990) is used as an example for uncertainty and sensitivity analysis methods, because it exhibits strong nonlinearity and nonmonotonicity. It also has a peculiar dependence on \(x_3 \), as described by Sobol’ & Levitan (1999). The independent distributions of the input random variables are usually: \(x_i \sim \text{Uniform}[-\pi, \pi] \), for all \(i = 1, 2, 3 \).

Usage

funIshigami(x, a = 7, b = 0.1)

Arguments

\(x \)

(m,3)-matrix of points to evaluate with the function. Values should be \(\geq -\pi \) and \(\leq \pi \), i.e., \(x_i \in [-\pi, \pi] \).

\(a \)

coefficient (optional), with default value 7

\(b \)

coefficient (optional), with default value 0.1

Value

1-column matrix with resulting function values

References

funJennSamp

Examples

```r
x1 <- matrix(c(-pi, 0, pi), 1,)
funIshigami(x1)
```

funJennSamp (No. 12, More No 6)

Description

2-dim Jennrich and Sampson Function Test Function

Usage

```r
funJennSamp(x)
```

Arguments

- `x` matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(1,1), 1,)
funJennSamp(x1)
```

```r
res <- spot(, funJennSamp, c(0,0), c(0.3,0.3))
plotModel(res$model)
```
funMeyer

Meyer 3-dim Test Function

funMeyer(x)

Arguments

x
matrix (dim 1x3) of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

set.seed(13)
resMeyer <- spot(matrix(c(0.02,4000,250),1,3),
 funMeyer,c(0,1000,200),c(3,8000,500),
 control= list(funEvals=15))
resMeyer$xbest
resMeyer$ybest
print("Model with parameters")
plotModel(resMeyer$model)
plotModel(resMeyer$model,which=2:3)
funMoo

Description
Multi-objective Test Function

Usage
funMoo(x)

Arguments
x matrix of points to evaluate with the function. Rows for points and columns for dimension.

Details
funMultiObjectiveOptimization
A multiobjective dummy testfunction

Value
n-column matrix with resulting function values

Examples
x1 <- matrix(c(-pi, 12.275),1,)
funMoo(x1)
x <- matrix(c(1,1,2), ncol=3)

funNoise

Description
noise function

Usage
funNoise(x, fun = funSphere, mean = 0, sigma = 1)
Arguments

- **x**: input matrix of candidate solution
- **fun**: objective function. Default: `funSphere`
- **mean**: error mean. Default: 1
- **sigma**: error sd. Default: 1

Value

vector of noisy objective function values

Examples

```r
set.seed(123)
require(SPOT)
x <- matrix(1:10, 5, 2)
funNoise(x)
```

Description

A test function used in the optimization lecture of the AIT Masters course at TH Koeln

Usage

```r
funOptimLecture(vec)
```

Arguments

- **vec**: input vector or matrix of candidate solution

Value

vector of objective function values
funPowellBs

funPowellBs (No. 9, More No. 3)

Description

2-dim Powell Badly Scaled Test Function

Usage

funPowellBs(x)

Arguments

x
matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(-1,1),1,)
funPowellBs(x1)

# Running SPOT with 20 function evaluations with default configurations
res <- spot(fun=funPowellBs,c(-10,-10),c(10,10),control=list(funEvals=20))
plotModel(res$model, points = rbind(c(res$xbest[1], res$xbest[2]),c(1.098e-5,9.106)))
```

funPowellS

funPowellS (No. 19, More No. 13)

Description

Powells 4-dim Test Function

Usage

funPowellS(x)
funRosen

Arguments

x
matrix (dim 1x4) of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(0,0,0,0),1,)
funPowellS(x1)

x2 <- matrix(c(3,-1,0,1),1,)
funPowellS(x2)

x3 <- matrix(c(0,0,0,-2),1,)
funPowellS(x3)

# optimization run with SPOT and 15 evaluations
res_fun <- spot(funPowellS,c(-4,-4,-4,-4 ),c(5,5,5,5),control=list(funEvals=15))
res_fun
```

funRosen (No. 2, More No. 1)

Description

Rosenbrock Test Function

Usage

funRosen(x)

Arguments

x
matrix of points to evaluate with the function. Rows for points and columns for dimension.
funRosen2

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(1,1),1,1)
funRosen(x1)
```

funRosen2

funRosen2 (No. 2a)

Description

Rosenbrock Test Function (2-dim)

Usage

```r
funRosen2(x)
```

Arguments

- `x` matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

Examples

```r
x1 <- matrix(c(-pi, 12.275),1,1)
funRosen2(x1)
```
funShiftedSphere

funShiftedSphere (No. 4)

Description

Shifted Sphere Test Function with optimum at $x_{\text{opt}} = a$ and $f(x_{\text{opt}}) = 0$

Usage

funShiftedSphere(x, a = 1)

Arguments

- **x**: matrix of points to evaluate with the function. Rows for points and columns for dimension.
- **a**: offset added, i.e., $f = \sum (x-a)^2$. Default: 1.

Value

1-column matrix with resulting function values

See Also

funSphere

Examples

```r
x1 <- matrix(c(-pi, 12.275),1,)
a <- 1
funShiftedSphere(x1, a)
```

funSoblev99

Sobol and Levitan Test Function (No. 6)

Description

An implementation of the Sobol-Levitan function.

$f(x) = \exp(\sum b_i x_i) - I_d + c_0$, where $I_d = \prod (\exp(b_i) - 1) / b_i$

The value of the elements in the b-vector (b_1, ..., b_d) affect the importance of the corresponding x-variables. Sobol’ & Levitan (1999) use two different b-vectors: $(1.5, 0.9, 0.9, 0.9, 0.9, 0.9)$, for $d = 6$, and $(0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4)$, for $d = 20$. Our implementation uses the default b vector: $b = c(0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4)$ (when $d \leq 20$).
Moon et al. (2012) scale the output to have a variance of 100. For $d = 20$, they use three different b-vectors: $(2, 1.95, 1.85, 1.75, 1.65, 1.5, 1.4228, 0.3077, 0.2169, 0.1471, 0.0951, 0.0577, 0.0323, 0.0161, 0.0068, 0.0021, 0.0004, 0), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),$ and $(2.6795, 2.2289, 1.8351, 1.4938, 1.2004, 0.9507, 0.7406, 0.5659, 0.4228, 0.3077, 0.2169, 0.1471, 0.0951, 0.0577, 0.0323, 0.0161, 0.0068, 0.0021, 0.0004, 0)$.

The generally used value of c_0 is $c_0 = 0$. The function is evaluated on x_i in $[0, 1]$, for all $i = 1, ..., d$.

Usage

```r
funSoblev99(x, b = c(rep(0.6, 10), rep(0.4, 10)), c0 = 0)
```

Arguments

- **x**: $(m, 2)$-matrix of points to evaluate with the function. Values should be ≥ 0 and ≤ 1, i.e., x_i in $[0,1]$.
- **b**: d-dimensional vector (optional), with default value $b = c(0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4)$ (when $d \leq 20$)
- **c0**: constant term (optional), with default value 0

Value

1-column matrix with resulting function values

References

Examples

```r
x1 <- matrix(c(-pi, 12.275), 1,)
funSoblev99(x1)
```

funSphere (No. 3)

Description

Sphere Test Function

Usage

```r
funSphere(x)
```
Arguments

x matrix of points to evaluate with the function. Rows for points and columns for dimension.

Value

1-column matrix with resulting function values

See Also

funShiftedSphere

Examples

x1 <- matrix(c(-pi, 12.275), 1,)
funSphere(x1)

funSring

Description

wrapper for sring

Usage

funSring(x, opt = list(), ...)

Arguments

x perceptron weights

opt list of optional parameters, e.g.,

nElevators number of elevators
probNewCustomer probability of a customer arrival
nIterations Number of itertions
randomSeed random seed

... additional parameters

Value

fitness (matrix with one column)
getCosts

Examples

```r
set.seed(123)
numberStates = 200
sigma = 1
x = matrix( rnorm(n = 2*numberStates, 1, sigma), 1,)
funSring(x)
```

Description

Evaluate synthetic cost function that is based on the number of waiting customers and the number of elevators.

Usage

```r
getCosts(x, ...)
```

Arguments

- `x` vector with `sigma` weight multiplier and `ne` number of elevators
- `...` optional parameters passed to `funSring`

Details

Note: To accelerate testing, `nIterations` was set to 1e3 (instead of 1e6)

Value

fitness (costs)

Examples

```r
set.seed(123)
sigma = 1
ne = 10
x <- c(sigma, ne)
getCosts(x)
```
getMultiStartPoints Get Multi Start Points

Description
Determine multi start points for optimization on the surrogate. Combines the current best with additional random starting points for optimization on the surrogate.

Usage
getMultiStartPoints(x, y, control)

Arguments
x matrix of design points
y matrix of function values (f(x))
control Control list for spot and spotLoop. Generated with spotControl.

Value
x0 matrix of restart points

getNatDesignFromCoded Get natural parameter values from coded +1 representation

Description
For given lower and upper bounds, a and b, respectively, coded input values are mapped to their natural values.

Usage
getNatDesignFromCoded(x, a, b)

Arguments
x (n,m)-dim matrix of coded values, i.e., lower values are coded as -1, upper values as +1.
a m-dimensional vector of lower bounds (natural values)
b m-dimensional vector of upper bounds (natural values)

Examples
x <- matrix(rep(-1,2),1,)
lower <- c(-10,-10)
upper <- c(10,10)
getNatDesignFromCoded(x, a = lower, b=upper)
getPerformanceStats

get performance stats

Description

determines mean performance

Usage

getPerformanceStats(x, y)

Arguments

x matrix of n solutions (usually a (nxd)-matrix, where d is the problem dimension)
y matrix with objective values (usually a (nx1)-matrix)

Details

further stats will be added

Examples

```r
x <- matrix(1:10, ncol=2, byrow=TRUE)
y1 <- funSphere(x) +1
y2 <- funSphere(x) -1
x <- rbind(x,x)
y <- rbind(y1, y2)
M <- getPerformanceStats(x,y)
```

getPositions

get impute positions

Description

Determines positions in a vectors that fulfill criteria defined by a list of criteria, e.g., is.na.

Usage

getPositions(y, imputeCriteriaFuns = list(is.na, is.infinite, is.nan))

Arguments

y The vector of numerics from which NA/Inf values should be removed
imputeCriteriaFuns list criteria functions specified via imputeCriteriaFuns in spotControl. Default: list(is.na, is.infinite, is.nan).
Value

p vector of positions that fulfill one of the criteria

Examples

```r
imputeCriteriaFuns <- list(is.na, is.infinite, is.nan)
y <- c(1,2,Inf,4,NA,6)
p <- getPositions(y, imputeCriteriaFuns)
```

Description

Implements basic power calculations in R See also: https://www.cyclismo.org/tutorial/R/power.html

Usage

g getXPower(mu0, mu1, n, sigma, alpha, tdist = FALSE, alternative = "greater")

Arguments

- **mu0**: mean value of the null hypothesis (usually referred to as H0)
- **mu1**: mean value of the alternative hypothesis (usually referred to as H1)
- **n**: sample size
- **sigma**: sample s.d.
- **alpha**: error
- **tdist**: logical. Use Student t Distribution. Default: FALSE
- **alternative**: a character string specifying the alternative hypothesis, must be one of "two.sided", "greater" (default) or "less".

Examples

```r
## Power should be approx. 0.9183621:
g getXPower(mu0=5, mu1=6.5, n=20, sigma=2, alpha=0.05, tdist = FALSE, alternative = "two.sided")
## Power should be approx. 0.8887417:
g getXPower(mu0=5, mu1=6.5, n=20, sigma=2, alpha=0.05, tdist = TRUE, alternative = "two.sided")
## Compare with results from power.t.test
powerVal <- power.t.test(n=20, delta=1.5, sd=2, sig.level=0.05, type="one.sample", alternative="two.sided", strict = TRUE)
powerVal$power
```
getReplicates

Description
determine how often appears x in X

Usage
getReplicates(x, X)

Arguments
x row vector
X matrix

Details
can be used to determine the number of replicates/repeated evaluations of a solution x

Examples
k <- 2
n <- 4
A <- matrix(1:(k*n), n, k, byrow = TRUE)
X <- rbind(A, A, A)
x <- A[,1]
should be 3:
getReplicates(x, X)

U has unique entries
U <- X[!duplicated(X),]
should be 1:
getReplicates(x, U)

getSampleSize

Description
Implements sample size calculations in R See also: https://www.cyclismo.org/tutorial/R/power.html and https://influentialpoints.com/Training/statistical_power_and_sample_size.htm
Usage

getsampleSize(mu0, mu1, alpha, beta, sigma, alternative = "greater")

Arguments

mu0 mean value of the null hypothesis (usually referred to as H0)
mu1 mean value of the alternative hypothesis (usually referred to as H1)
alpha type I error
beta type II error
sigma sample s.d.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided", "greater" (default) or "less".

Value

n number of required samples in each arm of a trial. Note: total number of samples is 2*n.

Examples

getsampleSize(mu0 = 0, mu1 = 200, alpha=0.05, beta=0.2, sigma=450, alternative="two.sided")
getsampleSize(mu0 = 8.72, mu1 = 8.72*1.1, alpha=0.05, beta=0.2, sigma=1.3825, alternative="greater")
getsampleSize(mu0 = 8.72, mu1 = 8.72*1.1, alpha=0.05, beta=0.2, sigma=1.3825, alternative="two.sided")

Description

Remove NAs from a vector by replacing them with a penalized Kriging-based expectation

Usage

handleNAsKrigingWorst(x, y, penaltyImputation = 3, imputeCriteriaFuns = list(is.na, is.infinite, is.nan))
Arguments

- **x**: The x values from which y was calculated
- **y**: The vector of numerics from which the NAs should be removed
- **penaltyImputation**: multiplier for sPredicted (penalty term). Default: 3.
- **imputeCriteriaFuns**: list criteria functions specified via imputeCriteriaFuns in `spotControl`. Default: list(is.na, is.infinite, is.nan).

Value

- **y**: The imputed vector w/o NA and w/o Inf values.

Examples

```r
imputeCriteriaFuns <- list(is.na, is.infinite, is.nan)
x <- matrix(runif(20), ncol = 2)
y <- funSphere(x)
y[3] <- NA
y[5] <- Inf
plot(y, type="b")
print(y)
y1 <- handleNAsKrigingWorst(x=x, y=y, imputeCriteriaFuns=imputeCriteriaFuns)
print(y1)
points(3, y1[3], type="b", col="red")
points(5, y1[5], type="b", col="red")
```

Description

Remove NAs from a vector by replacing them by the current max + p*s.d., where p denotes a penalty term.

Usage

```r
handleNAsMax(
  x,
  y = NULL,
  imputeCriteriaFuns = list(is.na, is.infinite, is.nan),
  penaltyImputation = 3
)
```
Argument

\(\text{x} \) The x values from which y was calculated, not used here

\(\text{y} \) The vector of numerics from which the NAs should be removed

imputeCriteriaFuns

list criteria functions specified via imputeCriteriaFuns in \text{spotControl}. Default: \text{list(is.na, is.infinite, is.nan)}.

penaltyImputation

penalty used for imputed values

Value

\(\text{y} \) The cleaned vector

Examples

\begin{verbatim}
vecWithNAs <- c(-1, 0, NA, 3, Inf, 5, NA)
control <- spotControl(dim=length(vecWithNAs))
print(vecWithNAs)
print(handleNAsMean(y=vecWithNAs,
 imputeCriteriaFuns= control$yImputation$imputeCriteriaFuns))
\end{verbatim}

Description

Remove NAs from a vector by replacing them by the sample mean.

Usage

\begin{verbatim}
handleNAsMean(
 \text{x},
 \text{y} = \text{NULL},
 \text{imputeCriteriaFuns} = \text{list(is.na, is.infinite, is.nan)},
 \text{penaltyImputation} = 3
)
\end{verbatim}

Arguments

\(\text{x} \) The x values from which y was calculated, not used here

\(\text{y} \) The vector of numerics from which the NAs should be removed

imputeCriteriaFuns

list criteria functions specified via imputeCriteriaFuns in \text{spotControl}. Default: \text{list(is.na, is.infinite, is.nan)}.

penaltyImputation

penalty used for imputed values
imputeY

Value

`y` The cleaned vector

Examples

```r
cvecWithNAs <- c(-1, 0,1,NA,3,Inf,5,NA)
control <- spotControl(dim=length(vecWithNAs))
print(vecWithNAs)
print(handleNAsMean(y=vecWithNAs,
    imputeCriteriaFuns= control$yImputation$imputeCriteriaFuns))
```

Description

Impute NAs and Inf in `y`

Usage

```r
imputeY(x, y, control)
```

Arguments

- `x` The `x` values from which `y` was calculated
- `y` The vector of numerics from which NA/Inf values should be removed
- `control` spot control list. See also `spotControl`.

Value

`y` The imputed vector w/o NA and w/o Inf values.

Examples

```r
x <- matrix(runif(10), ncol=2, nrow=5)
y <- funSphere(x)
y[1] <- NA
control <- spotControl(dimension = 2)
# no imputation function, i.e. w/o imputation
imputeY(x=x, y=y, control=control)
# with imputation
control$yImputation$handleNAsMethod <- handleNAsKrigingWorst
y <- imputeY(x=x, y=y, control=control)
# no imputation required:
imputeY(x=x, y=y, control=control)
```
infillEI

Expected Improvement Infill Criterion

Description

Compute the negative of the Expected Improvement of a set of candidate solutions. Based on mean and standard deviation of a candidate solution, this estimates the expectation of improvement. Improvement considers the amount by which the best known value (best observed value) is exceeded by the candidates. Expected Improvement infill criterion that can be passed to control$\text{modelControl}\$infillCriterion in order to be used during the optimization in SPOT. Parameters don't have to be specified as this function is ment to be internally by SPOT.

Usage

infillEI(predictionList, model)

Arguments

- predictionList: The results of a predict.model call
- model: The surrogate model which was used for the prediction

Value

numeric vector, expected improvement results

Examples

```r
spot(.funSphere,c(-2,-3),c(1,2), control =
  list(infillCriterion = infillEI, modelControl = list(target = c("y","s"))))
```

infillExpectedImprovement

infillExpectedImprovement

Description

Compute the negative logarithm of the Expected Improvement of a set of candidate solutions. Based on mean and standard deviation of a candidate solution, this estimates the expectation of improvement. Improvement considers the amount by which the best known value (best observed value) is exceeded by the candidates. Expected Improvement infill criterion that can be passed to control$\text{modelControl}\$infillCriterion in order to be used during the optimization in SPOT. Parameters don't have to be specified as this function is ment to be internally by SPOT.
Usage

infillExpectedImprovement(predictionList, model)

Arguments

- predictionList: The results of a predict.model call
- model: The surrogate model which was used for the prediction

Value

numeric vector, expected improvement results

Examples

spot(,funSphere,c(-2,-3),c(1,2), control =
list(infillCriterion = infillExpectedImprovement, modelControl = list(target = c("y","s"))))

Description

Initialize ring parameters: generate arrival probabilities for S-Ring. - set beginning states to 0 and initialize random customer states and nElevators - nStates = (number of floors * 2) - 2. For example for 4 floors, its 6 states because the upper and lower state have only one direction and all other have 2 (UP and DOWN)

Usage

init_ring(params)

Arguments

- params: list of
 - randomSeed: random seed
 - nStates: number of S-Ring states
 - nElevators: number of elevators
 - probNewCustomer: probability of a customer arrival
 - counter: Counter: number of waiting customers
 - sElevator: Vector representing elevators (s)
 - sCustomer: Vector representing customers (c)
 - currentState: Current state that is calculated
 - nextState: Next state that is calculated
 - nWeights: Number of weights for the perceptron (= 2 * nStates)
Value

- list (params) of
 - randomSeed: random seed
 - nStates: number of S-Ring states
 - nElevators: number of elevators
 - probNewCustomer: probability of a customer arrival
 - counter: Counter: number of waiting customers
 - sElevator: Vector representing elevators (s)
 - sCustomer: Vector representing customers (c)
 - currentState: Current state that is calculated
 - nextState: Next state that is calculated
 - nWeights: Number of weights for the perceptron (= 2 * nStates)

Examples

```r
params <- list(sElevator=NULL,
               sCustomer=NULL,
               currentState=NULL,
               nextState=NULL,
               counter=NULL,
               nStates=12,
               nElevators=2,
               probNewCustomer=0.1,
               weightsPerceptron=rep(0.1, 24),
               nWeights=NULL,
               nIterations=100,
               randomSeed=1234)

init_ring(params)
```

Description

Generate a list of benchmark functions. Based on the More(1981) paper. Contains the first 13 function from the paper. Function numbers are the same as in the paper.

Usage

```r
makeMoreFunList(vector2Matrix = TRUE)
```
Arguments

vector2Matrix logical. Convert vector input to matrix. Default: TRUE, so it can be used with optim.

Value

list of functions with starting points and optimum points.

References

Examples

Generate function list.
Here we use the default setting \code{vector2Matrix = TRUE},
so the function list can be passed to \code{\link[stats]{optim}}.

fl <- makeMoreFunList()
optim(par=c(-1.2,1), fn=fl$funList[[1]])
optim(par=fl$startPointList[[1]], fn=fl$funList[[1]])$value
optim(par=fl$startPointList[[1]], fn=fl$funList[[1]],NULL, method = "CG", hessian = FALSE)$value
optim(fl$startPointList[[1]], fl$funList[[1]],NULL, method = "BFGS", hessian = FALSE)$value
optim(fl$startPointList[[1]], fl$funList[[1]],NULL, method = "L-BFGS-B", hessian = FALSE)$value
normalizeMatrix

Normalize design matrix

Description

Normalize design by using minimum and maximum of the design values for input space. Each column has entries in the range from y_{min} to y_{max}.

Usage

```r
normalizeMatrix(x, ymin, ymax, MARGIN = 2)
```

Arguments

- `x`: design matrix in input space
- `ymin`: minimum vector of normalized space
- `ymax`: maximum vector of normalized space
- `MARGIN`: a vector giving the subscripts which the function will be applied over. 1 indicates rows, 2 indicates columns. Default: 2.

Value

list with the following entries:

- `y`: normalized design matrix in the range $[y_{min}, y_{max}]$
- `xmin`: min in each column
- `xmax`: max in each column

See Also

- `buildKriging`

Examples

```r
set.seed(1)
x <- matrix(c(rep(1,3), rep(2,3),rep(3,3), rep(4,3)),3,4)
## columnwise:
normalizeMatrix(x, ymin=0, ymax=1)
## rowwise
normalizeMatrix(x, ymin=0, ymax=1, MARGIN=1)
# rows with identical values are mapped to the mean:
x <- matrix(rep(0,4),2,2)
normalizeMatrix(x, ymin=0, ymax=1)
```
normalizeMatrix2 Normalize design 2

Description
Normalize design with given maximum and minimum in input space. Supportive function for Kriging model, not to be used directly.

Usage
normalizeMatrix2(x, ymin, ymax, xmin, xmax)

Arguments
- x: design matrix in input space (n rows for each point, k columns for each parameter)
- ymin: minimum vector of normalized space
- ymax: maximum vector of normalized space
- xmin: minimum vector of input space
- xmax: maximum vector of input space

Value
normalized design matrix

See Also
buildKriging

obj.plgpEI Wrapper for Expected improvement (Gramacy)

Description
Wrapper for Expected improvement (Gramacy)

Usage
obj.plgpEI(x, fmin, gpi, pred = predGPsep)

Arguments
- x: matrix of points to calculate EI
- fmin: best function value (y) so far
- gpi: Gaussian process C-side object
- pred: prediction model. Default: predGPsep
Value

negative expected improvement

See Also

plgpEI.

Examples

```r
library(laGP)
library(plgp)

ninit <- 12
dim <- 2
X <- designLHD(rep(0,dim), rep(1,dim), control=list(size=ninit))
y <- funGoldsteinPrice(X)
m <- which.min(y)
ymin <- y[m]
start <- matrix(X[m,], nrow =1)

## Build laGP model
gpi <- newGPsep(X, y, d=0.1, g=1e-8, dK=TRUE)
da <- darg(list(mle=TRUE, max=0.5), designLHD(rep(0,dim), rep(1,dim), control=list(size=1000)))
mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)
res <- optim(start[1,], obj.plgpEI, method="L-BFGS-B", lower=0, upper=1, gpi=gpi, pred=predGPsep, fmin=ymin)
xnew <- c(res$par, -res$value)
print(xnew)
deleteGPsep(gpi)
```

objectiveFunctionEvaluation

Objective Function Evaluation

Description

This function handles the evaluation of the objective function in `spot`. This includes handling of the random number generator stream, variable transformations (`transformX`) as well as the actual evaluation.

Usage

```r
objectiveFunctionEvaluation(x = NULL, xnew, fun, control = list(), ...)
```
Arguments

x
matrix of already known solutions, to determine whether RNG seeds for new solutions need to be incremented.

xnew
matrix of new solutions.

fun
objective function to evaluate the solutions in xnew.

ccontrol
control list with the following entries:

 seedFun initial seed to be used for the random number generator seed. Set to NA to avoid using a fixed seed.

 noise: logical parameter specifying whether the target function is noisy.

 verbosity: verbosity. Default: 0.

 transformFun: transformation functions applied to xnew. See transformX

...
parameters passed to fun.

Value

the matrix ynew, which are the observations for fun(xnew)

See Also

spot for more details on the parameters, e.g., fun

transformX

spotControl

Examples

1) without noise

```r
x <- NULL
xnew <- matrix(1:10, ncol=2)
fun <- funSphere
control <- spotControl(dim(xnew)[2])
control$verbosity <- 0
objectiveFunctionEvaluation(x=x, xnew=xnew, fun=fun, control=control)
```

2) with noise

```r
fun = function(x){funSphere(x) + rnorm(nrow(x))}
control$noise <- TRUE
objectiveFunctionEvaluation(x=x, xnew=xnew, fun=fun, control=control)
```

3) known solutions

```
x <- matrix(11:20, ncol=2)
xnew <- matrix(1:10, ncol=2)
fun <- funSphere
objectiveFunctionEvaluation(x=x, xnew=xnew, fun=fun, control=control)
```

4) known solutions with noise and repeats

```
x <- matrix(1:20, ncol=2, byrow=TRUE)
xnew <- matrix(1:10, ncol=2, byrow=TRUE)
```
fun = function(x){funSphere(x) + rnorm(nrow(x))}
objectiveFunctionEvaluation(x=x, xnew=xnew, fun=fun, control=control)
5) identical solutions with noise and repeats
x <- matrix(1:10, ncol=2, byrow=TRUE)
xnew <- x
fun = function(x){funSphere(x) + rnorm(nrow(x))}
y <- objectiveFunctionEvaluation(x=NULL, xnew=x, fun=fun, control=control)
y1 <- objectiveFunctionEvaluation(x=x, xnew=xnew, fun=fun, control=control)
y2 <- objectiveFunctionEvaluation(x=NULL, xnew=xnew, fun=fun, control=control)
print(cbind(x, y))
print(cbind(xnew, y1))
print(cbind(xnew, y2))
identical(y, y1) # FALSE
identical(y, y2) # TRUE
6) known solutions with noise and repeats. function sets seed
x <- matrix(1:20, ncol=2, byrow=TRUE)
xnew <- matrix(1:10, ncol=2, byrow=TRUE)
fun <- function(x, seed){
 set.seed(seed)
 funSphere(x)+rnorm(nrow(x))
}
control$seedFun <- 1
y1 <- objectiveFunctionEvaluation(x=x, xnew=xnew, fun=fun, control=control)
y2 <- objectiveFunctionEvaluation(x=x, xnew=xnew, fun=fun, control=control)
identical(y1, y2) # TRUE
control$seedFun <- 2
y3 <- objectiveFunctionEvaluation(x=x, xnew=xnew, fun=fun, control=control)
identical(y1, y3) # FALSE
7) spot examples:
res1a <- spot(.,function(x,seed){set.seed(seed);funSphere(x)+rnorm(nrow(x))},
c(-2,-3),c(1,2),control=list(funEvals=25,noise=TRUE,seedFun=1))
res1b <- spot(.,function(x,seed){set.seed(seed);funSphere(x)+rnorm(nrow(x))},
c(-2,-3),c(1,2),control=list(funEvals=25,noise=TRUE,seedFun=1))
res2 <- spot(.,function(x,seed){set.seed(seed);funSphere(x)+rnorm(nrow(x))},
c(-2,-3),c(1,2),control=list(funEvals=25,noise=TRUE,seedFun=2))
sprintf("Should be equal: %f = %f. Should be different: %f", res1a$ybest,
res1b$ybest, res2$ybest)

ocbaRanking

Description

Return the ocba ranking (xbest, ybest) for noisy optimization

Usage

ocbaRanking(x, y, fun, control, ...)

Description

Return the ocba ranking (xbest, ybest) for noisy optimization

Usage

ocbaRanking(x, y, fun, control, ...)
optimDE

Arguments

- **x**: matrix of x values
- **y**: matrix of y values, one dimensional!
- **fun**: objective function
- **control**: control list, see `spotControl`
- **...**: additional arguments to `fun`

Details

Based on `repeatsOCBA`

Value

(x,y) matrix of sorted (by y) values. In case of noise are these values aggregated (y-mean) values.

optimDE

Minimization by Differential Evolution

Description

For minimization, this function uses the "DEoptim" method from the codeDEoptim package. It is basically a wrapper, to enable DEoptim for usage in SPOT.

Usage

`optimDE(x = NULL, fun, lower, upper, control = list(), ...)`

Arguments

- **x**: optional start point
- **fun**: objective function, which receives a matrix x and returns observations y
- **lower**: boundary of the search space
- **upper**: boundary of the search space
- **control**: list of control parameters
 - **funEvals**: Budget, number of function evaluations allowed. Default is 200.
 - **populationSize**: Population size or number of particles in the population. Default is 10*dimension.
 - **...**: passed to `fun`
Value

list, with elements

x archive of the best member at each iteration

y archive of the best value of fn at each iteration

xbest best solution

ybest best observation

count number of evaluations of fun

Examples

```r
res <- optimDE(,lower = c(-10,-20),upper=c(20,8),fun = funSphere)
res$ybest
optimDE(x = matrix(rep(1,6), 3, 2),lower = c(-10,-20),upper=c(20,8),fun = funSphere,
    control = list(funEvals=100, populationSize=20))
#Compare to DEoptim:
require(DEoptim)
set.seed(1234)
DEoptim(function(x){funRosen(matrix(x,1))}, lower=c(-10,-10), upper=c(10,10),
    DEoptim.control(strategy = 2,bs = FALSE, N = 20, itermax = 28, CR = 0.7, F = 1.2,
    trace = FALSE, p = 0.2, c = 0, reltol = sqrt(.Machine$double.eps), steptol = 200 ))
set.seed(1234)
optimDE(, fun=funRosen, lower=c(-10,-10), upper= c(10,10),
    control = list( populationSize = 20, funEvals = 500, F = 1.2, CR = 0.7))
```

optimES

Evolution Strategy

Description

This is an implementation of an Evolution Strategy.

Usage

```r
optimES(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- **x**

 optional start point, not used

- **fun**

 objective function, which receives a matrix x and returns observations y

- **lower**

 is a vector that defines the lower boundary of search space (this also defines the dimensionality of the problem)

- **upper**

 is a vector that defines the upper boundary of search space (same length as lower)

- **control**

 list of control parameters. The control list can contain the following settings:

 - **funEvals** number of function evaluations, stopping criterion, default is 500
mue number of parents, default is 10
nu selection pressure. That means, number of offspring (lambda) is mue multiplied with nu. Default is 10
mutation string of mutation type, default is 1
sigmaInit initial sigma value (step size), default is 1.0
nSigma number of different sigmas, default is 1
tau0 number, default is 0.0. tau0 is the general multiplier.
tau number, learning parameter for self adaption, i.e. the local multiplier for step sizes (for each dimension). default is 1.0
rho number of parents involved in the procreation of an offspring (mixing number), default is "bi"

sel number of selected individuals, default is 1

maxGen number of generations, stopping criterion, default is Inf
seed number, random seed, default is 1
noise number, value of noise added to fitness values, default is 0.0
verbosity defines output verbosity of the ES, default is 0
plotResult boolean, specifies if results are plotted, default is FALSE
logPlotResult boolean, defines if plot results should be logarithmic, default is FALSE
sigmaRestart number, value of sigma on restart, default is 0.1
preScanMult initial population size is multiplied by this number for a pre-scan, default is 1

globalOpt termination criterion on reaching a desired optimum value, default is rep(0,dimension)

... additional parameters to be passed on to fun

Value
list, with elements
x NULL, currently not used
y NULL, currently not used
xbest best solution
ybest best observation
count number of evaluations of fun

Examples
cont <- list(funEvals=100)
optimES(fun=funSphere,lower=rep(0,2), upper=rep(1,2), control= cont)
optimGenoud

Minimization by GENetic Optimization Using Derivatives

Description

For minimization, this function uses the "genoud" method from the codergenoud package. It is basically a wrapper, to enable genoud for usage in SPOT.

Usage

optimGenoud(x = NULL, fun, lower, upper, control = list(), ...)

Arguments

x
 optional start point, not used
fun
 objective function, which receives a matrix x and returns observations y
lower
 boundary of the search space
upper
 boundary of the search space
control
 list of control parameters
 funEvals
 Budget, number of function evaluations allowed. Default is 100.
 populationSize
 Population size, number of individuals in the population. Default is 10*dimension.
...
 passed to fun

Value

list, with elements

x
 NULL, currently not used
y
 NULL, currently not used
xbest
 best solution
ybest
 best observation
count
 number of evaluations of fun

Examples

res <- optimGenoud(fun = funSphere, lower = c(-10,-20), upper=c(20,8))
res$ybest
optimLagp

Interface to minimization based on Gramacy’s lagp package

Description

Implements Gramacy’s plgp package based optimization using expected improvement. Example from chapter 7 in the surrogate book.

Usage

```r
optimLagp(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- `x` optional matrix of points to be included in the evaluation
- `fun` objective function, which receives a matrix x and returns observations y
- `lower` boundary of the search space
- `upper` boundary of the search space
- `control` list of control parameters
 - `funEvals` Budget, number of function evaluations allowed. Default: 100.
 - `retries` Number of retries for design generation, used by `designLHD`. Default: 100.
 - `...` passed to `fun`

Value

list, with elements

- `x` archive of evaluated solutions
- `y` archive of observations
- `xbest` best solution
- `ybest` best observation
- `count` number of evaluations of `fun`
- `message` success message

Examples

```r
res <- optimLagp(fun = funSphere, lower = c(-10,-20), upper=c(20,8))
res$ybest
```
Description

For minimization, this function uses the "L-BFGS-B" method from the optim function, which is part of the codestats package. It is basically a wrapper, to enable L-BFGS-B for usage in SPOT.

Usage

optimLBFGSB(x = NULL, fun, lower, upper, control = list(), ...)

Arguments

x optional matrix of points. Only first point (row) is used as startpoint.
fun objective function, which receives a matrix x and returns observations y
lower boundary of the search space
upper boundary of the search space
control list of control parameters
 funEvals Budget, number of function evaluations allowed. Default is 100.
 All other control parameters accepted by the optim function can be used, too, and are passed to optim.
... passed to fun

Value

list, with elements
 x NA, not used
 y NA, not used
 xbest best solution
 ybest best observation
 count number of evaluations of fun (estimated from the more complicated "counts" variable returned by optim)
 message termination message returned by optim

Examples

res <- optimLBFGSB(fun = funSphere, lower = c(-10, -20), upper = c(20, 8))
res$ybest
optimLHD

Minimization by Latin Hypercube Sampling

Description

This uses Latin Hypercube Sampling (LHS) to optimize a specified target function. A Latin Hypercube Design (LHD) is created with `designLHD`, then evaluated by the objective function. All results are reported, including the best (minimal) objective value, and corresponding design point.

Usage

```r
optimLHD(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- `x` optional matrix of points to be included in the evaluation
- `fun` objective function, which receives a matrix `x` and returns observations `y`
- `lower` boundary of the search space
- `upper` boundary of the search space
- `control` list of control parameters
 - `funEvals` Budget, number of function evaluations allowed. Default: 100.
 - `retries` Number of retries for design generation, used by `designLHD`. Default: 100.
 - `...` passed to `fun`

Value

list, with elements

- `x` archive of evaluated solutions
- `y` archive of observations
- `xbest` best solution
- `ybest` best observation
- `count` number of evaluations of `fun`
- `message` success message

Examples

```r
res <- optimLHD(fun = funSphere, lower = c(-10, -20), upper = c(20, 8))
res$ybest
```
optimNLOPTR

Description

This is a wrapper that employs the nloptr function from the package of the same name. The nloptr function itself is an interface to the nlopt library, which contains a wide selection of different optimization algorithms.

Usage

optimNLOPTR(x = NULL, fun, lower, upper, control = list(), ...)

Arguments

- **x**

 optional matrix of points to be included in the evaluation (only first row will be used)

- **fun**

 objective function, which receives a matrix x and returns observations y

- **lower**

 boundary of the search space

- **upper**

 boundary of the search space

- **control**

 named list, with the options for nloptr. These will be passed to nloptr as arguments. In addition, the following parameter can be used to set the function evaluation budget:

 - **funEvals**

 Budget, number of function evaluations allowed. Default: 100.

- **...**

 passed to fun

Note that the arguments x, fun, lower and upper will be mapped to the corresponding arguments of nloptr: x0, eval_f, lb and ub.

Value

- list, with elements

 - **x**

 archive of evaluated solutions

 - **y**

 archive of observations

 - **xbest**

 best solution

 - **ybest**

 best observation

 - **count**

 number of evaluations of fun

 - **message**

 success message
Examples

```r
# simple example:
res <- optimNLOPTR(fun = funSphere, lower = c(-10, -20), upper = c(20, 8))
res

# with an inequality constraint:
contr <- list()  # control list
# specify constraint
c$nval_g_ineq <- function(x) 1 + x[1] - x[2]
res <- optimNLOPTR(fun = funSphere, lower = c(-10, -20), upper = c(20, 8), control = contr)
res
```

optimRSfun

Random search surrogate-optimizer

Description

This function is used to emulate uniform random search with SPOT. It is used as the optimizer that searches for new candidates. It returns a single uniform random sample within the given lower and upper bounds of the search space.

Usage

`optimRSfun(x, fun, lower, upper, control, ...)`

Arguments

- `x`: start guess, not used.
- `fun`: objective function to be evaluated via random search.
- `lower`: bound on the independent variables (search space).
- `upper`: bound on the independent variables (search space).
- `control`: not used.
- `...`: additional arguments, not used.

Value

- `list`
perceptron

Description

Perceptron to calculate decisions

Usage

perceptron(currentState, nStates, sElevator, sCustomer, weightsPerceptron)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentState</td>
<td>current state for decision (num)</td>
</tr>
<tr>
<td>nStates</td>
<td>number of states (int)</td>
</tr>
<tr>
<td>sElevator</td>
<td>elevators vector (logical)</td>
</tr>
<tr>
<td>sCustomer</td>
<td>customer vector (logical)</td>
</tr>
<tr>
<td>weightsPerceptron</td>
<td>Weight vector (num)</td>
</tr>
</tbody>
</table>

Details

Number of weights in NN controller is 2xnStates, for each state (sElevator/sCustomer) there is one input

Value

logical pass or take decision

plgpEI

Expected improvement (Gramacy)

Description

Expected improvement (Gramacy)

Usage

plgpEI(gpi, x, fmin, pred = predGPsep)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpi</td>
<td>Gaussian process C-side object</td>
</tr>
<tr>
<td>x</td>
<td>matrix of points to calculate EI</td>
</tr>
<tr>
<td>fmin</td>
<td>best function value (y) so far</td>
</tr>
<tr>
<td>pred</td>
<td>prediction model. Default: predGPsep</td>
</tr>
</tbody>
</table>
library(laGP)
library(plgp)

ninit <- 12
dim <- 2
X <- designLHD(rep(0,dim), rep(1,dim), control=list(size=ninit))
y <- funGoldsteinPrice(X)
m <- which.min(y)
ymin <- y[m]
start <- matrix(X[m,], nrow =1)

1. Build SPOT BO Model
m1 <- buildBO(x = X, y = y, control = list(target="ei"))
yy <- predict(object = m1, newdata = start)
e1 <- matrix(yy$ei, ncol = 1)
Show mue and s
mue <- matrix(yy$y, ncol = 1)
s2 <- matrix(yy$s, ncol = 1)

2. Build laGP model
gpi <- newGPsep(X, y, d=0.1, g=1e-8, dK=TRUE)
da <- darg(list(mle=TRUE, max=0.5), designLHD(rep(0,dim), rep(1,dim), control=list(size=1000)))
mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)
ei2 <- plgpEI(gpi=gpi, x=start, fmin=ymin)
deleteGPsep(gpi)
plot.spotSeverity

plotPow = FALSE,
cl = "black",
 xlab = "x",
 ylab = "y",
 ...
)

Arguments

- **x**
 severity object

- **add**
 default value is FALSE

- **rangeLeft**
 range default: -1

- **rangeRight**
 range default: 1

- **plotSev**
 logical. plot severity. Default: TRUE

- **plotPow**
 logical. plot power. Default: FALSE

- **cl**
 color, e.g., c("black", "red", "green", "blue", "brown", "cyan", "darkred", "gray", "green", "magenta", "orange")

- **xlab**
 x axis label

- **ylab**
 y axis label

- **...**
 additional parameters

Value

description of return value

Examples

Example from D G Mayo and A Spanos.
Severe Testing as a Basic Concept in a NeymanPearson Philosophy of Induction.
British Journal for the Philosophy of Science, 57: 323357, 2006. (fig 2):

```r
x0 <- 12.1
mu1 <- seq(11.9, 13, 0.01)
n <- 100
sigma <- 2
alpha <- 0.025
tdist <- FALSE
plot(mu1, spotSeverity(xbar=x0, mu0=0, mu1=mu1, n=n, sigma=sigma, alpha=alpha, tdist=tdist)$severity, type = "l", ylim=c(0,1), col="blue")
abline(h=0)
abline(h=1)
abline(h=0.95)
abline(v=12.43)
### plot power:
mu0 <- 12
points(mu1, spotPower(alpha, mu0, mu1, n, sigma), type = "l", ylim=c(0,1), col="green")
abline(v=12.72)
```
Fig 13.11 in Span19a

p <- spotSeverity(xbar=10, mu0=10, mu1= 10.2, n=100, sigma = 1, alpha = 0.05, tdist = FALSE)
plot(p, rangeLeft = 10, rangeRight = 10.5, plotPow = TRUE)

plotBestObj

Plot Best Objective Value

Description

Plot Best Objective Value

Usage

```r
plotBestObj(y, end = length(y))
```

Arguments

- `y`: result vector
- `end`: length. Default: `length(y)`

Value

- `plot`

plotData

Interpolated plot

Description

A (filled) contour or perspective plot of a data set with two independent and one dependent variable. The plot is generated by some interpolation or regression model. By default, the `loess` function is used.

Usage

```r
plotData(
  x,
  y,
  which = 1:2,
  constant = x[which.min(y), ],
  model = buildLOESS,
  modelControl = list(),
  xlab = c("x1", "x2"),
  ylab = "y",
  type = "filled.contour",
  ...
)
```
plotData

Arguments

x independent variables, or input variables. this should be a matrix of at least two columns and several rows. If more than two columns are present, all will be used for fitting the model. The parameter which will determine which of these will be plotted, and the parameter constant will determine the values of all parameters that are not varied.

y dependent, or observed output variable to be interpolated/regressed and plotted.

which a vector with two elements, each an integer giving the two independent variables of the plot (the integers are indices of the respective data set, i.e., columns of x). All other parameters will be fixed to the best known solution, i.e., the one with minimal y-value.

constant a numeric vector that states for each variable a constant value that it will take on if it is not varied in the plot. This affects the parameters not selected by the which parameter. By default, this will be fixed to the best known solution, i.e., the one with minimal y-value, according to which.min(object$y). The length of this numeric vector should be the same as the number of columns in object$x

model the model building function to be used, by default buildLOESS.

modelControl control list of the chosen model building function.

xlab a vector of characters, giving the labels for each of the two independent variables

ylab character, the value of the dependent variable predicted by the corresponding model

type string describing the type of the plot: "filled.contour" (default), "contour", "persp" (perspective), or "persp3d" plot. Note that "persp3d" is based on the plotly package and will work in RStudio, but not in the standard RGui.

... additional parameters passed to the contour or filled.contour function

See Also

plotFunction, plotModel

Examples

```r
## generate random test data

## generate random test data

testfun <- function (x) sum(x^2)
set.seed(1)
k <- 30
x <- cbind(runif(k)*15-5,runif(k)*15)
y <- as.matrix(apply(x,1,testfun))
plotData(x,y)
plotData(x,y,type="contour")
plotData(x,y,type="persp")
```

Description

A (filled) contour plot or perspective / surface plot of a function.

Usage

```r
plotFunction(
  f = function(x) {
    rowSums(x^2)
  },
  lower = c(0, 0),
  upper = c(1, 1),
  type = "filled.contour",
  s = 100,
  xlab = "x1",
  ylab = "x2",
  zlab = "y",
  color.palette = terrain.colors,
  title = "",
  levels = NULL,
  points1,
  points2,
  pch1 = 20,
  pch2 = 8,
  lwd1 = 1,
  lwd2 = 1,
  cex1 = 1,
  cex2 = 1,
  col1 = "red",
  col2 = "black",
  theta = -40,
  phi = 40,
  ...
)
```

Arguments

- **f**: function to be plotted. The function should either be able to take two vectors or one matrix specifying sample locations. i.e. \(z = f(X) \) or \(z = f(x_2, x_1) \) where \(Z \) is a two column matrix containing the sample locations \(x_1 \) and \(x_2 \).
- **lower**: boundary for \(x_1 \) and \(x_2 \) (defaults to \(c(0, 0) \)).
- **upper**: boundary (defaults to \(c(1, 1) \)).
plotFunction

- **type**
 - string describing the type of the plot: "filled.contour" (default), "contour", "persp" (perspective), or "persp3d" plot. Note that "persp3d" is based on the plotly package and will work in RStudio, but not in the standard RGui.

- **s**
 - number of samples along each dimension. e.g. \(f \) will be evaluated \(s^2 \) times.

- **xlab**
 - label of first axis

- **ylab**
 - label of second axis

- **zlab**
 - label of third axis

- **color.palette**
 - colors used, default is `terrain.color`

- **title**
 - title of the plot

- **levels**
 - number of levels for the plotted function value. Will be set automatically with default `NULL`. (contour plots only)

- **points1**
 - can be omitted, but if given the points in this matrix are added to the plot in form of dots. Contour plots and persp3d only. Contour plots expect matrix with two columns for coordinates. 3Dperspective expects matrix with three columns, third column giving the corresponding observed value of the plotted function.

- **points2**
 - can be omitted, but if given the points in this matrix are added to the plot in form of crosses. Contour plots and persp3d only. Contour plots expect matrix with two columns for coordinates. 3Dperspective expects matrix with three columns, third column giving the corresponding observed value of the plotted function.

- **pch1**
 - pch (symbol) setting for points1 (default: 20). (contour plots only)

- **pch2**
 - pch (symbol) setting for points2 (default: 8). (contour plots only)

- **lwd1**
 - line width for points1 (default: 1). (contour plots only)

- **lwd2**
 - line width for points2 (default: 1). (contour plots only)

- **cex1**
 - cex for points1 (default: 1). (contour plots only)

- **cex2**
 - cex for points2 (default: 1). (contour plots only)

- **col1**
 - color for points1 (default: "black"). (contour plots only)

- **col2**
 - color for points2 (default: "black"). (contour plots only)

- **theta**
 - angle defining the viewing direction. theta gives the azimuthal direction and phi the colatitude. (persp plot only)

- **phi**
 - angle defining the viewing direction. theta gives the colatitude. (persp plot only)

- **...**
 - additional parameters passed to `contour` or `filled.contour`

See Also
- `plotData`, `plotModel`

Examples
- `plotFunction(function(x){rowSums(x^2)},{-5,0},{10,15})`
- `plotFunction(function(x){rowSums(x^2)},{-5,0},{10,15},type="contour")`
- `plotFunction(function(x){rowSums(x^2)},{-5,0},{10,15},type="persp")`
plotModel

Surface plot of a model

Description
A (filled) contour or perspective plot of a fitted model.

Usage
plotModel(
 object,
 which = if (ncol(object$x) > 1 & tolower(type) != "singledim") {
 1:2
 } else {
 1
 },
 constant = object$x[which.min(object$y),],
 xlab = paste("x", which, sep = ""),
 ylab = "y",
 type = "filled.contour",
 ...
)

Arguments
object fit created by a modeling function, e.g., buildRandomForest.
which a vector with two elements, each an integer giving the two independent variables of the plot (the integers are indices of the respective data set).
constant a numeric vector that states for each variable a constant value that it will take on if it is not varied in the plot. This affects the parameters not selected by the which parameter. By default, this will be fixed to the best known solution, i.e., the one with minimal y-value, according to which.min(object$y). The length of this numeric vector should be the same as the number of columns in object$x
xlab a vector of characters, giving the labels for each of the two independent variables.
ylab character, the value of the dependent variable predicted by the corresponding model.
type string describing the type of the plot: "filled.contour" (default), "contour", "persp" (perspective), or "persp3d" plot. Note that "persp3d" is based on the plotly package and will work in RStudio, but not in the standard RGui.
... additional parameters passed to the contour or filled.contour function.
plotPCA

See Also

plotFunction, plotData

Examples

generate random test data

testfun <- function (x) sum(x^2)
set.seed(1)
k <- 30
x <- cbind(runif(k)*15-5, runif(k)*15, runif(k)*2-7, runif(k)*5+22)
y <- as.matrix(apply(x,1,testfun))
fit <- buildLM(x,y)
plotModel(fit)
plotModel(fit,type="contour")
plotModel(fit,type="persp")
plotModel(fit,which=c(1,4))
plotModel(fit,which=2:3)

Description

plotPCA returns a 2D plot of optimization data in it's own space using buildPCA. It plots first two PCAs by default.

Usage

plotPCA(x, control = list())

Arguments

x dataset of parameters to be transformed & plotted
control control list

Value

It returns a plot image.

Author(s)

Alpar Gür <alpar.guer@smail.th-koeln.de>

See Also

buildPCA, biplot
Examples

```r
# define objective function
funGauss <- function (x) {
  gauss <- function(par) {
    y <- c(0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521, 0.3989,
           0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009)
    m <- 15
    x1 <- par[1]
    x2 <- par[2]
    x3 <- par[3]

    fsum <- 0
    for (i in 1:m) {
      ti <- (8 - i) * 0.5
      f <- x1 * exp(-0.5 * x2 * (ti - x3)^2) - y[i]
      fsum <- fsum + f * f
    }
    return(fsum)
  }
  matrix(apply(x, # matrix
               1, # margin (apply over rows)
               gauss),
         , 1) # number of columns
}

# define starting point
x1 <- matrix(c(1,1,1),1,)
funGauss(x1)

# define boundaries
lower = c(-0.001,-0.007,-0.003)
upper = c(0.5,1.0,1.1)
res <- spot(,funGauss, lower=lower, upper=upper, control=list(funEvals=15))
control = list(scale=TRUE) #pca control list, # scale the variables
plotPCA(res$x, control=control) # plot first two PCAs
```

Description

plotPCAvariance illustrates the total variance within the dataset. It plots the effectiveness of each principal component and can be used to decide how many and which principal components to plot. In order to create this plot, users don’t need to build PCA beforehand since it handles this process automatically.
Usage

plotPCAvariance(x)

Arguments

x dataset of parameters to be transformed & plotted

Value

It returns a plot image.

Author(s)

Alpar Gür <alpar.guer@smail.th-koeln.de>

See Also

buildPCA

Examples

objective function
funBard <- function(x) {
 bard <- function(par) {
 y <- c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, 0.37, 0.58,
 0.73, 0.96, 1.34, 2.10, 4.39)
 m <- 15
 x1 <- par[1]
 x2 <- par[2]
 x3 <- par[3]
 fsum <- 0
 for (u in 1:m) {
 v <- 16 - u
 w <- min(u, v)
 f <- y[u] - (x1 + u / (v * x2 + w * x3))
 fsum <- fsum + f * f
 }
 return(fsum)
 }
 matrix(apply(x, # matrix
 1, # margin (apply over rows)
 bard),
 , 1) # number of columns
}

starting point
x1 <- matrix(c(1,1),1,)
funBard(x1)

boundaries
lower = c(-0.001,-0.007,-0.003)
upper = c(0.5,1.0,1.1)

res <- spot(funBard, lower=lower, upper=upper, control=list(funEvals=15))

plotPCAvariance(res$x) # plot variance within the dataset

predict.cvModel

Description

Predict with the cross validated model produced by buildCVM.</p>

Usage

```r
## S3 method for class 'cvModel'
predict(object, newdata, ...)
```

Arguments

- `object`: CV model (settings and parameters) of class cvModel.
- `newdata`: design matrix to be predicted.
- `...`: Additional parameters passed to the model.

Value

prediction results: list with predicted mean ('y'), estimated uncertainty ('y'), linearly adapted uncertainty ('sLinear')

predict.spotBOModel

Prediction method for bayesian optimization model

Description

Wrapper for predict.spotBOM.</p>

Usage

```r
## S3 method for class 'spotBOM'
predict(object, newdata, ...)
```

Arguments

- `object`: fit of the model, an object of class "spotBOM", produced by buildB0.
- `newdata`: matrix of new data.
- `...`: not used.
Value

list with predicted mean \(y \), uncertainty / standard deviation \(s \) (optional) and expected improvement \(ei \) (optional). Whether \(s \) and \(ei \) are returned is specified by the vector of strings \texttt{object\$target}, which then contains "s" and "ei".

\texttt{prepareBestObjectiveVal}

\textit{Preprocess \(y \) Values to Plot Best Objective Value}

Description

Preprocess \(y \) Values to Plot Best Objective Value

Usage

\texttt{prepareBestObjectiveVal}(\(y \), \texttt{end = length}(\(y \)))

Arguments

- \(y \): result vector
- \texttt{end}: length. Default: \texttt{length}(\(y \))

Value

\texttt{prog}

\texttt{repeatsOCBA}

\textit{Optimal Computing Budget Allocation}

Description

Simple interface to the Optimal Computing Budget Allocation algorithm.

Usage

\texttt{repeatsOCBA}(\(x \), \(y \), \texttt{budget}, \texttt{verbosity} = 0)

Arguments

- \(x \): matrix of samples. Identical rows indicate repeated evaluations. Any sample should be evaluated at least twice, to get an estimate of the variance.
- \(y \): observations of the respective samples. For repeated evaluations, \(y \) should differ (variance not zero).
- \texttt{budget}: of additional evaluations to be allocated to the samples.
- \texttt{verbosity}: verbosity
Value

A vector that specifies how often each solution should be evaluated.

References

See Also

repeatsOCBA calls OCBA, which also provides some additional details.

Examples

```r
x <- matrix(c(1:3,1:3),9,2)
y <- runif(9)
repeatsOCBA(x,y,10)
```

resBench01

result from the vignette benchmark

Description

A data set The corresponding code can be found in the vignette SPOTVignetteNutshell.

Usage

resBench01

Format

A list of

xbest num [1, 1:100] 188 45
S-Ring Simulation Data Obtained With SPOT

Description

A data set based on evaluations of the funCosts function. Second experiment (extension of the first design) The corresponding code can be found in the vignette SPOTVignetteElevator.

Usage

resSpot

Format

A list of 7:

- **xbest** num [1, 1:2] 188 45
- **ybest** num [1, 1] 1e+07
- **x** num [1:87, 1:2] 17.4 143.6 89.9 28.7 51.4 ...
- **y** num [1:87, 1] 1e+07 1e+07 1e+07 1e+07 1e+07 ...
- **count** num 0.1 0.1 0.1 0.1 1 1 1 1 1 ...
- **msg** chr "budget exhausted"
- **modelFit** List of 32

S-Ring Simulation Data Obtained With SPOT

Description

A data set based on evaluations of the funCosts function. Second experiment (extension of the second design) The corresponding code can be found in the vignette SPOTVignetteElevator.

Usage

resSpot2
ring

Format

A list of 7:

- **xbest** num [1, 1:2] 188.45
- **ybest** num [1, 1] 1e+07
- **x** num [1:87, 1:2] 17.4 143.6 89.9 28.7 51.4 ...
- **y** num [1:87, 1] 1e+07 1e+07 1e+07 1e+07 1e+07 ...
- **count** num 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 ...
- **msg** chr "budget exhausted"
- **modelFit** List of 32

ring

Description

main function which iterates the ring

Usage

ring(params)

Arguments

- **params** list of
 - **randomSeed** random seed
 - **nStates** number of S-Ring states
 - **nElevators** number of elevators
 - **probNewCustomer** probability of a customer arrival
 - **counter** Counter: number of waiting customers
 - **sElevator** Vector representing elevators (s)
 - **sCustomer** Vector representing customers (c)
 - **currentState** Current state that is calculated
 - **nextState** Next state that is calculated
 - **nWeights** Number of weights for the perceptron (= 2 * nStates)

Value

number of waiting customers (estimation)
Description

Run optim on a list of spot benchmark functions

Usage

runOptim(
 fl = makeMoreFunList(),
 method = "Nelder-Mead",
 n = 2,
 k = 1:length(makeMoreFunList()$funList),
 verbosity = 0
)

Arguments

- **fl**: function list. Generated with one of the function list generators in spot, e.g., `makeSpotFunList` or `makeMoreFunList`. Default: `makeMoreFunList`.
- **method**: The method used by optim: "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", or "Brent". Default: "Nelder-Mead".
- **n**: repeats. If n > 1, different start points (randomized) will be used. Default: n=2.
- **k**: subset of benchmark functions. Default: 1:length(makeMoreFunList()$funList), i.e., all implemented functions.
- **verbosity**: Level 0 shows no output (default).

Value

res. data.frame with results: c("f", "r", "y")

Examples

summary(runOptim(k=1)$y)
summary(runOptim(k=1, method="CG")$y)
Description

Run spot on a list of spot benchmark functions

Usage

runSpotBench(
 fl = makeMoreFunList(),
 control = list(),
 n = 2,
 k = 1:length(makeMoreFunList()$funList),
 verbosity = 0
)

Arguments

fl function list. Generated with one of the function list generators in spot, e.g., makeSpotFunList or makeMoreFunList. Default: makeMoreFunList.
control The control list used by spot.
n repeats. If n >1, different start points (randomized) will be used. Default: n=2.
k subset of benchmark functions. Default: 1:length(makeMoreFunList()$funList), i.e., all implemented functions.
verbosity Level 0 shows no output (default).

Value

res. data.frame with results: c("f", "r", "y")

Examples

summary(runSpotBench(k=1)$y)
sann2spot
Interface SANN to SPOT

Description

Provide an interface for tuning SANN. The interface function receives a matrix where each row is a proposed parameter setting (`'temp'`, `'tmax'`), and each column specifies the parameters. It generates a $(n,1)$-matrix as output, where n is the number of (`'temp'`, `'tmax'`) parameter settings.

Usage

```r
sann2spot(algpar, par = c(10, 10), fn, maxit = 100, ...)
```

Arguments

- `algpar` matrix algorithm parameters.
- `par` Initial values for the parameters to be optimized over.
- `fn` A function to be minimized (or maximized), with first argument the vector of parameters over which minimization is to take place. It should return a scalar result.
- `maxit` Total number of function evaluations: there is no other stopping criterion. Defaults to 10000.
- `...` further arguments for `optim`

Value

matrix of results (performance values)

Examples

```r
sphere <- function(x){sum(x^2)}
algpar <- matrix(c(1:10, 1:10), 10,2)
sann2spot(algpar, fn = sphere)
```

satter
Satterthwaite Function

Description

The Satterthwaite function can be used to estimate the magnitude of the variance component $(\sigma_{\beta})^2$, when the random factor has significant main effects.

Usage

```r
satter(MScoeff, MSi, dfi, alpha = 0.05)
```
Arguments

- **MScoeff**: coefficients c.1, c.2
- **MSi**: mean squared values
- **dfi**: degrees of freedom
- **alpha**: error probability

Details

Note, the output from the `satter()` procedure is `sigma_beta`.

Value

vector with 1. estimate of variance 2. degrees of freedom, 3. lower value of 1-alpha confint 4. upper value of 1-alpha confint

Examples

```r
res <- satter(MScoeff = c(1/4, -1/4),
              MSi = c(394.9, 73.3),
              dfi = c(4,3),
              alpha = 0.1)
```

Description

(Conditional) Simulation at given locations, with a model fit resulting from `buildKriging`. In contrast to prediction or estimation, the goal is to reproduce the covariance structure, rather than the data itself. Note, that the conditional simulation also reproduces the training data, but has a two times larger error than the Kriging predictor.

Usage

```r
## S3 method for class 'kriging'
simulate(
  object,
  nsim = 1,
  seed = NA,
  xsim,
  method = "decompose",
  conditionalSimulation = TRUE,
  Ncos = 10,
  returnAll = FALSE,
  ...
)
```
Arguments

object
nsim
seed
xsim
method

fit of the Kriging model (settings and parameters), of class kriging.
number of simulations
random number generator seed. Defaults to NA, in which case no seed is set
list of samples in input space, to be simulated at
"decompose" (default) or "spectral", specifying the method used for simulation. Note that "decompose" is can be preferable, since it is exact but may be computationally infeasible for high-dimensional xsim. On the other hand, "spectral" yields a function that can be evaluated at arbitrary sample locations.

conditionalSimulation

logical, if set to TRUE (default), the simulation is conditioned with the training data of the Kriging model. Else, the simulation is non-conditional.

Ncos
returnAll

number of cosine functions (used with method="spectral" only)
if set to TRUE, a list with the simulated values (y) and the corresponding covariance matrix (covar) of the simulated samples is returned.

... further arguments, not used

Value

Returned value depends on the setting of object$simulationReturnAll

References

See Also

buildKriging, predict.kriging

Description

Simulation-based Function Generator. Generate functions via simulation of Kriging models, e.g., for assessment of optimization algorithms with non-conditional or conditional simulation, based on real-world data.
Usage

```r
simulateFunction(
  object,
  nsim = 1,
  seed = NA,
  method = "spectral",
  xsim = NA,
  Ncos = 10,
  conditionalSimulation = TRUE
)
```

Arguments

- **object**: an object generated by `buildKriging`
- **nsim**: the number of simulations, or test functions, to be created
- **seed**: a random number generator seed. Defaults to NA; which means no seed is set. For sake of reproducibility, set this to some integer value.
- **method**: "decompose" (default) or "spectral", specifying the method used for simulation. Note that "decompose" is can be preferable, since it is exact but may be computationally infeasible for high-dimensional xsim. On the other hand, "spectral" yields a function that can be evaluated at arbitrary sample locations.
- **xsim**: list of samples in input space, for simulation (only used for decomposition-based simulation, not for spectral method)
- **Ncos**: number of cosine functions (used with method="spectral" only)
- **conditionalSimulation**: whether (TRUE) or not (FALSE) to use conditional simulation

Value

a list of functions, where each function is the interpolation of one simulation realization. The length of the list depends on the nsim parameter.

References

See Also

`buildKriging`, `simulate.kriging`
Description

Sequential Parameter Optimization. This is one of the main interfaces for using the SPOT package. Based on a user-given objective function and configuration, spot finds the parameter setting that yields the lowest objective value (minimization). To that end, it uses methods from the fields of design of experiment, statistical modeling / machine learning and optimization.

Usage

```
spot(x = NULL, fun, lower, upper, control = list(), ...)
```

Arguments

- `x` is an optional start point (or set of start points), specified as a matrix. One row for each point, and one column for each optimized parameter.
- `fun` is the objective function. It should receive a matrix `x` and return a matrix `y`. In case the function uses external code and is noisy, an additional seed parameter may be used, see the `control$seedFun` argument below for details. Mostly, `fun` must have format `y = f(x, ...)`. If a noisy function requires some specific seed handling, e.g., in some other non-R code, a seed can be passed to `fun`. For that purpose, the user must specify `control$noise = TRUE` and `fun` should be `fun(x, seed, ...)`
- `lower` is a vector that defines the lower boundary of search space. This determines also the dimensionality of the problem.
- `upper` is a vector that defines the upper boundary of search space.
- `control` is a list with control settings for `spot`. See `spotControl`.
- `...` additional parameters passed to `fun`.

Value

This function returns a list with:

- `xbest` Parameters of the best found solution (matrix).
- `ybest` Objective function value of the best found solution (matrix).
- `x` Archive of all evaluation parameters (matrix).
- `y` Archive of the respective objective function values (matrix).
- `count` Number of performed objective function evaluations.
- `msg` Message specifying the reason of termination.
- `modelFit` The fit of the last build model, i.e., an object returned by the last call to the function specified by `control$model`.

spot
Examples

Only a few examples. More examples can be found in the vignette and in
the paper "In a Nutshell -- The Sequential Parameter Optimization Toolbox",
see https://arxiv.org/abs/1712.04076

1. Most simple example: Kriging + LHS search + predicted mean optimization
(not expected improvement)
set.seed(1)
res <- spot(x=NULL, funSphere, c(-2,-3), c(1,2),
 control=list(funEvals=15))
res$xbest
res$ybest

2. With expected improvement
set.seed(1)
res <- spot(x=NULL, funSphere, c(-2,-3), c(1,2),
 control=list(funEvals=15,
 modelControl=list(target="ei")))
res$xbest
res$ybest

3. Use local optimization instead of LHS search
set.seed(1)
res <- spot(x=NULL, funSphere, c(-2,-3), c(1,2),
 control=list(funEvals=15,
 modelControl=list(target="ei"),
 optimizer=optimLBFGSB))
res$xbest
res$ybest

4. Use transformed input values
set.seed(1)
f2 <- function(x){2^x}
lower <- c(-100, -100)
upper <- c(100, 100)
transformFun <- rep("f2", length(lower))
res <- spot(x=NULL, funSphere, lower=lower, upper=upper,
 control=list(funEvals=15,
 modelControl=list(target="ei"),
 optimizer=optimLBFGSB,
 transformFun=transformFun))
res$xbest
res$ybest

Evolution Strategy Implementation
Description

This function is used by \texttt{optimES} as a main loop for running the Evolution Strategy with the given parameter set specified by SPOT.

Usage

\begin{verbatim}
spotAlgEs(
 mue = 10,
 nu = 10,
 dimension = 2,
 mutation = 2,
 sigmaInit = 1,
 nSigma = 1,
 tau0 = 0,
 tau = 1,
 rho = "bi",
 sel = -1,
 stratReco = 1,
 objReco = 2,
 maxGen = Inf,
 maxIter = Inf,
 seed = 1,
 noise = 0,
 fName = funSphere,
 lowerLimit = -1,
 upperLimit = 1,
 verbosity = 0,
 plotResult = FALSE,
 logPlotResult = FALSE,
 sigmaRestart = 0.1,
 preScanMult = 1,
 globalOpt = NULL,
 ...
)
\end{verbatim}

Arguments

mue number of parents, default is 10

nu selection pressure. That means, number of offspring (lambda) is mue multiplied with nu. Default is 10

dimension dimension number of the target function, default is 2

mutation mutation type, either 1 or 2, default is 1

sigmaInit initial sigma value (step size), default is 1.0

nSigma number of different sigmas, default is 1

tau0 number, default is 0.0. tau0 is the general multiplier.

tau number, learning parameter for self adaption, default is 1.0. tau is the local multiplier for step sizes (for each dimension).
Description

Remove objects

Usage

spotCleanup(control)

Arguments

control list of spot control parameters.
Description

Default Control list for spot. This function returns the default controls for the functions `spot` and `spotLoop`.

Usage

```r
spotControl(dimension = NA)
```

Arguments

dimension problem dimension, that is, the number of optimized parameters. This parameter is mandatory since v2.8.4.

Details

Control is a list of the settings:

- **design** A function that creates an initial design of experiment. Functions that accept the same parameters, and return a matrix like `designLHD` or `designUniformRandom` can be used. Default is `designLHD`.

- **designControl** A list of controls passed to the `control` list of the `design` function. See help of the respective function for details. Default is an empty list.

- **directOpt** A function that is used to optimize after the `spot` run is finished. Functions that accept the same parameters, and return a matrix like `optimNLOPTR` or `optimDE` can be used. Default is `optimNLOPTR`.

- **directOptControl** A list of controls, which determine whether a direct optimization (exploitation of the final search region) is performed. Default is to run no direct optimization, i.e., `directOptControl = list(funEvals = 0)`.

- **funEvals** This is the budget of function evaluations of the direct optimization performed after the SMBO is performed. Default is `list(funEvals = 0)`.

- **duplicate** In case of a deterministic (non-noisy) objective function, this handles duplicated candidate solutions. By default (`duplicate = "EXPLORE"`), duplicates are replaced by new candidate solutions, generated by random sampling with uniform distribution. If desired, the user can set this to "STOP", which means that the optimization stops and results are returned to the user (with a warning). This may be desirable, as duplicates can be a indicator for convergence, or for a problem with the configuration. In case of noise, duplicates are allowed.

- **funEvals** This is the budget of function evaluations (spot uses no more than `funEvals` evaluations of `fun`), defaults to 20.

- **handleNAsMethod** A function that treats NAs if there are any present in the result vector of the objective function. Default: `NULL`. By default NAs will not be treated.
infillCriterion A function defining an infillCriterion to be used while optimizing a model. Default: NULL. For example check infillExpectedImprovement

model A function that builds a statistical model of the observed data. Functions that accept the same parameters, and return a matrix like buildKriging or buildRandomForest can be used. Default is buildKriging.

modelControl A list of controls passed to the control list of the model function. See help of the respective function for details. Default is an empty list.

multiStart Number of restarts for optimization on the surrogate model. Default: 1, i.e., no restarts.

noise Boolean, whether the objective function has noise or not. Default is non-noisy, that is, FALSE.

OCBA Boolean, indicating whether Optimal Computing Budget Allocation (OCBA) should be used in case of a noisy objective function or not. OCBA controls the number of replications for each candidate solution. Note, that replicates should be larger than one in that case, and that the initial experimental design (see design) should also have replicates larger one. Default is FALSE.

OCBABudget The number of objective function evaluations that OCBA can distribute in each iteration. Default is 3.

optimizer A function that is used to optimize based on model, finding the most promising candidate solutions. Functions that accept the same parameters, and return a matrix like optimLHD or optimDE can be used. Default is optimLHD.

optimizerControl A list of controls passed to the control list of the optimizer function. See help of the respective function for details. Default is an empty list.

parNames Vector of parameter names of each variable as a string, defaults c("x1", "x2", "x3",...).

plots Whether progress should be tracked by a line plot, default is FALSE

progress Whether progress should be visualized, default is FALSE

replicates The number of times a candidate solution is initially evaluated, that is, in the initial design, or when created by the optimizer. Default is 1.

replicateResult logical. If TRUE, one result is replicated. The result is specified as the lower vector and re-evaluated funEvals times. No model building and optimization is performed, only evaluations on the objective function. Default: FALSE.

returnFullControlList logical. Return the full control list. Can be switched off to save memory/space. Default: TRUE.

seedFun An initial seed for the objective function in case of noise, by default NA. The default means that no seed is set. The user should be very careful with this setting. It is intended to generate reproducible experiments for each objective function evaluation, e.g., when tuning non-deterministic algorithms. If the objective function uses a constant number of random number generations, this may be undesirable. Note, that this seed is by default set prior to each evaluation. A replicated evaluation will receive an incremented value of the seed. Sometimes, the user may want to call external code using random numbers. To allow for that case, the user can specify an objective function (fun), which has a second parameter seed, in addition to first parameter (matrix x). This seed can then be passed to the external code, for random number generator initialization. See end of examples section for a demonstration.
seedSPOT This value is used to initialize the random number generator. It ensures that experiments are reproducible. Default is 1.

subsetSelect A function that selects a subset from a given set of design points. Default is selectAll.

subsetControl A list of controls passed to the control list of the subsetSelect function. See help of the respective function for details. Default is an empty list.

time List with the following time information:

 maxTime num Maximum allowed run time (in minutes) for spot or spotLoop. The default value for maxTime (in minutes) is Inf and can be overwritten by the user. The internal value startTime, that is used to control maxTime, will be set by spotFillControlList.

 note: maxTime is only an approximate value. It does not affect the directOpt run.

 startTime Start time. Will be set in spotFillControlList.

 endTime End time.

types Vector of data type of each variable as a string, defaults "numeric" for all variables.

verbosity Integer level specifying how much output should be given by SPOT. 0 (default) ignores warnings of internal optimizers /models. 1 will show warnings and output.

Value

 a list

spotLoop
Sequential Parameter Optimization Main Loop

Description

SPOT is usually started via the function **spot**. However, SPOT runs can be continued (i.e., with a larger budget specified in control$funEvals) by using spotLoop. This is the main loop of SPOT iterations. It requires the user to give the same inputs as specified for **spot**. Note: control$funEvals must be larger than the value used in the previous run, because it specifies the total number of function evaluations and not the additional number of evaluations.

Usage

 spotLoop(x, y, fun, lower, upper, control, ...)

Arguments

 - **x**
 -
 - (m,n) matrix that contains the known candidate solutions. The SPOT loop is started with these values. Each row represents one n dimensional data point. Each of the m columns represents one optimized parameter.

 - **y**
 - (m,p) matrix that represents observations for each point in x. Each of the m rows represents solutions for one data point.
fun function that represents the objective function. It should receive a matrix \(x \) and return a matrix \(y \). In case the function uses external code and is noisy, an additional seed parameter may be used, see the `control$seedFun` argument below for details.

lower is a vector that defines the lower boundary of search space. This determines also the dimension of the problem.

upper is a vector that defines the upper boundary of search space.

control is a list with control settings for `spot`. See `spotControl`.

... additional parameters passed to `fun`.

Value

This function returns a list with:

xbest Parameters of the best found solution (matrix).

ybest Objective function value of the best found solution (matrix).

x Archive of all evaluation parameters (matrix).

y Archive of the respective objective function values (matrix).

count Number of performed objective function evaluations.

msg Message specifying the reason of termination.

modelFit The fit of the last built model, i.e., an object returned by the last call to the function specified by `control$model`.

Examples

```r
## Most simple example: Kriging + LHS + predicted
## mean optimization (not expected improvement)
control <- list(funEvals=20)
res <- spot(,funSphere,c(-2,-3),c(1,2),control)
## now continue with larger budget.
## 5 additional runs will be performed.
control$funEvals <- 25
res2 <- spotLoop(res$x,res$y,funSphere,c(-2,-3),c(1,2),control)
res2$xbest
res2$ybest
```

spotPlotErrors

Description

Visualize the alpha, beta errors and the power of the test
Usage

```r
spotPlotErrors(
  alternative = "greater",
  lower = -3,
  upper = 3,
  mu0 = 0,
  mu1 = 1,
  sigma = 1,
  n = NULL,
  xbar = 0,
  alpha = 0.05,
  beta = NULL
)
```

Arguments

- `alternative`: One of greater, less, or two.sided. The greater is the default.
- `lower`: lower limit of the plot
- `upper`: upper limit of the plot
- `mu0`: mean of the null
- `mu1`: mean of the alternative. See also parameter `beta`.
- `sigma`: standard deviation
- `n`: sample size
- `xbar`: observed mean
- `alpha`: error of the first kind
- `beta`: error 2nd kind. Default `NULL`. If specified, then parameter `mu1` will be ignored and `mu1` will be calculated based on `beta`.

Value

- description of return value

Examples

```r
spotPlotErrors(lower=490,upper=510,mu0=500,mu1=504,sigma=2.7,n=9,xbar=502.22)
spotPlotErrors(lower=140,upper=155,mu0=150,mu1=148,sigma=10,n=100,xbar=149,alternative="less")
```
Description
Plot power

Usage
spotPlotPower(y0, y1, alpha = 0.05, add = FALSE, n = NA, rightLimit = 1)

Arguments
- y0: First input vector
- y1: Second input vector
- alpha: description of alpha, default value is 0.05
- add: Boolean, default value is FALSE
- n: number of vector elements that should be evaluated, default value is NA, which means the whole vector
- rightLimit: description of rightLimit, default value is 1

Value
description of return value

Description
spotPlotSeverityBasic

Usage
spotPlotSeverityBasic(y0, y1, add = FALSE, n = NA, alpha, rightLimit = 1)

Arguments
- y0: first input vector
- y1: second input vector
- add: default value is FALSE
- n: default value is NA, which means length of y0 will be used for n
- alpha: description
- rightLimit: description of rightLimit, default value is 1
Value

description of return value

Examples

Example from D G Mayo and A Spanos.
Severe Testing as a Basic Concept in a NeymanPearson Philosophy of Induction.
British Journal for the Philosophy of Science, 57:323357, 2006. (fig 2):
x0 <- 12.1
mu1 <- seq(11.9,13,0.01)
n <- 100
sigma <- 2
alpha <- 0.025
plot(mu1, spotSeverityBasic(x0, mu1, n, sigma, alpha), type = "l", ylim=c(0,1), col="blue")
abline(h=0)
abline(h=1)
 abline(h=0.95)
abline(v=12.43)
plot power:
mu0 <- 12
points(mu1, spotPower(alpha, mu0, mu1, n, sigma), type = "l", ylim=c(0,1), col="green")
abline(v=12.72)

Description

Visualize test result, errors, and severity

Usage

spotPlotTest(
 alternative = "greater",
 lower = -3,
 upper = 3,
 mu0 = 0,
 mu1 = 1,
 sigma = 1,
 n = NULL,
 xbar = 0,
 alpha = 0.05,
 beta = NULL
)
spotPower

Arguments

 alternative One of greater, less, or two.sided. Full plots are currently implemented for less, which is the default.
 lower lower limit of the plot
 upper upper limit of the plot
 mu0 mean of the null
 mu1 mean of the alternative. See also parameter beta.
 sigma standard deviation
 n sample size
 xbar observed mean
 alpha error of the first kind
 beta error 2nd kind. Default NULL. If specified, then parameter mu1 will be ignored and mu1 will be calculated based on beta.

Value

description of return value

Examples

 spotPlotTest(lower=490, upper=510, mu0=500, mu1=504, sigma=2.7, n=9, xbar=502.22, alpha=0.025)
 # The following two plots should be nearly identical:
 spotPlotTest(lower=490, upper=510, mu0=500, sigma=2.7, n=9, xbar=502.22, alpha=0.025, beta=0.2)
 spotPlotTest(lower=490, upper=510, mu0=500, mu1=502.5215, sigma=2.7, n=9, xbar=502.22, alpha=0.025)

spotPower

Description

 Calculate power

Usage

 spotPower(alpha, mu0, mu1, n, sigma)

Arguments

 alpha description of alpha
 mu0 description of mu0
 mu1 description of mu1
 n vector length
 sigma standard deviation
Description

`spotSeverity`

Usage

```
spotSeverity(xbar, mu0, mu1, n, sigma, alpha, tdist = FALSE, paired = TRUE)
```

Arguments

- `xbar`: sample mean value
- `mu0`: mean value of the null hypothesis (usually referred to as H0)
- `mu1`: mean value of the alternative hypothesis (usually referred to as H1)
- `n`: sample size in each arm, e.g., if 20 samples are available, then `n=10` regardless whether the samples are paired/blocked (`paired=TRUE`) or independent (`paired=FALSE`). Degrees of freedom will be modified internally according to the setting of the `paired` argument.
- `sigma`: sample s.d. Will be used to determine s.d. of the differences (if `paired==TRUE`) or s.d. of the pooled s.d (if `paired==FALSE`).
- `alpha`: probability of a type I error, given H0 is true
- `tdist`: logical. Use Student t Distribution. Default: FALSE
- `paired`: logical. Paired (blocked) data. Default: TRUE

Value

An object of class "spotSeverity", with a summary method and a print method.

Examples

```r
s0 <- spotSeverity(xbar=0.4, mu0=0.0, mu1=0.6, n=25, sigma=1, alpha=0.03)
print(s0)
s1 <- spotSeverity(xbar=0.4, mu0=0.6, mu1=0.6, n=25, sigma=1, alpha=0.03)
print(s1)
s2 <- spotSeverity(xbar=0, mu0=0.6, mu1=0.6, n=25, sigma=1, alpha=0.03)
print(s2)
```

```
## Example from Mayo, p345
spotSeverity(xbar=90, mu0=0, mu1= 200, n=200, sigma = 450, alpha = 0.025,
paired = FALSE, tdist = FALSE)
```
Example from Vena02a to compare with results from t.test()

```r
## library("BHH2")
## data(shoes.data)
## A <- shoes.data$matA
## B <- shoes.data$matB
A <- c(13.2, 8.2, 10.9, 14.3, 10.7, 6.6, 9.5, 10.8, 8.8, 13.3)
B <- c(14, 8.8, 11.2, 14.2, 11.8, 6.4, 9.8, 11.3, 9.3, 13.6)
t.paired <- t.test(x = A, y = B, var.equal = TRUE, paired = TRUE,
alternative = "greater", conf.level = 0.95)
xbar <- mean(A-B)
n <- length(A)
sigma <- sd(A-B)
s.paired <- spotSeverityBasic(xbar=xbar, mu0=0, mu1= 1, n=n, sigma = sigma,
alpha = 0.025, tdist = TRUE)
```

Description

spotSeverityBasic

Usage

```r
spotSeverityBasic(x0, mu1, n, sigma, alpha)
```

Arguments

- `x0`: sample mean value
- `mu1`: description
- `n`: description
- `sigma`: description
- `alpha`: description

Value

description of return value
\textbf{Description}

simple elevator simulator

\textbf{Usage}

\texttt{sring(x, opt = list(), ...)}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{x} \hspace{1cm} perceptron weights
 \item \texttt{opt} \hspace{1cm} list of optional parameters, e.g.,
 \begin{itemize}
 \item \texttt{nElevators} number of elevators
 \item \texttt{probNewCustomer} probability of a customer arrival
 \item \texttt{nIterations} Number of iterations
 \item \texttt{randomSeed} random seed
 \end{itemize}
 \end{itemize}

\texttt{...} \hspace{1cm} additional parameters

\textbf{Value}

fitness

\textbf{Examples}

\begin{verbatim}
set.seed(123)
nStates = 6
nElevators = 2
sigma = 1
x = matrix(rnorm(n = 2*nStates, 1, sigma), 1,)
sring(x, opt = list(nElevators=nElevators,
nStates= nStates))
\end{verbatim}

\textbf{Description}

A data set based on evaluations of the \texttt{funCosts} function. The corresponding code can be found in the vignette SPOTVignetteElevator
Usage

srinRes1

Format

A data frame with 20 obs. of 3 variables:

- **y** num 10 10 10 10 10 ...
- **sigma** num 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 ...
- **ne** num 5 5 5 5 5 5 5 5 5 5 ...

Description

A data set based on evaluations of the `funCosts` function. Second experiment (extension of the first design) The corresponding code can be found in the vignette SPOTVignetteElevator

Usage

srinRes2

Format

A data frame with 22 obs. of 3 variables:

- **y** num 10 10 10 10 10 ...
- **sigma** num 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 ...
- **ne** num 5 5 5 5 5 5 5 5 5 5 ...

Description

A data set based on evaluations of the `funCosts` function. Second experiment (extension of the first design) The corresponding code can be found in the vignette SPOTVignetteElevator

Usage

srinRes3
Format

A data frame with 27 obs. of 3 variables:

<table>
<thead>
<tr>
<th>y</th>
<th>num</th>
<th>1e+07 1e+07 1e+07 1e+07 1e+07 ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigma</td>
<td>num</td>
<td>0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 ...</td>
</tr>
<tr>
<td>ne</td>
<td>num</td>
<td>5 5 5 5 5 5 5 5 5 5 ...</td>
</tr>
</tbody>
</table>

thetaNugget thetaNugget

Description

get theta (distance, lengthscale) and nugget (noise) parameters gradient

Usage

thetaNugget(par, X, Y)

Arguments

<table>
<thead>
<tr>
<th>par</th>
<th>parameter vector. First dim(x) entries are theta values, last entry is nugget parameter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>x coordinates</td>
</tr>
<tr>
<td>Y</td>
<td>y values at x</td>
</tr>
</tbody>
</table>

Value

negLogLikelihood

thetaNuggetGradient thetaNuggetGradient

Description

get theta (distance, lengthscale) and nugget (noise) parameters gradient

Usage

thetaNuggetGradient(par, X, Y)

Arguments

<table>
<thead>
<tr>
<th>par</th>
<th>parameter vector. First dim(x) entries are theta values, last entry is nugget parameter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>x coordinates</td>
</tr>
<tr>
<td>Y</td>
<td>y values at x</td>
</tr>
</tbody>
</table>
transformX

Transform input

Description
Transform input variables

Usage
```
transformX(xNat = NA, fn = vector())
```

Arguments
- **xNat** matrix with natural variables. Default: NA.
- **fn** vector of transformation functions names (char). Default: Empty vector (vector()).

Value
matrix of transformed parameters

Examples
```
f2 <- function(x){2^x}
fn <- c("identity", "exp", "f2")
xNat <- diag(3)
transformX(xNat, fn)

fn <- append(fn, c("sin", "cos", "tan"))
xNat <- cbind(xNat, xNat)
transformX(xNat, fn)
```

vmessage
formatted output dependent on verbosity

Description
Combine `sprintf` and `writeLines` to generate formatted output

Usage
```
vmessage(verbosity, text, value)
```

Arguments
- **verbosity** verbosity level
- **text** output to be printed
- **value** value to be printed
Examples

```r
x <- 123
vmessage(1, "value of x:", x)
```

Description

Wrap a given objective function to be evaluated via the batchtools package and make it accessible for SPOT.

Usage

```r
wrapBatchTools(
  fun,
  reg = NULL,
  clusterFunction = batchtools::makeClusterFunctionsInteractive(),
  resources = NULL
)
```

Arguments

- **fun**: function to wrap
- **reg**: batchtools registry, if none is provided, then one will be created automatically
- **clusterFunction**: batchtools clusterFunction, default: makeClusterFunctionsInteractive()
- **resources**: resource list that is passed to batchtools, default NULL

Value

callable function for SPOT
wrapFunction

Function Evaluation Wrapper

Description

This is a simple wrapper that turns a function of type $y = f(x)$, where x is a vector and y is a scalar, into a function that accepts and returns matrices, as required by spot. Note that the wrapper essentially makes use of the apply function. This is effective, but not necessarily efficient. The wrapper is intended to make the use of spot easier, but it could be faster if the user spends some time on a more efficient vectorization of the target function.

Usage

wrapFunction(fun)

Arguments

fun

the function $y = f(x)$ to be wrapped, with x a vector and y a numeric

Value

a function in the style of $y = f(x)$, accepting and returning a matrix

Examples

```r
## example function
branin <- function (x) {
  10 * (1 - 1/(8 * pi)) * cos(x[1]) + 10
  y
}
## vectorize / wrap
braninWrapped <- wrapFunction(branin)
## test original
branin(c(1,2))
branin(c(2,2))
branin(c(2,1))
## test wrapped
braninWrapped(matrix(c(1,2,2,2,2,1),3,2,byrow=TRUE))
```
wrapFunctionParallel Parallelized Function Evaluation Wrapper

Description

This is a simple wrapper that turns a function of type $y=f(x)$, where x is a vector and y is a scalar, into a function that accepts and returns matrices, as required by spot. While doing so, the wrapper will use the parallel package in order to parallelize the execution of each function evaluation. This function will create a computation cluster if no cluster is specified and there is no default cluster setup!

Usage

wrapFunctionParallel(fun, cl = NULL, nCores = NULL)

Arguments

fun the function that shall be evaluated in parallel
cl Optional, an existing computation cluster
nCores Optional, amount of cores to use for creating a new computation cluster. Default is all cores.

Value

numeric vector, result of the parallelized evaluation

wrapSystemCommand

Description

Optimize parameters for a script that is accessible via Command Line

Usage

wrapSystemCommand(systemCall)

Arguments

systemCall String that calls the command line script.

Value

callable function for SPOT
Examples

exampleScriptLocation <- system.file("consoleCallTrialScript.R",package = "SPOT")
f <- wrapSystemCommand(paste("$(R_HOME)/bin/Rscript", exampleScriptLocation))
spot(f,c(1,1),c(100,100))
Index

* datasets
 dataGasSensor, 25
 resBench01, 93
 resSpot, 94
 resSpot2, 94
 sringRes1, 116
 sringRes2, 117
 sringRes3, 117
* package
 SPOT-package, 5
* spotTools
 diff0, 29
biplot, 88
buildB0, 5, 91
buildCVMmodel, 7, 91
buildEnsembleStack, 8
buildGaussianProcess, 9
buildKriging, 10, 66, 67, 99–101, 107
buildKrigingDACE, 13
buildLasso, 14
buildLM, 15
buildLOESS, 16
buildPCA, 17, 88, 90
buildRandomForest, 18, 87, 107
buildRanger, 19
buildrsdummy, 21
buildRSM, 21, 26
buildTreeModel, 22
checkArrival, 23
checkFeasibilityNLopGnIngres, 24
code2nat, 24
corrCubic, 13
corrExp, 13
corrExpG, 13
corrGauss, 13
corrKriging, 13
corrLin, 13
corrNoisyGauss, 13
corrNoisyKriging, 13
corrSpherical, 13
corrSpline, 13
dataGasSensor, 25
descentSpotRSM, 26
designLHD, 27, 75, 77, 106
designUniformRandom, 28, 106
diff0, 29
doParallel, 30
expectedImprovement, 30
funBard, 31
funBeale, 32
funBox3d, 32
funBranin, 33
funBrownBS, 34
funCosts, 35
funCyclo, 35
funError, 37
funFreudRoth, 38
funGauss, 39
funGoldsteinPrice, 39
funGulf, 40
funHelical, 41
funIshigami, 42
funJennSamp, 43
funMeyer, 44
funMoo, 45
funNoise, 45
funOptimLecture, 46
funPowellBS, 47
funPowellS, 47
funRosen, 48
funRosen2, 49
funShiftedSphere, 50, 52
funSoblev99, 50
funSphere, 37, 50, 51, 105
funString, 52
INDEX

getCosts, 53
getMultiStartPoints, 54
getNatDesignFromCoded, 54
getPerformanceStats, 55
getPositions, 55
getPower, 56
getReplicates, 57
getSampleSize, 57

handleNAsKrigingWorst, 58
handleNAsMax, 59
handleNAsMean, 60

imputeY, 61
infillEI, 62
infillExpectedImprovement, 62
init_ring, 63
is.finite, 37

makeMoreFunList, 64, 96, 97
makeSpotFunList, 65, 96, 97

normalizeMatrix, 66
normalizeMatrix2, 67

obj.plgpEI, 67
objectiveFunctionEvaluation, 68
OCBA, 93
ocbaRanking, 70
optim, 65, 96
optimDE, 71, 106, 107
optimES, 72, 104
optimGenoud, 74
optimLagp, 75
optimLBFGSB, 76
optimLHD, 77, 107
optimNLOPTR, 78, 106
optimRSfun, 79

perceptron, 80
plgpEI, 68, 80
plot.spotSeverity, 81
plotBestObj, 83
plotData, 83, 86, 88
plotFunction, 84, 85, 88
plotModel, 84, 86, 87
plotPCA, 87, 88
plotPCAvariance, 89
predict.cvModel, 91
predict.dace, 14

predict.ensembleStack, 9
predict.kriging, 6, 11–13, 100
predict.spotBOModel, 7, 91
predict.spotLOESS, 17
predict.spotRSM, 22
prepareBestObjectiveVal, 92

regpoly0, 13
regpoly1, 13
regpoly2, 13
repeatsOCBA, 71, 92
resBench01, 93
resSpot, 94
resSpot2, 94
ring, 95
runOptim, 96
runSpotBench, 97

sann2spot, 98
satter, 98
selectAll, 108
simulate.kriging, 99, 101
simulateFunction, 100
SPOT (SPOT-package), 5
spot, 5, 14, 24, 54, 61, 68, 69, 97, 102, 106, 108, 121, 122

SPOT-package, 5
spotAlgEs, 103
spotCleanup, 105
spotControl, 24, 54, 55, 59–61, 69, 71, 102, 106, 109
spotFillControlList, 108
spotLoop, 24, 54, 106, 108
spotPlotErrors, 109
spotPlotPower, 111
spotPlotSeverityBasic, 111
spotPlotTest, 112
spotPower, 113
spotSeverity, 114
spotSeverityBasic, 115
sprintf, 119
sring, 52, 116
sringRes1, 116
sringRes2, 117
sringRes3, 117

thetaNugget, 118
thetaNuggetGradient, 118
transformX, 68, 69, 119
vmmessage, 119

wrapBatchTools, 120
wrapFunction, 121
wrapFunctionParallel, 122
wrapSystemCommand, 122
writeLines, 119