Package ‘SQDA’

February 19, 2015

Type Package
Title Sparse Quadratic Discriminant Analysis
Version 1.0
Date 2014-09-19
Author Jiehuan Sun
Maintainer Jiehuan Sun <jiehuan.sun@yale.edu>
Depends R (>= 2.10)
Imports limma (>= 3.18.13), PDSCE (>= 1.2), mvtnorm (>= 0.9.99992)
Description Sparse Quadratic Discriminant Analysis (SQDA) can be performed. In SQDA, the covariance matrix are assumed to be block-diagonal. And, for each block, sparsity assumption is imposed on the covariance matrix. It is useful in high-dimensional setting.
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2014-10-01 07:22:24

R topics documented:

SQDA-package .. 2
cross .. 2
exampledata .. 3
sGda .. 3
sGdaCV2 ... 4
simpleAGG3 .. 4
sortgene ... 5
sQDA .. 5
test.data .. 6
train.data .. 6

Index 7
Sparse Quadratic Discriminant Analysis

Description
This package is used to perform Sparse Quadratic Discriminant Analysis (SQDA). In SQDA, the covariance matrix are assumed to be block-diagonal. And, for each block, sparsity assumption is imposed on the covariance matrix. It is useful in high-dimensional setting.

Details

Package: SQDA
Type: Package
Version: 1.0
Date: 2014-09-19
License: GPL-3

The package has one function, sQDA(), which basically takes in several parameters and output the predictions on the new dataset based on the sparse quadratic discriminant analysis. More details on the algorithms see the reference below.

Author(s)

Jiehuan Sun Jiehuan Sun <jiehuan.sun@yale.edu>

References
The application of sparse estimation of covariance matrix to quadratic discriminant analysis. Jiehuan Sun and Hongyu Zhao.

Examples

```r
data(exampledata)
res<-sQDA(train.data[1:100,],test.data[1:100,],lams=0.2, presel=FALSE)
sum(res$pred=colnames(test.data))/ncol(test.data) ## prediction error
res$p # number of blocks selected
res$pred # predicted class labels on test.data
```

cross

generate cross-validation ids

Description
generate cross-validation ids
Usage

```r
cross(data = NULL, cv = 5)
```

Arguments

- `data`: data matrix with column names being the class labels and row names being the genes.
- `cv`: the cross-validation folds

Value

cross-validation ids that can be used to split data into training data and testing data.

Example Data

- `exampledata`

Description

Simulated example data

sGda

Prediction function

Usage

```r
sGda(data = NULL, data.new = NULL, lam = 0)
```

Arguments

- `data`: data matrix with column names being the class labels and row names being the genes.
- `data.new`: the new data needs to be predicted.
- `lam`: optimal lambda from cross-validation.

Value

returns a list object with following items.

- `pred`: predictions for class labels on the new dataset
- `lik`: likelihood of each class on the new dataset
sgdaCV2

Cross-validation function

Description

Cross-validation function

Usage

sgdaCV2(data = NULL, cv = 5, lam = 0)

Arguments

data data matrix with column names being the class labels and row names being the genes.
cv cross-validation folds.
lam a sequence of lambda’s.

Value

returns a list object with following item.
cv.error cross-validation errors for each lambda

simpleAGG3

Blockwise classifiers

Description

Blockwise classifiers

Usage

simpleAGG3(data = NULL, data.new = NULL, len = 100, times = 100, lam = seq(0, 0.1, length = 10))

Arguments

data data matrix with column names being the class labels and row names being the genes.
data.new the new data needs to be predicted.
len block size
times number of blocks
lam a sequence of lambda’s from cross-validation.
sortgene

Value

returns a list object with following items.

- **cv.error** cross-validation errors for each block
- **pred** predictions for class labels on the new dataset
- **lik** likelihood of each class on the new dataset

Description

Gene sorter

Usage

```r
sortgene(data = NULL)
```

Arguments

- **data** data matrix with column names being the class labels and row names being the genes.

Value

topTable data structure from limma.

sQDA

Spase Quadratic Discriminant Analysis

Description

Spase Quadratic Discriminant Analysis

Usage

```r
sQDA(train.data = NULL, test.data = NULL, len = 100, lams = seq(0.02, 1, length = 10), presel = T, prelam = 0.2, margin = 0.05)
```
Arguments

- **train.data**: data matrix with column names being the class labels and row names being the genes.
- **test.data**: the new data needs to be predicted.
- **len**: block size
- **lams**: a sequence of lambda's from cross-validation.
- **presel**: pre-selection indicator.
- **prelam**: pre-selection sparsity parameter, only used when presel=T.
- **margin**: error margin for pre-selection, only used when presel=T.

Value

returns a list object with following items.

- **pred**: predictions for class labels on the test.data
- **p**: the number of blocks selected

References

The application of sparse estimation of covariance matrix to quadratic discriminant analysis. Jiehuan Sun and Hongyu Zhao.

Examples

```r
data(exampledata)
res<-sqDA(train.data[1:100,],test.data[1:100,],lams=0.2,presel=FALSE)
sum(res$pred!=colnames(test.data))/nrow(test.data)  ##prediction error
res$p  ## number of blocks selected
res$pred  ## predicted class labels on test.data
```

test.data *testing data*

train.data *training data*

Description

simulated testing data

Description

simulated training data
Index

*Topic **data**
 - exampledata, 3
 - test.data, 6
 - train.data, 6
*Topic **package**
 - SQDA-package, 2

cross, 2

exampledata, 3

sGda, 3
sGdaCV2, 4
simpleAGG3, 4
sortgene, 5
SQDA (SQDA-package), 2
SQDA, 5
SQDA-package, 2

test.data, 6
train.data, 6