Package ‘SPREDA’

October 12, 2022

Type Package
Title Statistical Package for Reliability Data Analysis
Version 1.1
Date 2018-11-25
Author Yili Hong, Yimeng Xie, and Zhibing Xu
Maintainer Yili Hong <yilihong@vt.edu>
Depends survival, nlme
Description The Statistical Package for REliability Data Analysis (SPREDA) implements recently-developed statistical methods for the analysis of reliability data. Modern technological developments, such as sensors and smart chips, allow us to dynamically track product/system usage as well as other environmental variables, such as temperature and humidity. We refer to these variables as dynamic covariates. The package contains functions for the analysis of time-to-event data with dynamic covariates and degradation data with dynamic covariates. The package also contains functions that can be used for analyzing time-to-event data with right censoring, and with left truncation and right censoring. Financial support from NSF and DuPont are acknowledged.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2018-11-25 17:50:03 UTC

R topics documented:

SPREDA-package .. 2
ce.dat.prep ... 3
cls .. 4
Coatingenv ... 5
Coatingout ... 5
deglmx ... 6
i.spline.x ... 8
kaplan.meier.location ... 9
Lifedata.MLE ... 10
SPREDA-package

Statistical Package for Reliability Data Analysis

Description

The Statistical Package for REliability Data Analysis (SPREDA) implements recently-developed statistical methods for the analysis of reliability data. Modern technological developments, such as sensors and smart chips, allow us to dynamically track product/system usage as well as other environmental variables, such as temperature and humidity. We refer to these variables as dynamic covariates. The package contains functions for the analysis of time-to-event data with dynamic covariates and degradation data with dynamic covariates. The package also contains functions that can be used for analyzing time-to-event data with right censoring, and with left truncation and right censoring. Financial support from NSF and DuPont are acknowledged.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>SPREDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.1</td>
</tr>
<tr>
<td>Date:</td>
<td>2018-11-25</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

Contains functions that are useful for the analysis of reliability data.

Author(s)

Yili Hong, Yimeng Xie, and Zhbibing Xu

Maintainer: Yili Hong <yilihong@vt.edu>
References

ce.dat.prep

Create an object for cumulative exposure

Description

Create a dataset with format that is suitable for analysis in the cumulative exposure model.

Usage

```r
ce.dat.prep(xt.dat, failure.dat, ref_time = NULL)
```

Arguments

- **xt.dat**: "data.frame" format object. The first and second columns are sample id and time, respectively. Other columns are dynamic covariates.
- **failure.dat**: A "Surv" object. See `Surv`.
- **ref_time**: Reference time for each sample. If not specified, ref_time is a vector of 0's.

Value

A list of failure.dat, xt.obj and aux.inf.
Mixed primal-dual bases algorithm for estimation of parameters with restriction.

Description

It is used to estimate the parameters which have restrictions on the domain based on mixed primal-dual bases algorithm.

Usage

cls(y, X)

Arguments

y A vector for responses.
X Matrix of covariates.

Value

y A vector for responses;
X Matrix of covariates;
betahat Estimates of parameters;
yhat Estimates of responses.

Author(s)

Yili Hong

References

See Also

clme and deglmx

Examples

y<-sort(rnorm(100, 10, 2))
x<-cbind(runif(100, 1, 3), sort(rnorm(100, 3, 1)))
res<-cls(y, x)
Coatingenv

Dynamic covariates for the coating data.

<table>
<thead>
<tr>
<th>Description</th>
<th>A data frame with 36 observations and 9 variables.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>data(Coatingenv)</td>
</tr>
<tr>
<td>Format</td>
<td>SPEC_NUM Observation id.</td>
</tr>
<tr>
<td></td>
<td>TIME Observation time for each id.</td>
</tr>
<tr>
<td></td>
<td>UVB a dynamic covariate.</td>
</tr>
<tr>
<td></td>
<td>UVA a dynamic covariate.</td>
</tr>
<tr>
<td></td>
<td>VIS a dynamic covariate.</td>
</tr>
<tr>
<td></td>
<td>TEMP a dynamic covariate.</td>
</tr>
<tr>
<td></td>
<td>RH a dynamic covariate.</td>
</tr>
<tr>
<td></td>
<td>UV a dynamic covariate.</td>
</tr>
<tr>
<td></td>
<td>GROUP Group for each id.</td>
</tr>
</tbody>
</table>

Source

Coatingout

Dynamic covariates for coating data

<table>
<thead>
<tr>
<th>Description</th>
<th>A data frame with 36 observations and 4 variables.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>data(Coatingout)</td>
</tr>
</tbody>
</table>
Format

SPEC_NUM Observation id.
TIME Observation time for each id.
DAMAGE_Y Response for each id.
GROUP Group for each id.

Source

deglmx

Functions for estimating parameters in the linear/nonlinear mixed models with dynamic covariates.

Description

Functions for estimating parameters in the linear/nonlinear mixed models with dynamic covariates. Those dynamic covariates will have restricted-shape effects such as monotonic increasing, decreasing or quadratic shape.

Usage

```r
deglmx(fixed, data, dyn.data, id, time, random = NULL, linear = TRUE, ytrend, splinetrend = NULL, splinetype = NULL, degree = NULL, knots = NULL, weights = NULL, subset = NULL, start, maxiter = 10, method = "BFGS", ...)
```

Arguments

- `fixed` Formula with fixed effect.
- `data` Data with id, time, response, and fixed covariates.
- `dyn.data` Dynamic data with id, time, dynamic covariates.
- `id` The name of the id which is characters or string.
- `time` The name of time in the data or dyn.data which is characters or string.
- `random` The formula for random parts which should condition on the id.
- `linear` The index of linear or nonlinear.
- `ytrend` If ytrend=1 indicates the increasing trend of the response, if ytrend=-1 indicates the decreasing trend of the response.
- `splinetrend` They are a vector of trends of dynamic covariate effects. Define 1 as increasing trend and -1 as decreasing trend.
- `splinetype` They are a vector of the spline basis type which can be chosen among "Ms", "Is", and "Cs".
The returned outputs belong to class of "deglmx". list(type = type, fit = fit, dat = dat.obj, dyn.mat = cov.mat.tmp, ytrend = ytrend, dyncovnames = dyncovnames, dyn.data = dyn.data, beta.index = beta.index, call = mfun)

type Type of the model either linear mixed or nonlinear mixed models.
fit The fitting results in the model including estimates, residuals, loglikelihood, and so on.
dat The modified data.
dyn.mat The spline basis functions.
ytrend The indication of response trend either increasing (1) or decreasing (-1).
dyncovnames Names of dynamic covariates in the model.
dyn.data The modified dynamic data.
beta.index Indications of parameters in the dynamic covariates.
call The call function in the model.

Note

For the nonlinear model, we currently only implement one specific nonlinear relationship.

Author(s)

Yili Hong

References

Examples

```r
data(Coatingenv)
data(Coatingout)

fit=deglmx(DAMAGE_Y~UV+RH+TEMP, data=Coatingout, dyn.data=Coatingenv,
  id="SPEC_NUM", time="TIME", random=~TIME|SPEC_NUM, linear=TRUE, ytrend=-1,
  splinetrend=c(-1, -1, -1), splinetype=c("Is", "Cs", "Is"), degree=c(3, 3, 3),
  knots=c(4, 4, 4), weights=NULL, subset=NULL, start=c(0.017, 0.0013, -0.404, 0.0176),
  maxiter=10, method="BFGS")

fit=deglmx(DAMAGE_Y~G/(1+exp(-log(UV+RH+TEMP)/H)), data=Coatingout, dyn.data=Coatingenv,
  id="SPEC_NUM", time="TIME", random=~G+H|SPEC_NUM, linear=FALSE, ytrend=-1,
  splinetrend=c(1, 1, 1), splinetype=c("Is", "Cs", "Is"), degree=c(3, 3, 3),
  knots=c(4, 4, 4), weights=NULL, subset=NULL, start=c(0.1, 0.1, -0.5, 0.01),
  maxiter=4)
```

i.spline.x

Description

Create the i_th splines basis for I_splines basis or C_splines basis

Usage

```r
i.spline.x(xx, tt, i, k, delta = 1e-04, Cs = F)
```

Arguments

- `xx` values of of covariate
- `tt` values of knot sequence of the covariate
- `i` I_th splines basis
- `k` degree of the spline
- `delta` the length of the spans to split the range of covariate
- `Cs` indicator of whether the creation of C_splines basis is needed

Details

Creation of the i_th splines basis for I_splines basis or C_splines basis

Value

`i.spline.x` returns a vector of i_th splines basis for covariate values xx in knots i and degree k
kaplan.meier.location

Author(s)
Yili Hong

References

See Also
m.spline.x

Examples

```r
i.spline.x(xx=runif(20), tt=c(0, 0, 0, 0.3, 0.6, 0.8, 1, 1, 1), i=3, k=3, delta = 1e-04, Cs = FALSE)
i.spline.x(xx=runif(20), tt=c(0, 0, 0, 0.3, 0.6, 0.8, 1, 1, 1), i=3, k=3, delta = 1e-04, Cs = TRUE)
```

kaplan.meier.location Kaplan-Meier Location

Description
Calculate the location of Kaplan-Meier estimator.

Usage
kaplan.meier.location(fit)

Arguments
fit survfit object.

Value
xloc, yloc x, y locations.

Author(s)
Yili Hong

Examples

```r
require(survival)
fit <- survfit(Surv(time, status) ~ x, data = aml)
kaplan.meier.location(fit)
```
Lifedata.MLE

Parametric Fitting for Lifetime Data

Description

Fit parametric models (based on log-location-scale family of distributions) to right censored and/or left truncated data, with (dynamic) covariates.

Usage

Lifedata.MLE(formula, data, xt.dat = NULL, dist, method = "BFGS", subset, truncation, na.action, weights, ref_time = NULL, starts = NULL, ...)

Arguments

formula
A formula object, which has a Surv object on the left of \(\sim \) and covariates on the right.

data
A data frame used to evaluate variables in the formula, subset and weights arguments.

xt.dat
A data frame contains dynamic covariates. The first and second columns must be sample id and time. If specified, cumulative exposure model will be used to fit the data.

dist
Distribution used in the model. Can be "weibull", "lognormal", "loglogistic", "frechet".

method
Default is "BFGS". This function calls optim to do optimization. Other options can be found in optim.

subset
This is an optional argument that specifies the subset of observations to be used in the fitting procedure.

truncation
An optional data frame contains truncation time and indicators.

na.action
Indicates what to be done when data contain missing values.

weights
An optional vector of weights for each observation.

ref_time
An optional vector of reference time (start time) of dynamic covariates. If it is NULL, ref_time is a vector of 0's.

starts
Initial values for parameters.

...
Further arguments can be passed to optim.

Details

The default method for choosing start values can sometimes failed, the user may need to try several start values to make the function work.
Value

This function returns an object of class "Lifedata.MLE". An "Lifedata.MLE" object is a list of

- **call**: Called function.
- **formula**: Formula argument in the input.
- **coef**: Vector of coefficients.
- **vov**: Variance-covariance matrix of coef.
- **min**: -loglikelihood evaluated at coef.
- **surv**: Survival probabilities.
- **dat**: Dataset used to fit the model.

Author(s)

Yili Hong

References

See Also

`Surv`, `optim`, `summary.Lifedata.MLE`. See methods(class="Lifedata.MLE") for all the functions related to "Lifedata.MLE" object.

Examples

```r
# right censored data
data(shock)
res1=Lifedata.MLE(Surv(Distance, Censor)~1, data=shock, dist="weibull")
res1
summary(res1)

res2=Lifedata.MLE(Surv(Distance, Censor)~1, data=shock, dist="lognormal")
res2
summary(res2)
```

```r
# left truncated right censoring data
data(testdata)
test=Lifedata.MLE(Surv(truncation.age, age, failure)~1, data=testdata,dist="weibull", method="Nelder-Mead", subset=(group="MC_Old"))
summary(test)
```

```r
# dynamix covariates
data(Prod2.xt.dat)
```
data(Prod2.fai.dat)

test=Lifedata.MLE(Surv(failure.time, delta)-1, data=Prod2.fai.dat, xt.dat=Prod2.xt.dat, starts=c(12, 3.5, log(2)), dist="weibull")
summary(test)

lifetime.mle
Calculate MLE for Lifetime Distribution

Description

Calculate MLE for samples from lifetime distribution, e.g., Weibull distribution. The observations can be complete or censored.

Usage

```r
lifetime.mle(dat, minusloglik, starts, method = "BFGS", hessian = TRUE,...)
```

Arguments

- `dat` First column contains event times, second column contains event indicators.
- `minusloglik` -loglikelihood.
- `starts` Initial values for parameters.
- `method` Default is "BFGS". This function call `optim` to do optimisation. Other options can be found in `optim`.
- `hessian` A logical value. If TRUE, hessian matrix will be returned. Default is TRUE.
- `...` Further arguments can be passed to `optim`.

Value

A list of

- `call` Called function.
- `coef` The best minimizer found.
- `vov` Variance-covariance matrix of `coef`.
- `min` -loglikelihood evaluated at `coef`.
- `dat` Dataset used.
- `minusloglik` -loglikelihood function.

Author(s)

Yili Hong
m.spline.x

See Also

optim

Examples

censored samples from Weibull distribution
dat = cbind(c(1.1, 2, 3.6, 4, 5.3, 7, 7, 7), c(1, 1, 1, 1, 0, 0, 0, 0))
res = lifetime.mle(dat, minusloglik=minusloglik.sev, starts=c(0, 1))
res$coef # return \(u, \log(\sigma) \)

m.spline.x

\(M_splines \ basis \)

Description

Creation of \(M_splines \) basis

Usage

m.spline.x(x, tt, i, k)

Arguments

x a value of the covariate
tt values of knot sequence of the covariate
i the \(i \)th \(M_spline \) function
k degree of the spline

Value

\(m_spline_x \) returns a value of \(M_spline \) basis value for \(x \) in \(i \)th spline degree of \(k \)

Author(s)

Yili Hong

References

Hong, Y., Y. Duan, W. Q. Meeker, D. L. Stanley, and X. Gu (2014), Statistical Methods for Degra-
dation Data with Dynamic Covariates Information and an Application to Outdoor Weathering Data,
Technometrics, DOI: 10.1080/00401706.2014.915891.

See Also

i.spline.x

Examples

m.spline.x(x=0.3, tt=c(0, 0, 0, 0.3, 0.6, 0.8, 1, 1), i=2, k=3)
MIC.splines.basis

Splines basis functions

Description

Creation splines basis for M_splines, I_splines and C_splines

Usage

MIC.splines.basis(x, df = NULL, knots = NULL, boundary.knots = NULL,
type = "Ms", degree = 3, delta = 0.01, eq.alloc = F)

Arguments

x values of covariate
df number of splines needed which is equal to knots+degree
knots number of knots needed which does not include the number of knots at the
beginning
boundary.knots the values of boundary knots, which are usually the minimum and maximum of
covariate
type types of splines basis needed, which can be Ms Is or Cs
degree degree of the splines function
delta the length of the spans to split the range of covariate
eq.alloc indicators of whether the knots are equally allocated

Value

list(mat=mat,x=x, df=df, knots=knots, boundary.knots=boundary.knots, type=type, degree=degree, delta=delta)

mat it is a matrix of splines basis
x the input of covariate
df the input of number of splines needed
knots the input of number of knots needed not including the boundary
boundary.knots the values of boundary knots
type type of splines function which can be MS IS or Cs
degree degree of the splines functions
delta the length of the spans to split the range of covariate

Author(s)

Yili Hong
plev

References

See Also
i.spline.x, m.spline.x

Examples
MIC.splines.basis(x=runif(20), df = NULL, knots = 3, boundary.knots = NULL,
 type = "Ms", degree = 4, delta = 0.01, eq.alloc = FALSE)

plev The Standard Largest Extreme Value Distribution

Description
The cdf, pdf, quantile function, and random number generation for the standard largest extreme value distribution.

Usage
plev(z)
dlev(z)
qlev(p)
rlev(n)

Arguments
z Vector of values where the cdf or pdf to be evaluated.
p Vector of probabilities where the quantile function to be evaluated.
n Number of random samples. If input is a vector, then the number generated is the length of it.

Value
plev returns cdf, dlev returns pdf, qlev returns quantiles, and rlev returns random samples.

Author(s)
Yili Hong

See Also
psev, dsev, qsev, rsev.
Examples

plev(c(2,3))
dlev(c(2,3))
qlev(0.1)
rlev(10)

plotdeglmx

Plot function for the class of "deglmx".

Description

Plots of dynamic covariates and fitting of the model in the class of "deglmx".

Usage

plotdeglmx(x, type)

Arguments

x
The fitting results of class "deglmx".

type
If type=1, plot the spline effect plot. If type=2, plot the fitting plots. If type is missing, plot all of them.

Author(s)

Yili Hong

See Also

deglmx

Examples

data(Coatingenv)
data(Coatingout)

fit=deglmx(DAMAGE_Y~UV+RH+TEMP, data=Coatingout, dyn.data=Coatingenv,
 id="SPEC_NUM", time="TIME", random=-TIME|SPEC_NUM, linear=TRUE, ytrend=-1,
 splinetrend=c(-1, -1, -1), splinetype=c("Is", "Cs", "Is"), degree=c(3, 3, 3),
 knots=c(4, 4, 4), weights=NULL, subset=NULL, start=c(0.017, 0.0013, -0.404, 0.0176),
 maxiter=10, method=’BFGS’)
plotdeglmx(x=fit)
plotdeglmx(x=fit, type=1)
plotdeglmx(x=fit, type=1)
Prod2.fai.dat

Dataset of failure information of Product 2.

Description
A data frame with 1800 observations and 3 variables.

Usage
data(Prod2.fai.dat)

Format

<table>
<thead>
<tr>
<th>failure.time</th>
<th>a numeric vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>ce</td>
<td>a numeric vector</td>
</tr>
</tbody>
</table>

Source

Prod2.xt.dat

Dataset of covariate information of Produce 2.

Description
A data frame with 80552 observations and 3 variables.

Usage
data(Prod2.xt.dat)

Format

<table>
<thead>
<tr>
<th>id</th>
<th>a numeric vector of sample ids.</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>a numeric vector of time.</td>
</tr>
<tr>
<td>x1</td>
<td>a numeric vector of dynamic covariate x1.</td>
</tr>
</tbody>
</table>

Source
The Standard Smallest Extreme Value Distribution

Description

The cdf, pdf, quantile function, and random number generation for the standard smallest extreme value distribution.

Usage

psev(z)
dsev(z)
qsev(p)
rsev(n)

Arguments

z Vector of values where the cdf or pdf to be evaluated.
p Vector of probabilities where the quantile function to be evaluated.
n Number of random samples. If input is a vector, then the number generated is the length of it.

Value

psev returns cdf, dsev returns pdf, qsev returns quantiles, and rsev returns random samples.

Author(s)

Yili Hong

See Also

plev, dlev, qlev, rlev.

Examples

psev(c(2, 3))
dsev(c(2, 3))
qsev(0.1)
rsev(10)
shock

Shock Absorber Failure Data

Description

A data frame with 38 observations and 3 variables.

Usage

data(shock)

Format

Distance a numeric vector
Mode a factor with levels Censored Mode1 Mode2
Censor a numeric vector

Source

summary.Lifedata.MLE

Summaries of "Lifedata.MLE" Object

Description

These functions summaries a "Lifedata.MLE" object.

Usage

```r
## S3 method for class 'Lifedata.MLE'
summary(object, ...)
```

Arguments

- `object` A "Lifedata.MLE" object.
- `...` Additional arguments.
Value

`summary.Lifedata.MLE` returns an object of class "summary.Lifedata.MLE", which is a list of

call Component from obj.
coef Vector of coefficients.
vcov Variance-covariance matrix of coef
coefmat Matrix contains mean, sd, 95% lower CI and 95% upper CI of coefficients.
min Component from obj.
surv Component from obj.
dat Component from obj.
ori.coef coef component in obj.
ori.vcov vcov component in obj.

See Also

`Lifedata.MLE`

testdata

Description

This dataset involves left truncation and right censoring.

Usage

data(testdata)

Format

A data frame with 710 observations on the following 9 variables.

age a numeric vector
failure a numeric vector
manufacture.year a numeric vector
manufacturer a factor with levels MA MB MC MD ME Other
cooling a factor with levels FIFE NIFE NINE Unknown
insulation a factor with levels d55 d65
truncation a numeric vector
truncation.age a numeric vector
group a factor with levels MA_New MB_Old MC.ME.Other_New MC_Old MD_Old ME_Old Other_Old

Source

Index

* C_splines basis
 i.spline.x, 8

* I_splines basis
 i.spline.x, 8

* package
 SPREDA-package, 2

ce.dat.prep, 3
clme, 4
clme (deglmx), 6
cls, 4
Coatingenv, 5
Coatingout, 5
coef.deglmx.MLE (deglmx), 6
coef.Lifedata.MLE (Lifedata.MLE), 10
coefinitial.ftn (deglmx), 6
data.pre.fun (deglmx), 6
deglmx, 4, 6, 16
dlev, 18
dlev (plev), 15
dsev, 15
dsev (psev), 18
getCov (deglmx), 6
getnames (deglmx), 6
getRanName (deglmx), 6
i.spline.x, 8, 13, 15
kaplan.meier.location, 9
Lifedata.MLE, 10, 20
lifetime.mle, 12
logLik.Lifedata.MLE (Lifedata.MLE), 10
m.spline.x, 9, 13, 15
match.dat.fun (deglmx), 6
MIC.splines.basis, 14
miniusloglik.ce.xt.lev (Lifedata.MLE), 10
miniusloglik.ce.xt.logis (Lifedata.MLE), 10
miniusloglik.ce.xt.norm (Lifedata.MLE), 10
miniusloglik.ce.xt.sev (Lifedata.MLE), 10
miniusloglik.lev.wts (Lifedata.MLE), 10
miniusloglik.logis.wts (Lifedata.MLE), 10
miniusloglik.normal.wts (Lifedata.MLE), 10
miniusloglik.sev (lifetime.mle), 12
miniusloglik.sev.wts(lifetimemle), 10
minus.log.lik.nlme (deglmx), 6
minus.loglik.lme (deglmx), 6
mle.obj.to.fit.obj (deglmx), 6
optim, 7, 10–13
optim.ftn.2 (deglmx), 6
optim.step1.2 (deglmx), 6
optim.step2.2 (deglmx), 6
plev, 15, 18
plot.MICsplines (deglmx), 6
plotdeglmx, 16
print.deglmx, 6
print.Lifedata.MLE (Lifedata.MLE), 10
print.summary.Lifedata.MLE (summary.Lifedata.MLE), 19
Prod2.fai.dat, 17
Prod2.xt.dat, 17
psev, 15, 18
Px (deglmx), 6
qlev, 18
qlev (plev), 15
qsev, 15
qsev (psev), 18
rlev, 18
rlev (plev), 15
rsev, 15
rsev (psev), 18

shock, 19
SPREDA (SPREDA-package), 2
SPREDA-package, 2
sqrt_mat (deglmx), 6
summary.Lifedata.MLE, 11, 19
Surv, 3, 11
survfit, 9

testdata, 20

xmat.obj.to.xmat (deglmx), 6
xmat.to.cumsum (deglmx), 6