Package ‘SPreFuGED’

July 29, 2016

Type
Package

Title
Selecting a Predictive Function for a Given Gene Expression Data

Version
1.0

Date
2016-07-27

Author
Victor L Jong, Kit CB Roes & Marinus JC Eijkemans

Maintainer
Victor L Jong <v.l.jong@umcutrecht.nl>

Description
The recent advancement of high-throughput technologies has led to frequent utilization of gene expression and other "omics" data for toxicological, diagnostic or prognostic studies in and clinical applications. Unlike in classical predictions where the number of samples is greater than the number of variables (n>p), the challenge faced with prediction using "omics" data is that the number of parameters greatly exceeds the number of samples (p>>n). To solve this curse of dimensionality problem, several predictive functions have been proposed for direct and probabilistic classification and survival predictions. Nevertheless, these predictive functions have been shown to perform differently across datasets. Comparing predictive functions and choosing the best is computationally intensive and leads to selection bias. Thus, the question which function should one choose for a given dataset is to be ascertained. This package implements the approach proposed by Jong et al., (2016) to address this question.

Depends
R(>= 3.2.4)

Imports
stats, methods, utils, Biobase, CMA, lme4, lattice, limma, boot, mvtnorm

Suggests
e1071, MASS, class, nnet, glmnet, randomForest

License
GPL (>= 2)

LazyData
True

NeedsCompilation
no

Repository
CRAN

Date/Publication
2016-07-29 12:35:58

R topics documented:

- SPreFuGED-package
Description

The recent advancement of high-throughput technologies has led to frequent utilization of gene expression and other "omics" data for toxicological, diagnostic or prognostic studies in and clinical applications. Unlike in classical predictions where the number of samples is greater than the number of variables (n>p), the challenge faced with prediction using "omics" data is that the number of parameters greatly exceeds the number of samples (p>n). To solve this curse of dimensionality problem, several predictive functions have been proposed for direct and probabilistic classification and survival predictions. Nevertheless, these predictive functions have been shown to perform differently across datasets. Comparing predictive functions and choosing the best is computationally intensive and leads to selection bias. Thus, the question which function should one choose for a given dataset is to be ascertained. This package implements the approach proposed by Jong et al., (2016) to address this question.

Details

The package allows one to determine an optimal predictive function among several functions for either binary direct classification, binary probabilistic classification or survival prediction for a given gene expression data. It also presents an interface to simulate gene expression data and to compare classification survival prediction functions on a given data. The most important workflow of this package is as follows:

1. Estimate the gene expression data characteristics using estimateDataCha
2. Fit a specific linear mixed effects model using fitLMEModel
3. Predict the performance of the functions on the given data using SPreFu
4. Plot the results of step 3 using plotSPreFu.
5. Other functions are(were) used for simulation studies presented in most of the references.

Author(s)

Victor L Jong, Kit CB Roes & Marinus JC Eijkemans

Maintainer: Victor L Jong <v.l.jong@umcutrecht.nl>
avAcc

References

avAcc Average accuracy data

Description

A data frame of 11520 data points (rows) corresponding to the 1152 different simulation scenarios by 10 classification functions. The studied data variables and the average misclassification error rates (acc) of the classification functions on the columns.

Usage

data("avAcc")

Format

A data frame with 11520 observations on the following 8 variables.

- class: a character vector of the predictive functions
- variance: a numeric vector of the different values of the variance parameter
- decorr: a numeric vector of different pairwise correlation values within informative genes
- propde: a numeric vector different values of the proportion of informative genes
- logRfc: a numeric vector of different values of absolute log2 fold changes
- sampsize: a numeric vector of different values of absolute sample sizes
- othercorr: a numeric vector of the different values of the parameter for the pairwise correlations within non-informative and/or between non-informative and informative genes
- acc: a numeric vector of misclassification error rates

Details

This data contains the different values of the six studied factors and the error rates for the different functions in different simulation scenarios. And it is required for binary direct classification, to fit the LME model necessary to predict optimal function(s) for a given gene expression dataset.

Source

Jong VL, Novianti PW, Roes KCB & Eijkemans MJC. Selecting a classification function for class prediction with gene expression data. Bioinformatics (2016) 32(12): 1814-1822

Examples

data(avAcc)

maybe str(avAcc) ; plot(avAcc) ...
covMat

A covariance matrix generating function.

Description
For a given number of genes and a proportion of differentially expressed (informative) genes, this function creates a covariance matrix by sampling variances from an exponential distribution with lambda and the correlation values corrDE and corrOther. Where corrOther is generated from a normal distribution with mean=0, and sigma as SD.

Usage
covMat(pAll = 1000, pie = 0.05, lambda, corrDE, sigma)

Arguments
pAll the total number of genes (Default is 1000). For desktop users, we encourage pAll <=2500 for computational reasons.
pie a value in the interval (0, 1) and corresponds to the proportion of differentially expressed (informative) genes (Default is 0.05)
lambda a positive rate parameter for sampling variances from an exponential distribution. The smaller the value the larger the variances.
corrDE a value in the interval [0, 1] specifying the correlation values of DE genes to each other. Half of which are up-regulated (positively associated to survival time) and the others are down-regulated (negatively associated to survival time). The inter-cluster (between up- and down-regulated) genes take negatively signed value of corrDE. The value 0 corresponds to complete independence of these DE genes.
sigma a value in the interval [0, 1] specifying the distribution of correlations within noisy genes and between noisy genes and informative genes. Where 0 means complete independendence of noisy genes to each other and to informative genes.

Details
This functions assumes three clusters of genes (up-regulated, down-regulated and noisy genes). While the pairwise correlations of the DE genes is a discrete value corrDE, the correlations of the non-DE genes are sampled from a normal distribution with mean zero and SD=sigma. Values beyond the interval [-1, 1] are uniformly converted to that interval.

Value
A list containing:

 cov the covariance matrix generated
 pie the proportion of differentially expressed genes
Author(s)
Victor Lih Jong

References
Jong VL, Novianti PW, Roes KCB & Eijkemans MJC. Selecting a classification function for class prediction with gene expression data. Bioinformatics (2016) 32(12): 1814-1822

See Also
generateGED

Examples

```r
myCov<-covMat(pAll=100, lambda=2, corrDE=0.75, sigma=0.25);
#Observe the covariance matrix of 6 genes, 2 each from up-regulated, down-regulated and non-DE
myCov$cov[c(1,2, 4,5, 30,31), c(1,2, 4,5, 30,31)];
myCov$pie;
```

directClass

A function to build and evaluate 10 different classification functions on a given gene expression data.

Description
This function uses either simulated (train and test) or real-life gene expression data to build and evaluate binary direct classifiers with 10 different classification functions [LDA, KNN, NNET, PAM, QDA, RF, Ridge (PLR2), Lasso (PLR1), Elastic Net (PLR12) and SVM] by minimizing the mis-classification error rates.

Usage
directClass(data, dataY = NULL, simulated = TRUE, fold = 5)

Arguments
data an object returned by generateGED or a matrix of expression values containing genes in the rows and samples in the columns.
dataY an optional vector of class labels that can be coerced to a factor. Must be supplied when the data argument is not simulated data.
simulated logical, indicating whether the data supplied is simulated data (Default is TRUE).
fold the number of cross-validation times to divide the real-life data into 2/3 train and 1/3 test with stratification (Default is 5). For meaningful comparison we recommend fold=100.
estimateDataCha

Details
See reference for detail on which classification functions and/or parameters are optimized in this function and how the classifiers are built and evaluated. Please note that for large datasets and large values of "niter" from generateGED or fold, this function might take quite sometime. Of course, if it takes time to train a single function, what more of training 10 functions at once?

Value
An Lx10 matrix of misclassification error rates. Where L is the number of iterations (niter) when the data is simulated data from generateGED or the number of folds (fold=L) when the data is real-life data and 10 are the number of classification functions.

Author(s)
Victor Lih Jong

References
Jong VL, Novianti PW, Roes KCB & Eijkemans MJC. Selecting a classification function for class prediction with gene expression data. Bioinformatics (2016) 32(12): 1814-1822

See Also
covMat, generateGED and plotDirectClass

Examples
#Let us use simulated data build the 10 classification functions
myCov<-covMat(pAll=100, lambda=2, corrDE=0.75, sigma=0.25);
myData<-generateGED(covAll=myCov, nTrain=30, nTest=10);
myClassResultsSimulatedData<-directClass(data=myData); #Takes roughly 60 Sec

estimateDataCha(data, dataY, type = "Binary")
estimateDataCha

Arguments

data a matrix of expression values with rows corresponding to genes and columns to samples
dataY a binary vector of class labels or a survival outcome as produced by Surv. Its length must be equal to the number of columns of data.
type takes Binary(Default) or Survival as values and correspond to binary classification or survival prediction

Details
At the moment, only binary classification has been implemented.

Value
A 1x7 (for Binary) or 1x8 (for Survival) matrix containing the estimates (row) of the data characteristics (columns)

Author(s)
Victor Lih Jong

References
Jong VL, Novianti PW, Roes KCB & Eijkemans MJC. Selecting a classification function for class prediction with gene expression data. Bioinformatics (2016) 32(12): 1814-1822

See Also
fitLMEModel, SPreFu and plotSPreFu

Examples
#Let us consider a single simulated train data as our real-life dataset
myCov<-.covMat(pAll=100, lambda=2, corrDE=0.75, sigma=0.25);
myData<-generateGED(covAll=myCov, nTrain=30, nTest=10);
data<-myData[[1]]$trainData;
dataY<-myData[[1]]$trainLabels;
myDataCha<-estimateDataCha(data, dataY);
fitLMEModel

A function to fit a linear mixed effects (LME) model of performance measure on the studied variables

Description

This function fits a LME model to the log-odds of accuracy (for binary direct classifiers), logit transformation of the transformed Brier Score (for binary probabilistic classifiers) or logit transformation of the transformed integrated Brier score (for survival data).

Usage

fitLMEModel(type="Accuracy")

Arguments

type takes Accuracy (Default), for direct classifiers or Probability, for probabilistic classifiers or Survival, for survival predictions.

Details

Depending of the value of type, this function uses either avAcc, avBS or avSurv data to build a LME model. Only the avAcc is available and hence LME model of log-odds accuracy is possible at the moment.

Value

A list containing:

model an object of class "lmer" for which several functions can be applied
type the type of predictions (Accuracy, Probability or Survival)
fitData fitted data, contains the variables and their standardized values

Author(s)

Victor Lih Jong

References

Jong VL, Novianti PW, Roes KCB & Eijkemans MJC. Selecting a classification function for class prediction with gene expression data. Bioinformatics (2016) 32(12): 1814-1822

See Also

estimateDataCha, SPrefu and plotSPrefu

Examples

myFit<-fitLMEModel(); #Taken roughly 250 Sec
generateGED

A function to simulate two groups gene expression data (GED)

Description

This function draws two sets of vectors (train and test samples’ labels) from a binomial distribution and generates two gene expression datasets (train and test data) from a multivariate normal distribution with a mean vector $U[6,10]$ and a given within-class covariance matrix, at each iteration.

Usage

```r
generateGED(covAll, nTrain, nTest, log2FC = 1, niter = 3, prob = 0.5)
```

Arguments

- `covAll` an object returned by `covMax` or a list containing a covariance matrix `cov` and the proportion of DE genes `pie`.
- `nTrain` the number of samples in the training set
- `nTest` the number of samples in the test set
- `log2FC` the absolute Log2 fold changes (effect sizes) for DE genes (Default is 1)
- `niter` the number of iterations (train/test datasets to be generated). Default is 3
- `prob` the probability of success for the binomial sampling. Default is 0.5

Value

A list of length `niter`. Each element of which is a list containing:

- `trainData` a matrix of the training data
- `trainLabels` a binary vector of class labels of the training samples
- `testData` a matrix of the test data
- `testLabels` a binary vector of class labels of the test samples

Author(s)

Victor Lih Jong

References

Jong VL, Novianti PW, Roes KCB & Eijkemans MJC. Selecting a classification function for class prediction with gene expression data. Bioinformatics (2016) 32(12): 1814-1822

See Also

covMat, directClass and plotDirectClass
plotDirectClass

A plotting function for the performance (Accuracy) of direct classifiers

Description
This function produces boxplots of the expected accuracies of each classification function from call to directClass.

Usage
plotDirectClass(restDirectClass)

Arguments
restDirectClass
an object returned by directClass.

Value
A plot of classification functions and their expected accuracies

Author(s)
Victor Lih Jong

References

See Also
covMat, generateGED and directClass

Examples
Let us use simulated data build the 10 classification functions
myCov<-covMat(pAll=100, lambda=2, corrDE=0.75, sigma=0.25);
myData<-generateGED(covAll=myCov, nTrain=30, nTest=10);
myFirstTrainData<-myData[[1]]$trainData; myFirstTrainLabels<-myData[[1]]$trainLabels;
myFirstTestData<-myData[[1]]$testData; myFirstTestLabels<-myData[[1]]$testLabels;

plotDirectClass(myClassResultsSimulatedData);
plotSPreFu

A plotting function of the predicted performance of classification functions on a given dataset

Description

This function plots the predicted accuracies, Brier scores or Hazard ratios for each predictive function on a given dataset, as predicted by SPreFu.

Usage

plotSPreFu(restSPreFu)

Arguments

restSPreFu an object returned by SPreFu

Value

A plot of predictive functions and their expected performance (Accuracy, Brier score or Integrated Brier score)

Author(s)

Victor Lih Jong

References

See Also

estimateDataCha, fitLMEModel and SPreFu

Examples

Let us consider a single simulated train data as our real-life dataset
myCov<-covMat(pAll=100, lambda=2, corrDE=0.75, sigma=0.25);
myData<-generateGED(covAll=myCov, nTrain=30, nTest=10);
data<-myData[[1]]$trainData;
dataY<-myData[[1]]$trainLabels;
myDataCha<-estimateDataCha(data, dataY);
myFit<-fitLMEModel(); # Takes roughly 250 Sec
myPred<-SPreFu(myDataCha, myFit);
plotSPreFu(myPred);
SPreFu A function for selecting an optimal predictive function for a given gene expression data.

Description

This function uses the LME model and the estimated data characteristics to predict the accuracy (for binary direct classifiers) or transformed Brier score (for binary probabilistic classifiers) or transformed integrated Brier scores (for survival predictions).

Usage

SPreFu(dataCha, restModel)

Arguments

dataCha an object returned by estimateDataCha and contains estimates of the data characteristics.

restModel an object returned by fitLMEModel and contains the fitted LME model to be used for predictions.

Value

A list containing:

dataCha a data frame of the estimated data characteristics, the predictive functions and their predicted performance

type is the type of prediction (Accuracy, Probability or Survival) and determines what kind of plots to be produced by plotSPreFu

Author(s)

Victor Lih Jong

References

See Also

estimateDataCha, fitLMEModel and plotSPreFu
Examples

```r
# Let us consider a single simulated train data as our real-life dataset
myCov <- covMat(pAll=100, lambda=2, corrDE=0.75, sigma=0.25);
myData <- generateGED(covAll=myCov, nTrain=30, nTest=10);
data <- myData[[1]]$trainData;
dataY <- myData[[1]]$trainLabels;
myDataCha <- estimateDataCha(data, dataY);
myFit <- fitLMEModel();  # Takes roughly 250 Sec
myPred <- SPreFu(myDataCha, myFit);
```
Index

*Topic **Construct Classifiers**
directClass, 5

*Topic **Estimate data characteristics**
estimateDataCha, 6

*Topic **Fit LME model**
fitLMEModel, 8

*Topic **Generate gene expression data**
generateGED, 9

*Topic **Plot expected accuracies**
plotDirectClass, 10

*Topic **Plot predicted performance**
plotSPreFu, 11

*Topic **Select predictive function**
SPreFu, 12

*Topic **covariance matrices**
covMat, 4

*Topic **datasets**
avAcc, 3

avAcc, 3

covMat, 4, 6, 9, 10
directClass, 5, 9, 10
estimateDataCha, 6, 8, 11, 12
fitLMEModel, 7, 8, 11, 12
generateGED, 5, 6, 9, 10
plotDirectClass, 6, 9, 10
plotSPreFu, 7, 8, 11, 12
SPreFu, 7, 8, 11, 12
SPreFuGED (SPreFuGED-package), 2
SPreFuGED-package, 2