SSGL: Spike-and-Slab Group Lasso for Group-Regularized Generalized
Linear Models
Fits group-regularized generalized linear models (GLMs) using the spike-and-slab group lasso (SSGL) prior introduced by Bai et al. (2022) <doi:10.1080/01621459.2020.1765784> and extended to GLMs by Bai (2023) <arXiv:2007.07021>. This package supports fitting the SSGL model for the following GLMs with group sparsity: Gaussian linear regression, binary logistic regression, Poisson regression, negative binomial regression, and gamma regression.
Stand-alone functions for group-regularized negative binomial regression and group-regularized gamma regression are also available, with the option of employing the group lasso penalty of Yuan and Lin (2006) <doi:10.1111/j.1467-9868.2005.00532.x>, the group minimax concave penalty (MCP) of Breheny and Huang <doi:10.1007/s11222-013-9424-2>, or the group smoothly clipped absolute deviation (SCAD) penalty of Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>.
Version: |
1.0 |
Depends: |
R (≥ 3.6.0) |
Imports: |
stats, MASS, pracma, grpreg |
Published: |
2023-06-27 |
Author: |
Ray Bai |
Maintainer: |
Ray Bai <raybaistat at gmail.com> |
License: |
GPL-3 |
NeedsCompilation: |
yes |
CRAN checks: |
SSGL results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=SSGL
to link to this page.