Package ‘SSLR’

April 13, 2020

Type Package
Title Semi-Supervised Classification and Regression Methods
Version 0.9.1
Maintainer Francisco Jesús Palomares Alabarce <fpalomares@correo.ugr.es>
URL https://dicits.ugr.es/software/SSLR/
Description Providing a collection of techniques for semi-supervised classification and regression. In semi-supervised problem, both labeled and unlabeled data are used to train a classifier. The package includes a collection of semi-supervised learning techniques: self-training, co-training, democratic, decision tree, random forest, ‘S3VM’ etc, with a fairly intuitive interface that is easy to use.
License GPL-3
ByteCompile true
Depends R (>= 2.10)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Imports stats, parsnip, plyr, dplyr (>= 0.8.0.1), magrittr, purrr, rlang (>= 0.3.1), proxy, methods, generics,utils, RANN, foreach, RSSL
LinkingTo Rcpp, RcppArmadillo
Suggests caret, tidymodels, e1071, C50, kernlab, testthat, doParallel, tidyverse, survival, xgboost, covr, kknn, randomForest, ranger, MASS, nlme, knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation yes
Author Francisco Jesús Palomares Alabarce [aut, cre]
José Manuel Benítez [ctb] (https://orcid.org/0000-0002-2346-0793),
Isaac Triguero [ctb] (https://orcid.org/0000-0002-0150-0651),
Christoph Bergmeir [ctb] (https://orcid.org/0000-0002-3665-9021),
Mabel González [ctb] (https://orcid.org/0000-0003-0152-444X)
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>abalone</td>
<td>4</td>
</tr>
<tr>
<td>best_split</td>
<td>4</td>
</tr>
<tr>
<td>best_split,DecisionTreeClassifier-method</td>
<td>5</td>
</tr>
<tr>
<td>breast</td>
<td>5</td>
</tr>
<tr>
<td>calculate_gini</td>
<td>6</td>
</tr>
<tr>
<td>check_value</td>
<td>6</td>
</tr>
<tr>
<td>check_xy_interface</td>
<td>7</td>
</tr>
<tr>
<td>coBC</td>
<td>7</td>
</tr>
<tr>
<td>coBCCombine</td>
<td>9</td>
</tr>
<tr>
<td>coBCG</td>
<td>10</td>
</tr>
<tr>
<td>coBCReg</td>
<td>12</td>
</tr>
<tr>
<td>coBCRegG</td>
<td>13</td>
</tr>
<tr>
<td>coffee</td>
<td>15</td>
</tr>
<tr>
<td>COREG</td>
<td>15</td>
</tr>
<tr>
<td>DecisionTreeClassifier-class</td>
<td>16</td>
</tr>
<tr>
<td>democratic</td>
<td>16</td>
</tr>
<tr>
<td>democraticCombine</td>
<td>18</td>
</tr>
<tr>
<td>democraticG</td>
<td>19</td>
</tr>
<tr>
<td>EMLLeastSquaresClassifierSSLR</td>
<td>20</td>
</tr>
<tr>
<td>EMNearestMeanClassifierSSLR</td>
<td>22</td>
</tr>
<tr>
<td>EntropyRegularizedLogisticRegressionSSLR</td>
<td>23</td>
</tr>
<tr>
<td>fit.model_sslr</td>
<td>24</td>
</tr>
<tr>
<td>fit_decision_tree</td>
<td>25</td>
</tr>
<tr>
<td>fit_decision_tree,DecisionTreeClassifier-method</td>
<td>25</td>
</tr>
<tr>
<td>fit_random_forest,RandomForestSemisupervised-method</td>
<td>26</td>
</tr>
<tr>
<td>fit_xy.model_sslr</td>
<td>27</td>
</tr>
<tr>
<td>fit_x_u</td>
<td>28</td>
</tr>
<tr>
<td>fit_x_u.model_sslr</td>
<td>28</td>
</tr>
<tr>
<td>get_class_max_prob</td>
<td>29</td>
</tr>
<tr>
<td>get_function</td>
<td>29</td>
</tr>
<tr>
<td>get_function_generic</td>
<td>30</td>
</tr>
<tr>
<td>get_levels_categorical</td>
<td>30</td>
</tr>
<tr>
<td>get_most_frequent</td>
<td>31</td>
</tr>
<tr>
<td>get_value_mean</td>
<td>31</td>
</tr>
<tr>
<td>get_x_y</td>
<td>32</td>
</tr>
<tr>
<td>gini_or_variance</td>
<td>32</td>
</tr>
<tr>
<td>gini_prob</td>
<td>33</td>
</tr>
<tr>
<td>grow_tree</td>
<td>33</td>
</tr>
<tr>
<td>grow_tree,DecisionTreeClassifier-method</td>
<td>34</td>
</tr>
<tr>
<td>knn_regression</td>
<td>34</td>
</tr>
<tr>
<td>LaplacianSVMSSLR</td>
<td>35</td>
</tr>
<tr>
<td>LinearTSVMSSLR</td>
<td>36</td>
</tr>
</tbody>
</table>
R topics documented:

- `load_parsnip` 37
- `load_RANN` 38
- `load_RSSL` 38
- `MCNearestMeanClassifierSSLR` 38
- `newDecisionTree` 40
- `Node-class` 40
- `nullOrNumericOrCharacter-class` 40
- `oneNN` 41
- `predict.DecisionTreeClassifier-method` 41
- `predict.RandomForestSemisupervised-method` 42
- `predict.coBC` 42
- `predict.COREG` 43
- `predict.democratic` 44
- `predict.EMLeastSquaresClassifierSSLR` 44
- `predict.EMNearestMeanClassifierSSLR` 45
- `predict.EntropyRegularizedLogisticRegressionSSLR` 45
- `predict.LaplacianSVMSSLR` 46
- `predict.LinearTSVMSSLR` 46
- `predict.MCNearestMeanClassifierSSLR` 47
- `predict.model_sslr_fitted` 47
- `predict.OneNN` 48
- `predict.RandomForestSemisupervised_fitted` 48
- `predict.selfTraining` 49
- `predict.setred` 50
- `predict.snnrce` 50
- `predict.snnrceG` 51
- `predict.SSLRDecisionTree_fitted` 52
- `predict.triTraining` 52
- `predict.TSVMSSLR` 53
- `predict.USMLeastSquaresClassifierSSLR` 53
- `predict.WellSVMSSLR` 54
- `predict_inputs` 54
- `predict_inputs,DecisionTreeClassifier-method` 55
- `print.model_sslr` 55
- `RandomForestSemisupervised-class` 55
- `selfTrainingG` 56
- `snnrce` 61
- `setred` 61
- `setredG` 63
- `SSLRDecisionTree` 66
- `SSLRRandomForest` 69
- `train_generic` 71
- `triTraining` 72
- `triTrainingCombine` 73
- `triTrainingG` 74
- `TSVMSSLR` 77
- `USMLeastSquaresClassifierSSLR` 78
Abalone

Description

Abalone

Usage

data(abalone)

Format

Predict the age of abalone from physical measurements

Source

https://archive.ics.uci.edu/ml/datasets/Abalone

best_split

An S4 method to best split

Description

An S4 method to best split

Usage

best_split(object, ...)

Arguments

object DecisionTree object
... This parameter is included for compatibility reasons.
Description

Function to get best split in Decision Tree. Find the best split for node. "Best" means that the mean of impurity is the least possible. To find the best division. Let's iterate through all the features. All threshold / feature pairs will be computed in the numerical features. In the features that are not numerical, We get the best group of possible values will be obtained based on an algorithm with the function get_levels_categoric.

Usage

```r
## S4 method for signature 'DecisionTreeClassifier'
best_split(object, X, y, parms)
```

Arguments

- `object`: DecisionTree object
- `X`: is data
- `y`: is class values
- `parms`: parms in function

Value

A list with: best_idx name of the feature with the best split or Null if it not be found best_thr: threshold found in the best split, or Null if it not be found.

breast

Breast

Description

Breast

Usage

```r
data(breast)
```

Format

: Diagnostic Wisconsin Breast Cancer Database

Source

calculate_gini

Function calculate gini

Description

Function to calculate gini index. Formula is: $1 - \frac{1}{\text{num_classes}} \sum \text{probabilitie_class}^2$

Usage

```r
calculate_gini(column_factor)
```

Arguments

- `column_factor`
 class values

check_value

Check value in leaf

Description

Function to check value in leaf from numeric until character

Usage

```r
check_value(value, threshold)
```

Arguments

- `value`
 is the value in leaf node
- `threshold`
 in leaf node

Value

TRUE if <= in numeric or %in% in factor
check_xy_interface

Ceck interface x y

Description

Check interface

Usage

```r
ccheck_xy_interface(x, y)
```

Arguments

- **x**: data without class labels
- **y**: values class

coBC

General Interface for CoBC model

Description

Co-Training by Committee (CoBC) is a semi-supervised learning algorithm with a co-training style. This algorithm trains \(N \) classifiers with the learning scheme defined in the `learner` argument using a reduced set of labeled examples. For each iteration, an unlabeled example is labeled for a classifier if the most confident classifications assigned by the other \(N-1 \) classifiers agree on the labeling proposed. The unlabeled examples candidates are selected randomly from a pool of size \(u \). The final prediction is the average of the estimates of the \(N \) regressors.

Usage

```r
ccoBC(learner, N = 3, perc.full = 0.7, u = 100, max.iter = 50)
```

Arguments

- **learner**: model from `parsnip` package for training a supervised base classifier using a set of instances. This model need to have probability predictions in classification mode
- **N**: The number of classifiers used as committee members. All these classifiers are trained using the `gen.learner` function. Default is 3.
- **perc.full**: A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-labeling process is stopped. Default is 0.7.
- **u**: Number of unlabeled instances in the pool. Default is 100.
- **max.iter**: Maximum number of iterations to execute in the self-labeling process. Default is 50.
Details

For regression tasks, labeling data is very expensive computationally. It's so slow. This method trains an ensemble of diverse classifiers. To promote the initial diversity the classifiers are trained from the reduced set of labeled examples by Bagging. The stopping criterion is defined through the fulfillment of one of the following criteria: the algorithm reaches the number of iterations defined in the `max.iter` parameter or the portion of unlabeled set, defined in the `perc.full` parameter, is moved to the enlarged labeled set of the classifiers.

Value

(When model fit) A list object of class "coBC" containing:

- `model` The final N base classifiers trained using the enlarged labeled set.
- `model.index` List of N vectors of indexes related to the training instances used per each classifier. These indexes are relative to the `y` argument.
- `instances.index` The indexes of all training instances used to train the N models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the `y` argument.
- `model.index.map` List of three vectors with the same information in `model.index` but the indexes are relative to `instances.index` vector.
- `classes` The levels of `y` factor in classification.
- `pred` The function provided in the `pred` argument.
- `pred.pars` The list provided in the `pred.pars` argument.

References

Mohamed Farouk Abdel-Hady, Mohamed Farouk Abdel-Hady and Günther Palm. Semi-supervised Learning for Regression with Cotraining by Committee Institute of Neural Information Processing University of Ulm D-89069 Ulm, Germany

Examples

```r
library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)
data(wine)
set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]
```
coBCCombine

Combining the hypothesis

Description

This function combines the probabilities predicted by the committee of classifiers.

Usage

coBCCombine(h.prob, classes)

Arguments

h.prob A list of probability matrices.
classes The classes in the same order that appear in the columns of each matrix in h.prob.

Value

A probability matrix
CoBC is a semi-supervised learning algorithm with a co-training style. This algorithm trains N classifiers with the learning scheme defined in `gen.learner` using a reduced set of labeled examples. For each iteration, an unlabeled example is labeled for a classifier if the most confident classifications assigned by the other $N-1$ classifiers agree on the labeling proposed. The unlabeled examples candidates are selected randomly from a pool of size u.

Usage

```r
coBCG(y, gen.learner, gen.pred, N = 3, perc.full = 0.7, u = 100, max.iter = 50)
```

Arguments

- **y**: A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value `NA`.
- **gen.learner**: A function for training N supervised base classifiers. This function needs two parameters, `indexes` and `cls`, where `indexes` indicates the instances to use and `cls` specifies the classes of those instances.
- **gen.pred**: A function for predicting the probabilities per classes. This function must be two parameters, `model` and `indexes`, where the `model` is a classifier trained with `gen.learner` function and `indexes` indicates the instances to predict.
- **N**: The number of classifiers used as committee members. All these classifiers are trained using the `gen.learner` function. Default is 3.
- **perc.full**: A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-labeling process is stopped. Default is 0.7.
- **u**: Number of unlabeled instances in the pool. Default is 100.
- **max.iter**: Maximum number of iterations to execute in the self-labeling process. Default is 50.

Details

`coBCG` can be helpful in those cases where the method selected as base classifier needs a `learner` and `pred` functions with other specifications. For more information about the general `coBC` method, please see `coBC` function. Essentially, `coBC` function is a wrapper of `coBCG` function.

Value

A list object of class "coBCG" containing:

- **model**: The final N base classifiers trained using the enlarged labeled set.
- **model.index**: List of N vectors of indexes related to the training instances used per each classifier. These indexes are relative to the `y` argument.
instances.index The indexes of all training instances used to train the N models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the y argument.

model.index.map List of three vectors with the same information in model.index but the indexes are relative to instances.index vector.

classes The levels of y factor.

Examples

library(SSLR)
library(caret)
Load Wine data set
data(wine)

cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x) # scale the attributes

Prepare data
set.seed(20)
Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,] # training instances
ytrain <- y[tra.idx] # classes of training instances
Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances

Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xitest <- x[tst.idx,] # testing instances
yitest <- y[tst.idx] # classes of testing instances

Example: Training from a set of instances with 1-NN (knn3) as base classifier.
gen.learner1 <- function(indexes, cls)
 caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred1 <- function(model, indexes)
 predict(model, xtrain[indexes,])
set.seed(1)
trControl_coBCG <- list(gen.learner = gen.learner1, gen.pred = gen.pred1)
md1 <- train_generic(ytrain, method = "coBCG", trControl = trControl_coBCG)

Predict probabilities per instances using each model
h.prob <- lapply(
 X = md1$model,
 FUN = function(m) predict(m, xitest)
)
Combine the predictions
Example: Training from a distance matrix with 1-NN (oneNN) as base classifier.

dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
gen.learner2 <- function(indexes, cls) {
m <- SSLR::oneNN(y = cls)
attr(m, "tra.idxs") <- indexes
m
}
gen.pred2 <- function(model, indexes) {
 tra.idxs <- attr(model, "tra.idxs")
 d <- dtrain[indexes, tra.idxs]
 prob <- predict(model, d, distance.weighting = "none")
 prob
}

set.seed(1)
trControl_coBCG2 <- list(gen.learner = gen.learner2, gen.pred = gen.pred2)
md2 <- train_generic(ytrain, method = "coBCG", trControl = trControl_coBCG2)

Predict probabilities per instances using each model
ditest <- proxy::dist(x = xitest, y = xtrain[md2$instances.index,],
 method = "euclidean", by_rows = TRUE)

h.prob <- list()
ninstances <- nrow(dtrain)
for (i in 1:length(md2$model)) {
 m <- md2$model[[i]]
 D <- ditest[, md2$model.index.map[[i]]]
 h.prob[[i]] <- predict(m, D)
}

Combine the predictions
cls2 <- coBCCombine(h.prob, md2$classes)
table(cls2, yitest)
confusionMatrix(cls2, yitest)$overall[1]
coBCReg is based on an ensemble of N diverse regressors. At each iteration and for each regressor, the companion committee labels the unlabeled examples then the regressor select the most informative newly-labeled examples for itself, where the selection confidence is based on estimating the validation error. The final prediction is the average of the estimates of the N regressors.

Usage

cobBCReg(learner, N = 3, perc.full = 0.7, u = 100, max.iter = 50)

Arguments

learner model from parsnip package for training a supervised base classifier using a set of instances. This model need to have probability predictions

N The number of classifiers used as committee members. All these classifiers are trained using the gen.learner function. Default is 3.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-labeling process is stopped. Default is 0.7.

u Number of unlabeled instances in the pool. Default is 100.

max.iter Maximum number of iterations to execute in the self-labeling process. Default is 50.

Details

For regression tasks, labeling data is very expensive computationally. Its so slow.

References

Mohamed Farouk Abdel-Hady, Mohamed Farouk Abdel-Hady and Günther Palm. Semi-supervised Learning for Regression with Cotraining by Committee
Institute of Neural Information Processing University of Ulm D-89069 Ulm, Germany
Usage

```r
coBCRegG(
  y,
  gen.learner,
  gen.pred,
  N = 3,
  perc.full = 0.7,
  u = 100,
  max.iter = 50,
  gr = 1
)
```

Arguments

- `y`: A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value `NA`.
- `gen.learner`: A function for training `N` supervised base classifiers. This function needs two parameters, `indexes` and `cls`, where `indexes` indicates the instances to use and `cls` specifies the classes of those instances.
- `gen.pred`: A function for predicting the probabilities per classes. This function must be two parameters, `model` and `indexes`, where the `model` is a classifier trained with `gen.learner` function and `indexes` indicates the instances to predict.
- `N`: The number of classifiers used as committee members. All these classifiers are trained using the `gen.learner` function. Default is 3.
- `perc.full`: A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-labeling process is stopped. Default is 0.7.
- `u`: Number of unlabeled instances in the pool. Default is 100.
- `max.iter`: Maximum number of iterations to execute in the self-labeling process. Default is 50.
- `gr`: Growing rate

Details

For regression tasks, labeling data is very expensive computationally. Its so slow.

References

Mohamed Farouk Abdel-Hady, Mohamed Farouk Abdel-Hady and Günther Palm.
Semi-supervised Learning for Regression with Cotraining by Committee
Institute of Neural Information Processing University of Ulm D-89069 Ulm, Germany
coffee

Time series data set

Description
A dataset containing 56 times series z-normalized. Time series length is 286.

Usage
data(coffee)

Format
A data frame with 56 rows and 287 variables including the class.

Source

COREG

General Interface for COREG model

Description
COREG is a semi-supervised learning for regression with a co-training style. This technique uses two kNN regressors with different distance metrics. For each iteration, each regressor labels the unlabeled example which can be most confidently labeled for the other learner, where the labeling confidence is estimated through considering the consistency of the regressor with the labeled example set. The final prediction is made by averaging the predictions of both the refined kNN regressors.

Usage
COREG(max.iter = 50, k1 = 3, k2 = 5, p1 = 3, p2 = 5, u = 100)

Arguments
- `max.iter` maximum number of iterations to execute the self-labeling process. Default is 50.
- `k1` parameter in first KNN
- `k2` parameter in second KNN
- `p1` distance order 1. Default is 3
- `p2` distance order 1. Default is 5
- `u` Number of unlabeled instances in the pool. Default is 100.
Details

Labeling data is very expensive computationally. It's so slow. For executing this model, we need RANN installed.

References

Zhi-Hua Zhou and Ming Li.
Semi-Supervised Regression with Co-Training.
National Laboratory for Novel Software Technology Nanjing University, Nanjing 210093, China

Examples

library(SSLR)

m <- COREG(max.iter = 1)

DecisionTreeClassifier-class

Class DecisionTreeClassifier

Description

Class DecisionTreeClassifier Slots: max_depth, n_classes, n_features, tree, classes, min_samples_split, min_samples_leaf

democratic

General Interface for Democratic model

Description

Democratic Co-Learning is a semi-supervised learning algorithm with a co-training style. This algorithm trains N classifiers with different learning schemes defined in list gen.learners. During the iterative process, the multiple classifiers with different inductive biases label data for each other.

Usage

democratic(learners, schemes = NULL)

Arguments

learners List of models from parsnip package for training a supervised base classifier using a set of instances. This model need to have probability predictions
schemes List of schemes (col x names in each learner). Default is null, it means that learner uses all x columns
Details

This method trains an ensemble of diverse classifiers. To promote the initial diversity the classifiers must represent different learning schemes. When x.inst is FALSE all learners defined must be able to learn a classifier from the precomputed matrix in x. The iteration process of the algorithm ends when no changes occurs in any model during a complete iteration. The generation of the final hypothesis is produced via a weighted majority voting.

Value

(When model fit) A list object of class "democratic" containing:

- **W** A vector with the confidence-weighted vote assigned to each classifier.
- **model** A list with the final N base classifiers trained using the enlarged labeled set.
- **model.index** List of N vectors of indexes related to the training instances used per each classifier. These indexes are relative to the y argument.
- **instances.index** The indexes of all training instances used to train the N models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the y argument.
- **model.index.map** List of three vectors with the same information in model.index but the indexes are relative to instances.index vector.
- **classes** The levels of y factor.
- **preds** The functions provided in the preds argument.
- **preds.pars** The set of lists provided in the preds.pars argument.
- **x.inst** The value provided in the x.inst argument.

Examples

```r
library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

#We need a model with probability predictions from parsnip
#https://tidymodels.github.io/parsnip/articles/articles/Models.html
#It should be with mode = classification
```
rf <- rand_forest(trees = 100, mode = "classification") %>%
 set_engine("randomForest")

bt <- boost_tree(trees = 100, mode = "classification") %>%
 set_engine("xgboost")

m <- democratic(learners = list(rf,bt)) %>% fit(Wine ~ ., data = train)

#' \donttest{
Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Wine", estimate = .pred_class)

With schemes
set.seed(1)
m <- democratic(learners = list(rf,bt),
 schemes = list(c("Malic.Acid","Ash"), c("Magnesium","Proline"))) %>%
 fit(Wine ~ ., data = train)

Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Wine", estimate = .pred_class)

#}'

democraticCombine \hspace{1cm} Combining the hypothesis of the classifiers

Description

This function combines the probabilities predicted by the set of classifiers.

Usage

democraticCombine(pred, W, classes)

Arguments

- **pred**
 A list with the prediction for each classifier.

- **W**
 A vector with the confidence-weighted vote assigned to each classifier during the training process.

- **classes**
 The classes.
democraticG

Value
The classification proposed.

Democratic generic method

Description
Democratic is a semi-supervised learning algorithm with a co-training style. This algorithm trains N classifiers with different learning schemes defined in list `gen.learners`. During the iterative process, the multiple classifiers with different inductive biases label data for each other.

Usage
```r
democraticG(y, gen.learners, gen.preds)
```

Arguments
- `y`: A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value `NA`.
- `gen.learners`: A list of functions for training N different supervised base classifiers. Each function needs two parameters, indexes and cls, where indexes indicates the instances to use and cls specifies the classes of those instances.
- `gen.preds`: A list of functions for predicting the probabilities per classes. Each function must be two parameters, model and indexes, where the model is a classifier trained with `gen.learner` function and indexes indicates the instances to predict.

Details

`democraticG` can be helpful in those cases where the method selected as base classifier needs a `learner` and `pred` functions with other specifications. For more information about the general democratic method, please see `democratic` function. Essentially, `democratic` function is a wrapper of `democraticG` function.

Value

A list object of class "democraticG" containing:

- `W`: A vector with the confidence-weighted vote assigned to each classifier.
- `model`: A list with the final N base classifiers trained using the enlarged labeled set.
- `model.index`: List of N vectors of indexes related to the training instances used per each classifier. These indexes are relative to the `y` argument.
- `instances.index`: The indexes of all training instances used to train the N models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the `y` argument.
model.index.map List of three vectors with the same information in model.index but the indexes are relative to instances.index vector.

classes The levels of y factor.

References
Yan Zhou and Sally Goldman.
Democratic co-learning.

EMLeastSquaresClassifierSSLR

General Interface for EMLeastSquaresClassifier model

Description
model from RSSL package
An Expectation Maximization like approach to Semi-Supervised Least Squares Classification
As studied in Krijthe & Loog (2016), minimizes the total loss of the labeled and unlabeled objects by finding the weight vector and labels that minimize the total loss. The algorithm proceeds similar to EM, by subsequently applying a weight update and a soft labeling of the unlabeled objects. This is repeated until convergence.
By default (method="block") the weights of the classifier are updated, after which the unknown labels are updated. method="simple" uses LBFGS to do this update simultaneously. Objective="responsibility" corresponds to the responsibility based, instead of the label based, objective function in Krijthe & Loog (2016), which is equivalent to hard-label self-learning.

Usage
EMLeastSquaresClassifierSSLR(
 x_center = FALSE,
 scale = FALSE,
 verbose = FALSE,
 intercept = TRUE,
 lambda = 0,
 eps = 1e-09,
 y_scale = FALSE,
 alpha = 1,
 beta = 1,
 init = "supervised",
 method = "block",
 objective = "label",
 save_all = FALSE,
 max_iter = 1000
)
Arguments

- **x_center**
 Logical; Should the features be centered?

- **scale**
 Should the features be normalized? (default: FALSE)

- **verbose**
 Logical; Controls the verbosity of the output

- **intercept**
 Logical; Whether an intercept should be included

- **lambda**
 Numeric; L2 regularization parameter

- **eps**
 Stopping criterion for the minimization

- **y_scale**
 Logical; whether the target vector should be centered

- **alpha**
 Numeric; the mixture of the new responsibilities and the old in each iteration of the algorithm (default: 1)

- **beta**
 Numeric; value between 0 and 1 that determines how much to move to the new solution from the old solution at each step of the block gradient descent

- **init**
 Objective character; "random" for random initialization of labels, "supervised" to use supervised solution as initialization or a numeric vector with a coefficient vector to use to calculate the initialization

- **method**
 Character; one of "block", for block gradient descent or "simple" for LBFGS optimization (default="block")

- **objective**
 Character; "responsibility" for hard label self-learning or "label" for soft-label self-learning

- **save_all**
 Logical; saves all classifiers trained during block gradient descent

- **max_iter**
 Integer; maximum number of iterations

References

Examples

```r
library(tidyverse)

# don't test
library(tidymodels)
library(caret)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELLED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
```
train[-labeled.index,cls] <- NA

m <- EMLeastSquaresClassifierSSLR() %>% fit(Class ~ ., data = train)

Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Class", estimate = .pred_class)
#
" Var
{ }
data(breast)
set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- EMNearestMeanClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Class", estimate = .pred_class)

EntropyRegularizedLogisticRegressionSSLR

General Interface for EntropyRegularizedLogisticRegression model

Description

model from RSSL package R Implementation of entropy regularized logistic regression implementation as proposed by Grandvalet & Bengio (2005). An extra term is added to the objective function of logistic regression that penalizes the entropy of the posterior measured on the unlabeled examples.

Usage

EntropyRegularizedLogisticRegressionSSLR(
 lambda = 0,
 lambda_entropy = 1,
 intercept = TRUE,
 init = NA,
 scale = FALSE,
 x_center = FALSE
)

Arguments

lambda l2 Regularization
lambda_entropy Weight of the labeled observations compared to the unlabeled observations
intercept logical; Whether an intercept should be included
fit.model_sslr

Description

Function to fit through the formula

Usage

S3 method for class 'model_sslr'
fit(object, formula = NULL, data = NULL, ...)

init

Initial parameters for the gradient descent

scale

logical; Should the features be normalized? (default: FALSE)

dx_center

logical; Should the features be centered?

References

Examples

library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- EntropyRegularizedLogisticRegressionSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Class", estimate = .pred_class)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>is the model</td>
</tr>
<tr>
<td>formula</td>
<td>is the formula</td>
</tr>
<tr>
<td>data</td>
<td>is the total data train</td>
</tr>
<tr>
<td>...</td>
<td>unused in this case</td>
</tr>
</tbody>
</table>

Description

An S4 method to fit decision tree.

Usage

```r
fit_decision_tree(object, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>DecisionTree object</td>
</tr>
<tr>
<td>...</td>
<td>This parameter is included for compatibility reasons.</td>
</tr>
</tbody>
</table>

Description

method in class DecisionTreeClassifier used to build a Decision Tree

Usage

```r
## S4 method for signature 'DecisionTreeClassifier'
fit_decision_tree(
    object,
    X,
    y,
    min_samples_split = 20,
    min_samples_leaf = ceiling(min_samples_split/3),
    w = 0.5
)```
### Arguments

- **object**
  A RandomForestSemisupervised object

- **X**
  A object that can be coerced as data.frame. Training instances

- **y**
  A vector with the labels of the training instances. In this vector the unlabeled instances are specified with the value NA.

- **min_samples_split**
  The minimum number of observations to do split

- **min_samples_leaf**
  The minimum number of any terminal leaf node

- **w**
  Weight parameter ranging from 0 to 1

### Description

Method in class RandomForestSemisupervised used to build a Decision Tree

### Usage

```r
S4 method for signature 'RandomForestSemisupervised'
fit_random_forest(
 object,
 X,
 y,
 mtry = 2,
 trees = 500,
 min_n = 2,
 w = 0.5,
 replace = TRUE,
 tree_max_depth = Inf,
 sampsize = if (replace) nrow(X) else ceiling(0.632 * nrow(X)),
 min_samples_leaf = if (!is.null(y) && !is.factor(y)) 5 else 1,
 allowParallel = TRUE
)
```

### Arguments

- **object**
  A RandomForestSemisupervised object

- **X**
  A object that can be coerced as data.frame. Training instances

- **y**
  A vector with the labels of the training instances. In this vector the unlabeled instances are specified with the value NA.

- **mtry**
  Number of features in each decision tree
trees number of trees. Default is 5
min_n number of minimum samples in each tree
w weight parameter ranging from 0 to 1
replace replacing type in sampling
tree_max_depth maximum tree depth. Default is Inf
sampsize Size of sample. Default if (replace) nrow(x) else ceiling(.632*nrow(x))
min_samples_leaf the minimum number of any terminal leaf node
allowParallel Execute Random Forest in parallel if doParallel is loaded. Default is TRUE

Value
list of decision trees

fit_xy.model_sslr  

Description
Funtion to fit with x and y

Usage
## S3 method for class 'model_sslr'
fit_xy(object, x = NULL, y = NULL, ...)

Arguments
object is the model
x is a data frame or matrix with train dataset without objective feature. X have labeled and unlabeled data
y is objective feature with labeled values and NA values in unlabeled data
... unused in this case
Description

fit_x_u

Usage

fit_x_u(object, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>object</td>
</tr>
<tr>
<td>...</td>
<td>other parameters to be passed</td>
</tr>
</tbody>
</table>

------

fit_x_u.model_sslr

Fit with x, y (labeled data) and unlabeled data (x_U)

------

Description

Funtion to fit with x and y and x_U. Function calcule y with NA values and append in y param

Usage

```r
S3 method for class 'model_sslr'
fitted_x_u(object, x = NULL, y = NULL, x_U = NULL, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>is the model</td>
</tr>
<tr>
<td>x</td>
<td>is a data frame or matrix with train dataset without objective feature. X only have labeled data</td>
</tr>
<tr>
<td>y</td>
<td>is objective feature with labeled values</td>
</tr>
<tr>
<td>x_U</td>
<td>train unlabeled data without objective feature</td>
</tr>
<tr>
<td>...</td>
<td>This parameter is included for compatibility reasons.</td>
</tr>
</tbody>
</table>
get_class_max_prob

get_class_max_prob  Get most frequented

Description

Get value most frequented in vector Used in predictions. It calls a predict with type = "prob" in Decision Tree

Usage

get_class_max_prob(trees, input)

Arguments

trees  trees list
input  is input to be predicted

get_function

FUNCTION TO GET FUNCTION METHOD

Description

FUNCTION TO GET FUNCTION METHOD SPECIFIC

Usage

get_function(met)

Arguments

met  character

Value

method_train (function)
get_function_generic  FUNCTION TO GET FUNCTION METHOD GENERIC

Description

FUNCTION TO GET FUNCTION METHOD GENERIC

Usage

get_function_generic(met)

Arguments

met  character

Value

method_train (function)

get_levels_categoric  Function to get group from gini index

Description

Function to get group from gini index. Used in categorical variable From: https://freakonometrics.hypotheses.org/20736

Usage

get_levels_categoric(column, Y)

Arguments

column  is the column
Y  values
get_most_frequented

Description
Get value most frequented in vector Used in predictions

Usage
get_most_frequented(elements)

Arguments
- elements: vector with values

get_value_mean

Description
Get value most frequented in vector Used in predictions. It calls a predict with type = "numeric" in Decision Tree

Usage
get_value_mean(trees, input)

Arguments
- trees: trees list
- input: is input to be predicted
get_x_y  FUNCTION TO GET REAL X AND Y WITH FORMULA AND DATA

Description
FUNCTION TO GET REAL X AND Y WITH FORMULA AND DATA

Usage
get_x_y(form, data)

Arguments
form    formula
data    data values, matrix, dataframe..

Value
x (matrix, dataframe...) and y(factor)

gini_or_variance  Gini or Variance by column

Description
function used to calculate the gini coefficient or variance according to the type of the column. This function is called for the creation of the decision tree

Usage
gini_or_variance(X)

Arguments
X    column to calculate variance or gini
gini_prob

Function to compute Gini index

Description

Function to compute Gini index From: https://freakonomics.hypotheses.org/20736

Usage

gini_prob(y, classe)

Arguments

y values
classe classes

grow_tree

An S4 method to grow tree.

description

An S4 method to grow tree.

Usage

grow_tree(object, ...)

Arguments

object DecisionTree object
... This parameter is included for compatibility reasons.
Function `grow_tree`

**Description**

Function to grow tree in Decision Tree

**Usage**

```r
S4 method for signature 'DecisionTreeClassifier' grow_tree(object, X, y, parms, depth = 0)
```

**Arguments**

- `object`: DecisionTree instance
- `X`: data values
- `y`: classes
- `parms`: parameters for grow tree
- `depth`: depth in tree

**knn_regression**

**Description**

create model knn

**Usage**

```r
knn_regression(k, x, y, p)
```

**Arguments**

- `k`: parameter in KNN model
- `x`: data
- `y`: vector labeled data
- `p`: distance order
Description

model from RSSL package Manifold regularization applied to the support vector machine as proposed in Belkin et al. (2006). As an adjacency matrix, we use the k nearest neighbour graph based on a chosen distance (default: euclidean).

Usage

```r
LaplacianSVMSSLR(
 lambda = 1,
 gamma = 1,
 scale = TRUE,
 kernel = kernlab::vanilladot(),
 adjacency_distance = "euclidean",
 adjacency_k = 6,
 normalized_laplacian = FALSE,
 eps = 1e-09
)
```

Arguments

- **lambda**: numeric; L2 regularization parameter
- **gamma**: numeric; Weight of the unlabeled data
- **scale**: logical; Should the features be normalized? (default: FALSE)
- **kernel**: kernlab::kernel to use
- **adjacency_distance**: character; distance metric used to construct adjacency graph from the dist function. Default: "euclidean"
- **adjacency_k**: integer; Number of of neighbours used to construct adjacency graph.
- **normalized_laplacian**: logical; If TRUE use the normalized Laplacian, otherwise, the Laplacian is used
- **eps**: numeric; Small value to ensure positive definiteness of the matrix in the QP formulation

References

Examples

```r
library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

library(kernlab)
m <- LaplacianSVMSSLR(kernel=kernlab::vanilladot()) %>%
 fit(Class ~ ., data = train)

Accuracy
predict(m, test) %>%
 bind_cols(test) %>%
 metrics(truth = "Class", estimate = .pred_class)
```

---

**LinearTSVMSSLR**  
*General Interface for LinearTSVM model*

### Description

Model from RSSL package. Implementation of the Linear Support Vector Classifier. Can be solved in the Dual formulation, which is equivalent to SVM or the Primal formulation.

### Usage

```r
LinearTSVMSSLR(
 C = 1,
 Cstar = 0.1,
 s = 0,
 x_center = FALSE,
 scale = FALSE,
 eps = 1e-06,
 verbose = FALSE,
 init = NULL
)
```
**Arguments**

- **C**: Cost variable
- **Cstar**: numeric; Cost parameter of the unlabeled objects
- **s**: numeric; parameter controlling the loss function of the unlabeled objects
- **x_center**: logical; Should the features be centered?
- **scale**: Whether a z-transform should be applied (default: TRUE)
- **eps**: Small value to ensure positive definiteness of the matrix in QP formulation
- **verbose**: logical; Controls the verbosity of the output
- **init**: numeric; Initial classifier parameters to start the convex concave procedure

**Examples**

```r
library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]

Labeled
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,] <- NA

data(train)

m <- LinearTSVMSLR() %>% fit(Class ~ ., data = train)

Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Class", estimate = .pred_class)
```

---

**load_parsnip**

*Load parsnip*

**Description**

function to load parsnip package
Usage

load_parsnip()

load_RANN

Load parsnip

Description

function to load parsnip package

Usage

load_RANN()

load_RSSL

Load RSSL

Description

function to load RSSL package

Usage

load_RSSL()

MCNearestMeanClassifierSSLR

General Interface for MCNearestMeanClassifier (Moment Constrained Semi-supervised Nearest Mean Classifier) model

Description

model from RSSL package Update the means based on the moment constraints as defined in Loog (2010). The means estimated using the labeled data are updated by making sure their weighted mean corresponds to the overall mean on all (labeled and unlabeled) data. Optionally, the estimated variance of the classes can be re-estimated after this update is applied by setting update_sigma to TRUE. To get the true nearest mean classifier, rather than estimate the class priors, set them to equal priors using, for instance prior=matrix(0.5,2).
MCNearestMeanClassifierSSLR

Usage

MCNearestMeanClassifierSSLR(
  update_sigma = FALSE,
  prior = NULL,
  x_center = FALSE,
  scale = FALSE
)

Arguments

update_sigma logical; Whether the estimate of the variance should be updated after the means have been updated using the unlabeled data
prior matrix; Class priors for the classes
x_center logical; Should the features be centered?
scale logical; Should the features be normalized? (default: FALSE)

References


Examples

library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]
cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- MCNearestMeanClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Class", estimate = .pred_class)
newDecisionTree  
*Function to create DecisionTree*

**Description**
Function to create DecisionTree

**Usage**
```
newDecisionTree(max_depth)
```

**Arguments**
- `max_depth`  
  max depth in tree

---

**Node-class**  
*Class Node for Decision Tree*

**Description**
Class Node for Decision Tree Slots: gini, num_samples, num_samples_per_class, predicted_class_value, feature_index threshold, left, right, probabilities

---

**nullOrNumericOrCharacter-class**

*An S4 class to represent a class with more types values: null, numeric or character*

**Description**
An S4 class to represent a class with more types values: null, numeric or character
oneNN  

1-NN supervised classifier builder

Description
Build a model using the given data to be able to predict the label or the probabilities of other instances, according to 1-NN algorithm.

Usage
oneNN(x = NULL, y)

Arguments
- x: This argument is not used, the reason why he gets is to fulfill an agreement
- y: a vector with the labels of training instances

Value
A model with the data needed to use 1-NN

---

predict,DecisionTreeClassifier-method

Function to predict inputs in Decision Tree

Description
Function to predict inputs in Decision Tree

Usage

```r
S4 method for signature 'DecisionTreeClassifier'
predict(object, inputs, type = "class")
```

Arguments
- object: The Decision Tree object
- inputs: data to be predicted
- type: Is param to define the type of predict. It can be "class", to get class labels Or "prob" to get probabilities for class in each input. Default is "class"
**predict.coBC**

**Predictions of the coBC method**

**Description**

Predicts the label of instances according to the coBC model.

**Usage**

```r
S3 method for class 'coBC'
predict(object, x, ...)
```
**Arguments**

- **object**: coBC model built with the `coBC` function.
- **x**: An object that can be coerced to a matrix. Depending on how the model was built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- **.`. .`.**: This parameter is included for compatibility reasons.

**Details**

For additional help see `coBC` examples.

**Value**

Vector with the labels assigned.

---

**predict.COREG**

_Predictions of the COREG method_

**Description**

Predicts the label of instances according to the COREG model.

**Usage**

```r
S3 method for class 'COREG'
predict(object, x, type = "numeric", ...)
```

**Arguments**

- **object**: Self-training model built with the `COREG` function.
- **x**: A object that is data
- **type**: of predict in principal model (numeric)
- **.`. .`.**: This parameter is included for compatibility reasons.

**Details**

For additional help see `COREG` examples.

**Value**

Vector with the labels assigned (numeric).
**predict.democratic**  
*Predictions of the Democratic method*

**Description**
Predicts the label of instances according to the democratic model.

**Usage**
```r
S3 method for class 'democratic'
predict(object, x, ...)
```

**Arguments**
- `object`  
  Democratic model built with the `democratic` function.
- `x`  
  A object that can be coerced as matrix. Depending on how was the model built,  
  `x` is interpreted as a matrix with the distances between the unseen instances and  
  the selected training instances, or a matrix of instances.
- `...`  
  This parameter is included for compatibility reasons.

**Details**
For additional help see `democratic` examples.

**Value**
Vector with the labels assigned.

**predict.EMLeastSquaresClassifierSSLR**  
*Predict EMLeastSquaresClassifierSSLR*

**Description**
Predict EMLeastSquaresClassifierSSLR

**Usage**
```r
S3 method for class 'EMLeastSquaresClassifierSSLR'
predict(object, x, ...)
```

**Arguments**
- `object`  
  is the object
- `x`  
  is the dataset
- `...`  
  This parameter is included for compatibility reasons.
predict.EMNearestMeanClassifierSSLR

Predict EMNearestMeanClassifierSSLR

Description

Predict EMNearestMeanClassifierSSLR

Usage

## S3 method for class 'EMNearestMeanClassifierSSLR'
predict(object, x, ...)

Arguments

object is the object
x is the dataset
... This parameter is included for compatibility reasons.

predict.EntropyRegularizedLogisticRegressionSSLR

Predict EntropyRegularizedLogisticRegressionSSLR

Description

Predict EntropyRegularizedLogisticRegressionSSLR

Usage

## S3 method for class 'EntropyRegularizedLogisticRegressionSSLR'
predict(object, x, ...)

Arguments

object is the object
x is the dataset
... This parameter is included for compatibility reasons.
predict.LaplacianSVMSSLR

Predict LaplacianSVMSSLR

Description

Predict LaplacianSVMSSLR

Usage

## S3 method for class 'LaplacianSVMSSLR'
predict(object, x, ...)

Arguments

object is the object
x is the dataset
... This parameter is included for compatibility reasons.

predict.LinearTSVMSSLR

Predict LinearTSVMSSLR

Description

Predict LinearTSVMSSLR

Usage

## S3 method for class 'LinearTSVMSSLR'
predict(object, x, ...)

Arguments

object is the object
x is the dataset
... This parameter is included for compatibility reasons.
predict.MCNearestMeanClassifierSSLR

**Predict MCNearestMeanClassifierSSLR**

**Description**

Predict MCNearestMeanClassifierSSLR

**Usage**

```r
S3 method for class 'MCNearestMeanClassifierSSLR'
predict(object, x, ...)
```

**Arguments**

- `object` is the object
- `x` is the dataset
- `...` This parameter is included for compatibility reasons.

---

**predict.model_sslr_fitted**

**Predictions of model_sslr_fitted class**

**Description**

Predicts from model. There are different types: class, prob, raw class returns tibble with one column prob returns tibble with probabilities class columns raw returns factor or numeric values

**Usage**

```r
S3 method for class 'model_sslr_fitted'
predict(object, x, type = NULL, ...)
```

**Arguments**

- `object` model_sslr_fitted model built.
- `x` A object that can be coerced as matrix. Depending on how was the model built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- `type` of predict in principal model: class, raw, prob, vote, max_prob, numeric
- `...` This parameter is included for compatibility reasons.

**Value**

tibble or vector.
predict RandomForestSemisupervised_fitted

Model Predictions

Description

This function predicts the class label of instances or its probability of pertaining to each class based on the distance matrix.

Usage

## S3 method for class 'OneNN'
predict(object, dists, type = "prob", ...)

Arguments

- **object**: A model of class OneNN built with `oneNN`
- **dists**: A matrix of distances between the instances to classify (by rows) and the instances used to train the model (by column)
- **type**: A string that can take two values: "class" for computing the class of the instances or "prob" for computing the probabilities of belonging to each class.
- **...**: Currently not used.

Value

If `type` is equal to "class" a vector of length equal to the rows number of matrix `dists`, containing the predicted labels. If `type` is equal to "prob" it returns a matrix which has nrow(dists) rows and a column for every class, where each cell represents the probability that the instance belongs to the class, according to 1NN.

predict RandomForestSemisupervised_fitted

Predictions of the SSLRDecisionTree_fitted method

Description

Predicts the label of instances according to the RandomForestSemisupervised_fitted model.

Usage

## S3 method for class 'RandomForestSemisupervised_fitted'
predict(object, x, type = "class", confident = "max_prob", ...)
Arguments

- **object**: RandomForestSemisupervised_fitted.
- **x**: A object that can be coerced as matrix. Depending on how was the model built, x is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- **type**: of predict in principal model
- **confident**: Is param to define the type of predict. It can be "max_prob", to get class with sum of probability is the maximum Or "vote" to get the most frequented class in all trees. Default is "max_prob"
- ... This parameter is included for compatibility reasons.

Value

Vector with the labels assigned.

---

**predict.selfTraining**  
*Predictions of the Self-training method*

**Description**

Predicts the label of instances according to the selfTraining model.

**Usage**

```r
S3 method for class 'selfTraining'
predict(object, x, type = "class", ...)
```

**Arguments**

- **object**: Self-training model built with the selfTraining function.
- **x**: A object that can be coerced as matrix. Depending on how was the model built, x is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- **type**: of predict in principal model
- ... This parameter is included for compatibility reasons.

**Details**

For additional help see selfTraining examples.

**Value**

Vector with the labels assigned.
**predict.setred**  
*Predictions of the SETRED method*

**Description**

Predicts the label of instances according to the `setred` model.

**Usage**

```r
S3 method for class 'setred'
predict(object, x, col_name = ".pred_class", ...)
```

**Arguments**

- `object`  
  SETRED model built with the `setred` function.
- `x`  
  A object that can be coerced as matrix. Depending on how was the model built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- `col_name`  
  is the colname from returned tibble in class type. The same from parsnip and tidymodels Default is `.pred_class`
- `...`  
  This parameter is included for compatibility reasons.

**Details**

For additional help see `setred` examples.

**Value**

Vector with the labels assigned.

---

**predict.snnrce**  
*Predictions of the SNNRCE method*

**Description**

Predicts the label of instances according to the `snnrce` model.

**Usage**

```r
S3 method for class 'snnrce'
predict(object, x, ...)
```

---
predict.snnrceG

Arguments

object SNNRCE model built with the `snnrce` function.

x A object that can be coerced as matrix. Depending on how was the model built, x is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.

... This parameter is included for compatibility reasons.

Details

For additional help see `snnrce` examples.

Value

Vector with the labels assigned.

---

predict.snnrceG Predictions of the SNNRCE method

Description

Predicts the label of instances according to the `snnrceG` model.

Usage

```r
S3 method for class 'snnrceG'
predict(object, D, ...)
```

Arguments

object model instance

D distance matrix

... This parameter is included for compatibility reasons.
predict.SSLRDecisionTree_fitted

*Predictions of the SSLRDecisionTree_fitted method*

**Description**

Predicts the label of instances SSLRDecisionTree_fitted model.

**Usage**

```r
S3 method for class 'SSLRDecisionTree_fitted'
predict(object, x, type = "class", ...)
```

**Arguments**

- `object` : model SSLRDecisionTree_fitted.
- `x` : A object that can be coerced as matrix. Depending on how was the model built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- `type` : of predict in principal model
- `...` : This parameter is included for compatibility reasons.

**Value**

Vector with the labels assigned.

predict.triTraining

*Predictions of the Tri-training method*

**Description**

Predicts the label of instances according to the triTraining model.

**Usage**

```r
S3 method for class 'triTraining'
predict(object, x, ...)
```

**Arguments**

- `object` : Tri-training model built with the triTraining function.
- `x` : A object that can be coerced as matrix. Depending on how was the model built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- `...` : This parameter is included for compatibility reasons.
**predict.TSVMSSLR**

**Details**
For additional help see `triTraining` examples.

**Value**
Vector with the labels assigned.

---

**predict.TSVMSSLR**  
*Predict TSVMSSLR*

**Description**
Predict TSVMSSLR

**Usage**
```r
S3 method for class 'TSVMSSLR'
predict(object, x, ...)
```

**Arguments**
- `object`: is the object
- `x`: is the dataset
- `...`: This parameter is included for compatibility reasons.

---

**predict.USMLeastSquaresClassifierSSLR**  
*Predict USMLeastSquaresClassifierSSLR*

**Description**
Predict USMLeastSquaresClassifierSSLR

**Usage**
```r
S3 method for class 'USMLeastSquaresClassifierSSLR'
predict(object, x, ...)
```

**Arguments**
- `object`: is the object
- `x`: is the dataset
- `...`: This parameter is included for compatibility reasons.
predict.WellSVMSSLR

Predict WellSVMSSLR

Description

Predict WellSVMSSLR

Usage

```r
S3 method for class 'WellSVMSSLR'
predict(object, x, ...)
```

Arguments

- `object` is the object
- `x` is the dataset
- `...` This parameter is included for compatibility reasons.

predict_inputs

An S4 method to predict inputs.

Description

An S4 method to predict inputs.

Usage

```r
predict_inputs(object, ...)
```

Arguments

- `object` DecisionTree object
- `...` This parameter is included for compatibility reasons.
### predict_inputs, DecisionTreeClassifier-method

#### Predict inputs Decision Tree

**Description**

Function to predict one input in Decision Tree

**Usage**

```r
S4 method for signature 'DecisionTreeClassifier'
predict_inputs(object, inputs, type = "class")
```

**Arguments**

- `object`: DecisionTree object
- `inputs`: inputs to be predicted
- `type`: type prediction, class or prob

### print.model_sslr

**Description**

Print model SSLR

**Usage**

```r
S3 method for class 'model_sslr'
print(object)
```

**Arguments**

- `object`: model_sslr object to print

### RandomForestSemisupervised-class

**Description**

Class Random Forest

Class Random Forest Slots: mtry, trees, min_n, w, classes, mode
**General Interface for Self-training model**

### Description

Self-training is a simple and effective semi-supervised learning classification method. The self-training classifier is initially trained with a reduced set of labeled examples. Then it is iteratively retrained with its own most confident predictions over the unlabeled examples. Self-training follows a wrapper methodology using a base supervised classifier to establish the possible class of unlabeled instances.

### Usage

```r
selfTraining(learner, max.iter = 50, perc.full = 0.7, thr.conf = 0.5)
```

### Arguments

- **learner**: model from parsnip package for training a supervised base classifier using a set of instances. This model needs to have probability predictions (or optionally a distance matrix) and its corresponding classes.
- **max.iter**: maximum number of iterations to execute the self-labeling process. Default is 50.
- **perc.full**: A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-training process is stopped. Default is 0.7.
- **thr.conf**: A number between 0 and 1 that indicates the confidence threshold. At each iteration, only the newly labeled examples with a confidence greater than this value (thr.conf) are added to the training set.

### Details

For predicting the most accurate instances per iteration, `selfTraining` uses the predictions obtained with the learner specified. To train a model using the `learner` function, it is required a set of instances (or a precomputed matrix between the instances if `x.inst` parameter is `FALSE`) in conjunction with the corresponding classes. Additional parameters are provided to the `learner` function via the `learner.pars` argument. The model obtained is a supervised classifier ready to predict new instances through the `pred` function. Using a similar idea, the additional parameters to the `pred` function are provided using the `pred.pars` argument. The `pred` function returns the probabilities per class for each new instance. The value of the `thr.conf` argument controls the confidence of instances selected to enlarge the labeled set for the next iteration.

The stopping criterion is defined through the fulfillment of one of the following criteria: the algorithm reaches the number of iterations defined in the `max.iter` parameter or the portion of the unlabeled set, defined in the `perc.full` parameter, is moved to the labeled set. In some cases, the process stops and no instances are added to the original labeled set. In this case, the user must assign a more flexible value to the `thr.conf` parameter.
selfTraining

Value

(When model fit) A list object of class "selfTraining" containing:

model The final base classifier trained using the enlarged labeled set.

instances.index The indexes of the training instances used to train the model. These indexes include the initial labeled instances and the newly labeled instances. Those indexes are relative to x argument.

classes The levels of y factor.

pred The function provided in the pred argument.

pred.pars The list provided in the pred.pars argument.

References

David Yarowsky. 
Unsupervised word sense disambiguation rivaling supervised methods.

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(train$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

#We need a model with probability predictions from parsnip
#https://tidymodels.github.io/parsnip/articles/articles/Models.html
#It should be with mode = classification

#For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%
set_engine("randomForest")

m <- selfTraining(learner = rf,
perc.full = 0.7,
thr.conf = 0.5, max.iter = 10) %>% fit(Wine ~ ., data = train)
# Accuracy

```r
predict(m, test) %>%
bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)
```

## selfTrainingG

### Self-training generic method

**Description**

Self-training is a simple and effective semi-supervised learning classification method. The self-training classifier is initially trained with a reduced set of labeled examples. Then it is iteratively retrained with its own most confident predictions over the unlabeled examples. Self-training follows a wrapper methodology using one base supervised classifier to establish the possible class of unlabeled instances.

**Usage**

```r
selfTrainingG(
 y,
 gen.learner,
 gen.pred,
 max.iter = 50,
 perc.full = 0.7,
 thr.conf = 0.5
)
```

**Arguments**

- `y` A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value `NA`.
- `gen.learner` A function for training a supervised base classifier. This function needs two parameters, indexes and cls, where indexes indicates the instances to use and cls specifies the classes of those instances.
- `gen.pred` A function for predicting the probabilities per classes. This function must be two parameters, model and indexes, where the model is a classifier trained with `gen.learner` function and indexes indicates the instances to predict.
- `max.iter` Maximum number of iterations to execute the self-labeling process. Default is 50.
- `perc.full` A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-training process is stopped. Default is 0.7.
- `thr.conf` A number between 0 and 1 that indicates the confidence threshold. At each iteration, only the newly labeled examples with a confidence greater than this value (`thr.conf`) are added to the training set.
SelfTrainingG can be helpful in those cases where the method selected as base classifier needs learner and pred functions with other specifications. For more information about the general self-training method, please see the selfTraining function. Essentially, the selfTraining function is a wrapper of the SelfTrainingG function.

Value

A list object of class "selfTrainingG" containing:

- **model** The final base classifier trained using the enlarged labeled set.
- **instances.index** The indexes of the training instances used to train the model. These indexes include the initial labeled instances and the newly labeled instances. Those indexes are relative to the y argument.

Examples

```r
library(SSLR)

Load Wine data set
data(wine)
cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x)

set.seed(20)
Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,]
ytrain <- y[tra.idx]

Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA

Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xitest <- x[tst.idx,] # testing instances
yitest <- y[tst.idx] # classes of instances in xitest

Use the unlabeled examples for transductive testing
xttest <- x[tra.idx[tra.na.idx],] # transductive testing instances
yttest <- y[tra.idx[tra.na.idx]] # classes of instances in xttest

library(caret)

#PREPARE DATA
data <- cbind(xtrain, Class = ytrain)
```
dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
ditest <- as.matrix(proxy::dist(x = xittest, y = xtrain, method = "euclidean", by_rows = TRUE))

ddata <- cbind(dtrain, Class = ytrain)
ddata <- as.data.frame(ddata)

ktrain <- as.matrix(exp(-0.048 * dtrain ^ 2))
kdata <- cbind(ktrain, Class = ytrain)
kdata <- as.data.frame(kdata)

ktrain <- as.matrix(exp(-0.048 * dtrain ^ 2))
ktest <- as.matrix(exp(-0.048 * dtest ^ 2))

## Example: Training from a set of instances with 1-NN (knn3) as base classifier.
gen.learner <- function(indexes, cls) 
  caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred <- function(model, indexes) 
  predict(model, xtrain[indexes,])

trControl_selfTrainingG1 <- list(gen.learner = gen.learner, gen.pred = gen.pred)
md1 <- train_generic(ytrain, method = "selfTrainingG", trControl = trControl_selfTrainingG1)
p1 <- predict(md1$model, xittest, type = "class")
table(p1, yitest)
confusionMatrix(p1, yitest)$overall[1]

## Example: Training from a distance matrix with 1-NN (oneNN) as base classifier.
dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
gen.learner <- function(indexes, cls) {
  m <- SSLR::oneNN(y = cls)
  attr(m, "tra.idxs") <- indexes
  m
}
gen.pred <- function(model, indexes) {
  tra.idxs <- attr(model, "tra.idxs")
  d <- dtrain[indexes, tra.idxs]
  prob <- predict(model, d, distance.weighting = "none")
  prob
}

trControl_selfTrainingG2 <- list(gen.learner = gen.learner, gen.pred = gen.pred)
md2 <- train_generic(ytrain, method = "selfTrainingG", trControl = trControl_selfTrainingG2)
ditest <- proxy::dist(x = xittest, y = xtrain[md2$instances.index,]
setred(method = "euclidean", by_rows = TRUE)
p2 <- predict(md2$model, ditest, type = "class")
table(p2, yitest)

classificationMatrix(p2, yitest)$overall[1]

---

setred  General Interface for SETRED model

Description

SETRED (SElf-TRaining with EDiting) is a variant of the self-training classification method (as implemented in the function selfTraining) with a different addition mechanism. The SETRED classifier is initially trained with a reduced set of labeled examples. Then, it is iteratively retrained with its own most confident predictions over the unlabeled examples. SETRED uses an amending scheme to avoid the introduction of noisy examples into the enlarged labeled set. For each iteration, the mislabeled examples are identified using the local information provided by the neighborhood graph.

Usage

setred(
  dist = "Euclidean",
  learner,
  theta = 0.1,
  max.iter = 50,
  perc.full = 0.7,
  D = NULL
)

Arguments

dist A distance function or the name of a distance available in the proxy package to compute. Default is "Euclidean" the distance matrix in the case that D is NULL.

learner model from parsnip package for training a supervised base classifier using a set of instances. This model need to have probability predictions (or optionally a distance matrix) and it's corresponding classes.

theta Rejection threshold to test the critical region. Default is 0.1.

max.iter maximum number of iterations to execute the self-labeling process. Default is 50.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-training process is stopped. Default is 0.7.

D A distance matrix between all the training instances. This matrix is used to construct the neighborhood graph. Default is NULL, this means the method create a matrix with dist param
Details

SETRED initiates the self-labeling process by training a model from the original labeled set. In each iteration, the Learner function detects unlabeled examples for which it makes the most confident prediction and labels those examples according to the pred function. The identification of mislabeled examples is performed using a neighborhood graph created from the distance matrix. Most examples possess the same label in a neighborhood. So if an example locates in a neighborhood with too many neighbors from different classes, this example should be considered problematic. The value of the theta argument controls the confidence of the candidates selected to enlarge the labeled set. The lower this value is, the more restrictive is the selection of the examples that are considered good. For more information about the self-labeled process and the rest of the parameters, please see selfTraining.

Value

(When model fit) A list object of class "setred" containing:

- **model** The final base classifier trained using the enlarged labeled set.
- **instances.index** The indexes of the training instances used to train the model. These indexes include the initial labeled instances and the newly labeled instances. Those indexes are relative to x argument.
- **classes** The levels of y factor.
- **pred** The function provided in the pred argument.
- **pred.pars** The list provided in the pred.pars argument.

References

Ming Li and ZhiHua Zhou.

*Setred: Self-training with editing.*

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)
data(wine)
set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]
cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

# We need a model with probability predictions from parsnip
# https://tidymodels.github.io/parsnip/articles/articles/Models.html
# It should be with mode = classification

# For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%
  set_engine("randomForest")

m <- setred(learner = rf,
  theta = 0.1,
  max.iter = 2,
  perc.full = 0.7) %>% fit(Wine ~ ., data = train)

# Accuracy
predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Wine", estimate = .pred_class)

# Another example, with dist matrix

distance <- as.matrix(proxy::dist(train[-cls], method = "Euclidean",
  by_rows = TRUE, diag = TRUE, upper = TRUE))

m <- setred(learner = rf,
  theta = 0.1,
  max.iter = 2,
  perc.full = 0.7,
  D = distance) %>% fit(Wine ~ ., data = train)

# Accuracy
predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Wine", estimate = .pred_class)

---

**setredG**

**SETRED generic method**

**Description**

SETRED is a variant of the self-training classification method (**selfTraining**) with a different addition mechanism. The SETRED classifier is initially trained with a reduced set of labeled examples. Then it is iteratively retrained with its own most confident predictions over the unlabeled examples. SETRED uses an amending scheme to avoid the introduction of noisy examples into
the enlarged labeled set. For each iteration, the mislabeled examples are identified using the local information provided by the neighborhood graph.

Usage

```
setredG(
 y,
 D,
 gen.learner,
 gen.pred,
 theta = 0.1,
 max.iter = 50,
 perc.full = 0.7
)
```

Arguments

- **y**: A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value `NA`.
- **D**: A distance matrix between all the training instances. This matrix is used to construct the neighborhood graph.
- **gen.learner**: A function for training a supervised base classifier. This function needs two parameters, indexes and cls, where indexes indicates the instances to use and cls specifies the classes of those instances.
- **gen.pred**: A function for predicting the probabilities per classes. This function must be two parameters, model and indexes, where the model is a classifier trained with `gen.learner` function and indexes indicates the instances to predict.
- **theta**: Rejection threshold to test the critical region. Default is 0.1.
- **max.iter**: Maximum number of iterations to execute the self-labeling process. Default is 50.
- **perc.full**: A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-training process is stopped. Default is 0.7.

Details

`setredG` can be helpful in those cases where the method selected as base classifier needs a `learner` and `pred` functions with other specifications. For more information about the general `setred` method, please see `setred` function. Essentially, `setred` function is a wrapper of `setredG` function.

Value

A list object of class "setredG" containing:

- **model**: The final base classifier trained using the enlarged labeled set.
- **instances.index**: The indexes of the training instances used to train the `model`. These indexes include the initial labeled instances and the newly labeled instances. Those indexes are relative to the `y` argument.
Examples

```r
library(SSLR)
library(caret)

Load Wine data set
data(wine)

cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x) # scale the attributes

Prepare data
set.seed(20)
Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,] # training instances
ytrain <- y[tra.idx] # classes of training instances
Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances
Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xtest <- x[tst.idx,] # testing instances
ytest <- y[tst.idx] # classes of testing instances

Compute distances between training instances
D <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))

Example: Training from a set of instances with 1-NN (knn3) as base classifier.
Compute distances between training instances
D <- as.matrix(proxy::dist(x = xtrain[, indexes,], y = cls, k = 1))
gen.learner <- function(indexes, cls)
caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred <- function(model, indexes)
predict(model, xtrain[indexes,])

trControl_SETRED1 <- list(D = D, gen.learner = gen.learner, gen.pred = gen.pred)
md1 <- train_generic(ytrain, method = "setredG", trControl = trControl_SETRED1)

' md1 <- setredG(y = ytrain, D, gen.learner, gen.pred)'

cls1 <- predict(md1$model, xtest, type = "class")
table(cls1, ytest)
confusionMatrix(cls1, ytest)$overall[1]
```
## Example: Training from a distance matrix with 1-NN (oneNN) as base classifier

gen.learner <- function(indexes, cls) {
  m <- SSLR::oneNN(y = cls)
  attr(m, "tra.idxs") <- indexes
  m
}

gen.pred <- function(model, indexes) {
  tra.idxs <- attr(model, "tra.idxs")
  d <- D[indexes, tra.idxs]
  prob <- predict(model, d, distance.weighting = "none")
  prob
}

trControl_SETRED2 <- list(D = D, gen.learner = gen.learner,
                           gen.pred = gen.pred)

md2 <- train_generic(ytrain, method = "setredG", trControl = trControl_SETRED2)

ditest <- proxy::dist(x = xitest, y = xtrain[md2$instances.index,],
                      method = "euclidean", by_rows = TRUE)

cls2 <- predict(md2$model, ditest, type = "class")
table(cls2, yitest)

confusionMatrix(cls2, yitest)$overall[1]

---

snnrce

### Description

SNNRCE (Self-training Nearest Neighbor Rule using Cut Edges) is a variant of the self-training classification method (selfTraining) with a different addition mechanism and a fixed learning scheme (1-NN). SNNRCE uses an amending scheme to avoid the introduction of noisy examples into the enlarged labeled set. The mislabeled examples are identified using the local information provided by the neighborhood graph. A statistical test using cut edge weight is used to modify the labels of the missclassified examples.

### Usage

```
snnrce(x.inst = TRUE, dist = "Euclidean", alpha = 0.1)
```
**Arguments**

- **x.inst** A boolean value that indicates if \( x \) is or not an instance matrix. Default is \( \text{TRUE} \).
- **dist** A distance function available in the \texttt{proxy} package to compute the distance matrix in the case that \( x \text{.inst} \) is \( \text{TRUE} \).
- **alpha** Rejection threshold to test the critical region. Default is 0.1.

**Details**

\texttt{SNNRCE} initiates the self-labeling process by training a 1-NN from the original labeled set. This method attempts to reduce the noise in examples by labeling those instances with no cut edges in the initial stages of self-labeling learning. These highly confident examples are added into the training set. The remaining examples follow the standard self-training process until a minimum number of examples will be labeled for each class. A statistical test using cut edge weight is used to modify the labels of the misclassified examples. The value of the \( \alpha \) argument defines the critical region where the candidates examples are tested. The higher this value is, the more relaxed it is the selection of the examples that are considered mislabeled.

**Value**

(When model fit) A list object of class "\texttt{snnrce}" containing:

- **model** The final base classifier trained using the enlarged labeled set.
- **instances.index** The indexes of the training instances used to train the \texttt{model}. These indexes include the initial labeled instances and the newly labeled instances. Those indexes are relative to \( x \) argument.
- **classes** The levels of \( y \) factor.
- **x.inst** The value provided in the \( x \text{.inst} \) argument.
- **dist** The value provided in the \( \text{dist} \) argument when \( x \text{.inst} \) is \( \text{TRUE} \).
- **xtrain** A matrix with the subset of training instances referenced by the indexes \texttt{instances.index} when \( x \text{.inst} \) is \( \text{TRUE} \).

**References**

Yu Wang, Xiaoyan Xu, Haifeng Zhao, and Zhongsheng Hua.

*Semisupervised learning based on nearest neighbor rule and cut edges.*


**Examples**

```r
library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)
set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
```
test <- wine[-train.index,]
cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- snrce(x.inst = TRUE,
    dist = "Euclidean",
    alpha = 0.1) %>% fit(Wine ~ ., data = train)

predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Wine", estimate = .pred_class)

SSLRDecisionTree  General Interface Decision Tree model

Description

Decision Tree is a simple and effective semi-supervised learning method. Based on the article "Semi-supervised classification trees". It also offers many parameters to modify the behavior of this method. It is the same as the traditional Decision Tree algorithm, but the difference is how the gini coefficient is calculated (classification). In regression we use SSE metric (different from the original investigation) It can be used in classification or regression. If Y is numeric is for regression, classification in another case

Usage

SSLRDecisionTree(
    max_depth = 30,
    w = 0.5,
    min_samples_split = 20,
    min_samples_leaf = ceiling(min_samples_split/3)
)

Arguments

max_depth A number from 1 to Inf. Is the maximum number of depth in Decision Tree
Default is 30
w weight parameter ranging from 0 to 1. Default is 0.5
min_samples_split the minimum number of observations to do split. Default is 20
min_samples_leaf the minimum number of any terminal leaf node. Default is ceiling(min_samples_split/3)
Details

In this model we can make predictions with prob type

References

Jurica Levati, Michelangelo Ceci, Dragi Kocev, Saso Dzeroski.  
*Semi-supervised classification trees.*  
Published online: 25 March 2017 © Springer Science Business Media New York 2017

Examples

```r
library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- SSLRDecisionTree(min_samples_split = round(length(labeled.index) * 0.25),
 w = 0.3,
) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Wine", estimate = .pred_class)

#For probabilities
predict(m,test, type = "prob")
```

SSLRRandomForest  
*General Interface Random Forest model*
Description

Random Forest is a simple and effective semi-supervised learning method. It is the same as the traditional Random Forest algorithm, but the difference is that it uses Semi-supervised Decision Trees. It can be used in classification or regression. If $Y$ is numeric, it is for regression; classification in another case.

Usage

```r
SSLRRandomForest(
 mtry = NULL,
 trees = 500,
 min_n = NULL,
 w = 0.5,
 replace = TRUE,
 tree_max_depth = Inf,
 sampsize = NULL,
 min_samples_leaf = NULL,
 allowParallel = TRUE
)
```

Arguments

- `mtry`: number of features in each decision tree. Default is null. This means that $\text{mtry} = \log(\text{n_features}) + 1$
- `trees`: number of trees. Default is 500
- `min_n`: number of minimum samples in each tree. Default is null. This means that it uses all training data
- `w`: weight parameter ranging from 0 to 1. Default is 0.5
- `replace`: replacing type in sampling. Default is true
- `tree_max_depth`: maximum tree depth. Default is Inf
- `sampsize`: Size of sample. Default if `replace` nrow(x) else ceiling(.632*nrow(x))
- `min_samples_leaf`: the minimum number of any terminal leaf node. Default is 1
- `allowParallel`: Execute Random Forest in parallel if doParallel is loaded. Default is TRUE

Details

We can use parallel processing with doParallel package and `allowParallel = TRUE`.

References

Jurica Levati, Michelangelo Ceci, Dragi Kocev, Saso Dzeroski. 
*Semi-supervised classification trees.*
Published online: 25 March 2017 © Springer Science Business Media New York 2017
Examples

```r
library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- SSLRRandomForest(trees = 5, w = 0.3) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Wine", estimate = .pred_class)
```

---

### train_generic

**FUNCTION TO TRAIN GENERIC MODEL**

**Description**

FUNCTION TO TRAIN GENERIC MODEL

**Usage**

```r
train_generic(y, ...)
```

**Arguments**

- **y** (optional) factor (classes)
- **...** list parms trControl (method...)

**Value**

model trained
**triTraining**

**General Interface for Tri-training model**

**Description**

Tri-training is a semi-supervised learning algorithm with a co-training style. This algorithm trains three classifiers with the same learning scheme from a reduced set of labeled examples. For each iteration, an unlabeled example is labeled for a classifier if the other two classifiers agree on the labeling proposed.

**Usage**

\[ \text{triTraining}(\text{learner}) \]

**Arguments**

- **learner**
  model from parsnip package for training a supervised base classifier using a set of instances. This model need to have probability predictions (or optionally a distance matrix) and it's corresponding classes.

**Details**

Tri-training initiates the self-labeling process by training three models from the original labeled set, using the learner function specified. In each iteration, the algorithm detects unlabeled examples on which two classifiers agree with the classification and includes these instances in the enlarged set of the third classifier under certain conditions. The generation of the final hypothesis is produced via the majority voting. The iteration process ends when no changes occur in any model during a complete iteration.

**Value**

A list object of class "triTraining" containing:

- **model** The final three base classifiers trained using the enlarged labeled set.
- **model.index** List of three vectors of indexes related to the training instances used per each classifier. These indexes are relative to the \( y \) argument.
- **instances.index** The indexes of all training instances used to train the three models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the \( y \) argument.
- **model.index.map** List of three vectors with the same information in \texttt{model.index} but the indexes are relative to \texttt{instances.index} vector.
- **classes** The levels of \( y \) factor.
- **pred** The function provided in the \texttt{pred} argument.
- **pred.pars** The list provided in the \texttt{pred.pars} argument.
- **x.inst** The value provided in the \texttt{x.inst} argument.
References
ZhiHua Zhou and Ming Li.
Tri-training: exploiting unlabeled data using three classifiers.

Examples
library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)
data(wine)
set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

#We need a model with probability predictions from parsnip
#https://tidymodels.github.io/parsnip/articles/articles/Models.html
#It should be with mode = classification

#For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%
  set_engine("randomForest")

m <- triTraining(learner = rf) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Wine", estimate = .pred_class)

---

**triTrainingCombine**

*Combining the hypothesis*

**Description**
This function combines the predictions obtained by the set of classifiers.
**Usage**

`triTrainingCombine(pred)`

**Arguments**

- `pred` A list with the predictions of each classifiers

**Value**

A vector of classes

---

**triTrainingG**

*Tri-training generic method*

**Description**

Tri-training is a semi-supervised learning algorithm with a co-training style. This algorithm trains three classifiers with the same learning scheme from a reduced set of labeled examples. For each iteration, an unlabeled example is labeled for a classifier if the other two classifiers agree on the labeling proposed.

**Usage**

`triTrainingG(y, gen.learner, gen.pred)`

**Arguments**

- `y` A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value `NA`.

- `gen.learner` A function for training three supervised base classifiers. This function needs two parameters, indexes and cls, where indexes indicates the instances to use and cls specifies the classes of those instances.

- `gen.pred` A function for predicting the probabilities per classes. This function must be two parameters, model and indexes, where the model is a classifier trained with `gen.learner` function and indexes indicates the instances to predict.

**Details**

TriTrainingG can be helpful in those cases where the method selected as base classifier needs a learner and pred functions with other specifications. For more information about the general triTraining method, please see the `triTraining` function. Essentially, the triTraining function is a wrapper of the `triTrainingG` function.
Value

A list object of class "triTrainingG" containing:

**model**  The final three base classifiers trained using the enlarged labeled set.

**model.index**  List of three vectors of indexes related to the training instances used per each classifier. These indexes are relative to the y argument.

**instances.index**  The indexes of all training instances used to train the three models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the y argument.

**model.index.map**  List of three vectors with the same information in model.index but the indexes are relative to instances.index vector.

Examples

```r
library(SSLR)
library(caret)

Load Wine data set
data(wine)

cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x) # scale the attributes

Prepare data
set.seed(20)
Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,] # training instances
ytrain <- y[tra.idx] # classes of training instances
Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances

Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xittest <- x[tst.idx,] # testing instances
yittest <- y[tst.idx] # classes of testing instances

Example: Training from a set of instances with 1-NN (knn3) as base classifier.
gen.learner <- function(indexes, cls)
caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred <- function(model, indexes)
predict(model, xtrain[indexes,])

Train
set.seed(1)

trControl_triTraining1 <- list(gen.learner = gen.learner,
gen.pred = gen.pred)
```
md1 <- train_generic(ytrain, method = "triTrainingG", trControl = trControl_triTraining1)

# Predict testing instances using the three classifiers
pred <- lapply(
  X = md1$model,
  FUN = function(m) predict(m, xitest, type = "class")
)
# Combine the predictions
cls1 <- triTrainingCombine(pred)
table(cls1, yitest)

confusionMatrix(cls1, yitest)$overall[1]

## Example: Training from a distance matrix with 1-NN (oneNN) as base classifier.
dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
gen.learner <- function(indexes, cls) {
  m <- SSLR::oneNN(y = cls)
  attr(m, "tra.idxs") <- indexes
  m
}

gen.pred <- function(model, indexes) {
  tra.idxs <- attr(model, "tra.idxs")
  d <- dtrain[indexes, tra.idxs]
  prob <- predict(model, d, distance.weighting = "none")
  prob
}

# Train
set.seed(1)
trControl_triTraining2 <- list(gen.learner = gen.learner,
                             gen.pred = gen.pred)
md2 <- train_generic(ytrain, method = "triTrainingG", trControl = trControl_triTraining2)

# Predict
ditest <- proxy::dist(x = xitest, y = xtrain[md2$instances.index[,]],
                       method = "euclidean", by_rows = TRUE)

# Predict testing instances using the three classifiers
pred <- mapply(
  FUN = function(m, indexes) {
    D <- ditest[, indexes]
    predict(m, D, type = "class")
  },
  m = md2$model,
  indexes = md2$model.index.map,
  SIMPLIFY = FALSE
)
# Combine the predictions
```r
cls2 <- triTrainingCombine(pred)
table(cls2, yitest)

confusionMatrix(cls2, yitest)$overall[1]
```

TSVMSSLR

General Interface for TSVM (Transductive SVM classifier using the convex concave procedure) model

Description

model from RSSL package Transductive SVM using the CCCP algorithm as proposed by Collobert et al. (2006) implemented in R using the quadprog package. The implementation does not handle large datasets very well, but can be useful for smaller datasets and visualization purposes. C is the cost associated with labeled objects, while Cstar is the cost for the unlabeled objects. s control the loss function used for the unlabeled objects: it controls the size of the plateau for the symmetric ramp loss function. The balancing constraint makes sure the label assignments of the unlabeled objects are similar to the prior on the classes that was observed on the labeled data.

Usage

```r
TSVMSSLR(
 C = 1,
 Cstar = 0.1,
 kernel = kernlab::vanilladot(),
 balancing_constraint = TRUE,
 s = 0,
 x_center = TRUE,
 scale = FALSE,
 eps = 1e-09,
 max_iter = 20,
 verbose = FALSE
)
```

Arguments

- **C** numeric; Cost parameter of the SVM
- **Cstar** numeric; Cost parameter of the unlabeled objects
- **kernel** kernlab::kernel to use
- **balancing_constraint** logical; Whether a balancing constraint should be enforced that causes the fraction of objects assigned to each label in the unlabeled data to be similar to the label fraction in the labeled data.
- **s** numeric; parameter controlling the loss function of the unlabeled objects (generally values between -1 and 0)
- **x_center** logical; Should the features be centered?
scale: If TRUE, apply a z-transform to all observations in X and X_u before running the regression.

eps: numeric; Stopping criterion for the maximinimization.

max_iter: integer; Maximum number of iterations.

verbose: logical; print debugging messages, only works for vanilladot() kernel (default: FALSE).

References


Examples

```r
library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,

test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

library(kernlab)
m <- TSVMSSLR(kernel = kernlab::vanilladot()) %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%
bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)
```

USMLeastSquaresClassifierSSLR

*General Interface for USMLeastSquaresClassifier (Updated Second Moment Least Squares Classifier) model*
USMLestSquaresClassifierSSLR

Description

model from RSSL package This methods uses the closed form solution of the supervised least squares problem, except that the second moment matrix (X’X) is exchanged with a second moment matrix that is estimated based on all data. See for instance Shaffer1991, where in this implementation we use all data to estimate E(X’X), instead of just the labeled data. This method seems to work best when the data is first centered x_center=TRUE and the outputs are scaled using y_scale=TRUE.

Usage

USMLestSquaresClassifierSSLR(
  lambda = 0,
  intercept = TRUE,
  x_center = FALSE,
  scale = FALSE,
  y_scale = FALSE,
  ...
)

Arguments

lambda numeric; L2 regularization parameter
intercept logical; Whether an intercept should be included
x_center logical; Should the features be centered?
scale logical; Should the features be normalized? (default: FALSE)
y_scale logical; whether the target vector should be centered
... Not used
use_Xu_for_scaling logical; whether the unlabeled objects should be used to determine the mean and scaling for the normalization

References


Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
```r
test <- breast[-train.index,]
cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- USMLeastSquaresClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Class", estimate = .pred_class)
```

**WellSVMSSLR**  
*General Interface for WellSVM model*

**Description**

The **WellSVMSSLR** model from RSSL package WellSVM is a minimax relaxation of the mixed integer programming problem of finding the optimal labels for the unlabeled data in the SVM objective function. This implementation is a translation of the Matlab implementation of Li (2013) into R.

**Usage**

```r
WellSVMSSLR(
 C1 = 1,
 C2 = 0.1,
 gamma = 1,
 x_center = TRUE,
 scale = FALSE,
 use_Xu_for_scaling = FALSE,
 max_iter = 20
)
```

**Arguments**

- **C1**: double; A regularization parameter for labeled data, default 1;
- **C2**: double; A regularization parameter for unlabeled data, default 0.1;
- **gamma**: double; Gaussian kernel parameter, i.e., \( k(x,y) = \exp(-\gamma^2||x-y||^2/\text{avg}) \) where \( \text{avg} \) is the average distance among instances; when \( \gamma = 0 \), linear kernel is used. default \( \gamma = 1 \);
- **x_center**: logical; Should the features be centered?
- **scale**: logical; Should the features be normalized? (default: FALSE)
use_Xu_for_scaling
  logical; whether the unlabeled objects should be used to determine the mean and scaling for the normalization

max_iter
  integer; Maximum number of iterations

References


Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]
cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- WellSVMSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Class", estimate = .pred_class)

wine
  Wine recognition data

Description

This dataset is the result of a chemical analysis of wine grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.
Usage

data(wine)

Format

A data frame with 178 rows and 14 variables including the class.

Details

The dataset is taken from the UCI data repository, to which it was donated by Riccardo Leardi, University of Genova. The attributes are as follows:

- Alcohol
- Malic acid
- Ash
- Alcalinity of ash
- Magnesium
- Total phenols
- Flavanoids
- Nonflavanoid phenols
- Proanthocyanins
- Color intensity
- Hue
- OD280/OD315 of diluted wines
- Proline
- Wine (class)

Source

https://archive.ics.uci.edu/ml/datasets/Wine
Index

*Topic **datasets**
- abalone, 4
- breast, 5
- coffee, 15
- wine, 81

- abalone, 4
- best_split, 4
- best_split, DecisionTreeClassifier-method, 5
- breast, 5

- calculate_gini, 6
- check_value, 6
- check_xy_interface, 7
- coBC, 7, 10, 43
- coBCCombine, 9
- coBCG, 10
- coBCReg, 12
- coBCRegG, 13
- coffee, 15
- COREG, 15, 43

- DecisionTreeClassifier-class, 16
- democratic, 16, 19, 44
- democraticCombine, 18
- democraticG, 19

- EMLeastSquaresClassifierSSLR, 20
- EMNearestMeanClassifierSSLR, 22
- EntropyRegularizedLogisticRegressionSSLR, 23

- fit.model.sslr, 24
- fit_decision_tree, 25
- fit_decision_tree, DecisionTreeClassifier-method, 25
- fit_random_forest, RandomForestSemisupervised-method, 26
- fit_x_u, 28
predict.EMNearestMeanClassifierSSLR, 45
predict.EntropyRegularizedLogisticRegressionSSLR, 45
predict.LaplacianSVMSSLR, 46
predict.LinearTSVMSSLR, 46
predict.MCNearestMeanClassifierSSLR, 47
predict.model_sslr_fitted, 47
predict.OneNN, 48
predict.RandomForestSemisupervised_fitted, 48
predict.selfTraining, 49
predict.setred, 50
predict.snnrce, 50
predict.snnrceG, 51
predict.SSLRDecisionTree_fitted, 52
predict.triTraining, 52
predict.TSVMSSLR, 53
predict.USMLeastSquaresClassifierSSLR, 53
predict.WellSVMSSLR, 54
predict_inputs, 54
predict_inputs,DecisionTreeClassifier-method, 55
print.model_sslr, 55

RandomForestSemisupervised-class, 55

selfTraining, 49, 56, 59, 61–63, 66
selfTrainingG, 58
setred, 50, 61, 64
setredG, 63
snnrce, 51, 66
SSLRDecisionTree, 68
SSLR RandomForest, 69
SVM, 36

train_generic, 71
triTraining, 52, 53, 72, 74
triTrainingCombine, 73
triTrainingG, 74
TSVMSSLR, 77

USMLeastSquaresClassifierSSLR, 78

WellSVMSSLR, 80
wine, 81