Package ‘SSLR’

October 12, 2022

Type Package

Title Semi-Supervised Classification, Regression and Clustering Methods

Version 0.9.3.3

Maintainer Francisco Jesús Palomares Alabarce <fpalomares@correo.ugr.es>

URL https://dicits.ugr.es/software/SSLR/

Description Providing a collection of techniques for semi-supervised classification, regression and clustering. In semi-supervised problem, both labeled and unlabeled data are used to train a classifier. The package includes a collection of semi-supervised learning techniques: self-training, co-training, democratic, decision tree, random forest, 'S3VM' ... etc, with a fairly intuitive interface that is easy to use.

License GPL-3

ByteCompile true

Depends R (>= 2.10)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports stats, parsnip, plyr, dplyr (>= 0.8.0.1), magrittr, purrr, rlang (>= 0.3.1), proxy, methods, generics, utils, RANN, foreach, RSSL, conclust

LinkingTo Rcpp, RcppArmadillo

Suggests caret, tidymodels, e1071, C50, kernlab, testthat, doParallel, tidyverse, factoextra, survival, covr, kknn, randomForest, ranger, MASS, nlme, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Francisco Jesús Palomares Alabarce [aut, cre]
(<https://orcid.org/0000-0002-0499-7034>),
José Manuel Benitez [ctb] (<https://orcid.org/0000-0002-2346-0793>),
R topics documented:

- abalone
- best_split
- best_split,DecisionTreeClassifier-method
- breast
- calculate_gini
- cclsSSLR
- check_value
- check_xy_interface
- ckmeansSSLR
- cluster_labels
- cluster_labels.model_sslr_fitted
- coBC
- coBCCombine
- coBCG
- coBCReg
- coBCRegG
- coffee
- constrained_kmeans
- COREG
- DecisionTreeClassifier-class
- democratic
- democraticCombine
- democraticG
- EMLLeastSquaresClassifierSSLR
- EMNearestMeanClassifierSSLR
- EntropyRegularizedLogisticRegressionSSLR
- fit.model_sslr
- fit_decision_tree
- fit_decision_tree,DecisionTreeClassifier-method
- fit_random_forest,RandomForestSemisupervised-method
- fit_xy.model_sslr
- fit_x_u
- fit_x_u.model_sslr
- get_centers
- get_centers.model_sslr_fitted
- get_class_max_prob
- get_class_mean_prob
- get_function
- get_function_generic
`R` topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_levels_categoric</td>
<td>38</td>
</tr>
<tr>
<td>get_most_frequent</td>
<td>38</td>
</tr>
<tr>
<td>get_value_mean</td>
<td>38</td>
</tr>
<tr>
<td>get_x_y</td>
<td>39</td>
</tr>
<tr>
<td>gini_or_variance</td>
<td>39</td>
</tr>
<tr>
<td>gini_prob</td>
<td>40</td>
</tr>
<tr>
<td>GRFCClassifierSSLR</td>
<td>40</td>
</tr>
<tr>
<td>grow_tree</td>
<td>42</td>
</tr>
<tr>
<td>grow_tree,DecisionTreeClassifier-method</td>
<td>42</td>
</tr>
<tr>
<td>knn_regression</td>
<td>43</td>
</tr>
<tr>
<td>LaplacianSVMSSLR</td>
<td>43</td>
</tr>
<tr>
<td>lcvqSSLR</td>
<td>45</td>
</tr>
<tr>
<td>LinearTSVMSSLR</td>
<td>46</td>
</tr>
<tr>
<td>load_conclust</td>
<td>47</td>
</tr>
<tr>
<td>load_parsnip</td>
<td>47</td>
</tr>
<tr>
<td>load_RANN</td>
<td>48</td>
</tr>
<tr>
<td>load_RSSL</td>
<td>48</td>
</tr>
<tr>
<td>MCNearestMeanClassifierSSLR</td>
<td>48</td>
</tr>
<tr>
<td>mpckmSSLR</td>
<td>49</td>
</tr>
<tr>
<td>newDecisionTree</td>
<td>51</td>
</tr>
<tr>
<td>Node-class</td>
<td>51</td>
</tr>
<tr>
<td>nullOrNumericOrCharacter-class</td>
<td>51</td>
</tr>
<tr>
<td>oneNN</td>
<td>52</td>
</tr>
<tr>
<td>predict,DecisionTreeClassifier-method</td>
<td>52</td>
</tr>
<tr>
<td>predict,RandomForestSemisupervised-method</td>
<td>53</td>
</tr>
<tr>
<td>predict.coBC</td>
<td>53</td>
</tr>
<tr>
<td>predict.COREG</td>
<td>54</td>
</tr>
<tr>
<td>predict.democratic</td>
<td>55</td>
</tr>
<tr>
<td>predict.EMLeastSquaresClassifierSSLR</td>
<td>55</td>
</tr>
<tr>
<td>predict.EMNearestMeanClassifierSSLR</td>
<td>56</td>
</tr>
<tr>
<td>predict.EntropyRegularizedLogisticRegressionSSLR</td>
<td>56</td>
</tr>
<tr>
<td>predict.LaplacianSVMSSLR</td>
<td>57</td>
</tr>
<tr>
<td>predict.LinearTSVMSSLR</td>
<td>57</td>
</tr>
<tr>
<td>predict.MCNearestMeanClassifierSSLR</td>
<td>58</td>
</tr>
<tr>
<td>predict.model_sslr_fitted</td>
<td>58</td>
</tr>
<tr>
<td>predict.OneNN</td>
<td>59</td>
</tr>
<tr>
<td>predict.RandomForestSemisupervised_fitted</td>
<td>59</td>
</tr>
<tr>
<td>predict.selfTraining</td>
<td>60</td>
</tr>
<tr>
<td>predict.setred</td>
<td>61</td>
</tr>
<tr>
<td>predict.snnrc</td>
<td>61</td>
</tr>
<tr>
<td>predict.snnrcG</td>
<td>62</td>
</tr>
<tr>
<td>predict.SSLRDecisionTree_fitted</td>
<td>63</td>
</tr>
<tr>
<td>predict.triTraining</td>
<td>63</td>
</tr>
<tr>
<td>predict.TSVMSSLR</td>
<td>64</td>
</tr>
<tr>
<td>predict.USMLeastSquaresClassifierSSLR</td>
<td>64</td>
</tr>
<tr>
<td>predict.WellSVMSSLR</td>
<td>65</td>
</tr>
<tr>
<td>predictions</td>
<td>65</td>
</tr>
<tr>
<td>predictions.GRFCClassifierSSLR</td>
<td>66</td>
</tr>
</tbody>
</table>
Abalone

Description
Abalone

Usage
data(abalone)

Format
Predict the age of abalone from physical measurements

Source
https://archive.ics.uci.edu/ml/datasets/Abalone
Description

An S4 method to best split

Usage

best_split(object, ...)

Arguments

object DecisionTree object
... This parameter is included for compatibility reasons.

Description

Function to get best split in Decision Tree. Find the best split for node. "Beast" means that the mean of impurity is the least possible. To find the best division. Let’s iterate through all the features. All threshold / feature pairs will be computed in the numerical features. In the features that are not numerical, We get the best group of possible values will be obtained based on an algorithm with the function get_levels_categoric

Usage

S4 method for signature 'DecisionTreeClassifier'
best_split(object, X, y, parms)

Arguments

object DecisionTree object
X is data
y is class values
parms parms in function

Value

A list with: best_idx name of the feature with the best split or Null if it not be found best_thr: threshold found in the best split, or Null if it not be found
breast Breast

Description
Breast

Usage
data(breast)

Format
: Diagnostic Wisconsin Breast Cancer Database

Source
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

calculate_gini Function calculate gini

Description
Function to calculate gini index. Formula is: 1 - n:num_classes sum probabilite_class ^ 2

Usage
calculate_gini(column_factor)

Arguments
column_factor class values
Description

Model from conclust
This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a clustering as output.

Usage

cclsSSLR(
 n_clusters = NULL,
 mustLink = NULL,
 cantLink = NULL,
 max_iter = 1,
 tabuIter = 100,
 tabuLength = 20
)

Arguments

n_clusters A number of clusters to be considered. Default is NULL (num classes)
mustLink A list of must-link constraints. NULL Default, constrints same label
cantLink A list of cannot-link constraints. NULL Default, constrints with different label
max_iter maximum iterations in KMeans. Default is 1
tabuIter Number of iteration in Tabu search
tabuLength The number of elements in the Tabu list

Note

This models only returns labels, not centers

References

Tran Khanh Hiep, Nguyen Minh Duc, Bui Quoc Trung
Pairwise Constrained Clustering by Local Search
2016

Examples

library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)
data <- iris

set.seed(1)
#% LABELED
cls <- which(colnames(iris) == "Species")

labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE)
data[-labeled.index, cls] <- NA

m <- cclsSSLR(max_iter = 1) %>% fit(Species ~ ., data)

#Get labels (assing clusters), type = "raw" return factor
labels <- m %>% cluster_labels()

print(labels)

check_value Check value in leaf

Description

Function to check value in leaf from numeric until character

Usage

check_value(value, threshold)

Arguments

value is the value in leaf node
threshold in leaf node

Value

TRUE if <= in numeric or %in% in factor
check_xy_interface

Description
Check interface

Usage
```r
check_xy_interface(x, y)
```

Arguments
- `x`: data without class labels
- `y`: values class

ckmeansSSLR

General Interface COP K-Means Algorithm

Description
Model from conclust
This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a clustering as output.

Usage
```r
ckmeansSSLR(n_clusters = NULL, mustLink = NULL, cantLink = NULL, max_iter = 10)
```

Arguments
- `n_clusters`: A number of clusters to be considered. Default is NULL (num classes)
- `mustLink`: A list of must-link constraints. NULL Default, constrints same label
- `cantLink`: A list of cannot-link constraints. NULL Default, constricts with different label
- `max_iter`: maximum iterations in KMeans. Default is 10

Note
This models only returns labels, not centers

References
Wagstaff, Cardie, Rogers, Schrodle
Constrained K-means Clustering with Background Knowledge
2001
Examples

```r
library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)

data <- iris

set.seed(1)
#% LABELED
cls <- which(colnames(iris) == "Species")

labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE)
data[-labeled.index,cls] <- NA

m <- ckmeansSSLR() %>% fit(Species ~ ., data)

#Get labels (assing clusters), type = "raw" return factor
labels <- m %>% cluster_labels()

print(labels)
```

cluster_labels

Get labels of clusters

Description

Cluster labels

Usage

`cluster_labels(object, ...)`

Arguments

- `object` : object
- `...` : other parameters to be passed
Description

Get labels of clusters raw returns factor or numeric values

Usage

```r
## S3 method for class 'model_sslr_fitted'
cluster_labels(object, type = "class", ...)
```

Arguments

- `object`: model_sslr_fitted model built
- `type`: of predict in principal model: class, raw
- `...`: other parameters to be passed

Description

Co-Training by Committee (CoBC) is a semi-supervised learning algorithm with a co-training style. This algorithm trains N classifiers with the learning scheme defined in the `learner` argument using a reduced set of labeled examples. For each iteration, an unlabeled example is labeled for a classifier if the most confident classifications assigned by the other $N-1$ classifiers agree on the labeling proposed. The unlabeled examples candidates are selected randomly from a pool of size u. The final prediction is the average of the estimates of the N regressors.

Usage

```r
cobic(learner, N = 3, perc.full = 0.7, u = 100, max.iter = 50)
```

Arguments

- `learner`: model from parsnip package for training a supervised base classifier using a set of instances. This model need to have probability predictions in classification mode
- `N`: The number of classifiers used as committee members. All these classifiers are trained using the `gen.learner` function. Default is 3.
- `perc.full`: A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-labeling process is stopped. Default is 0.7.
- `u`: Number of unlabeled instances in the pool. Default is 100.
- `max.iter`: Maximum number of iterations to execute in the self-labeling process. Default is 50.
Details

For regression tasks, labeling data is very expensive computationally. Its so slow. This method trains an ensemble of diverse classifiers. To promote the initial diversity the classifiers are trained from the reduced set of labeled examples by Bagging. The stopping criterion is defined through the fulfillment of one of the following criteria: the algorithm reaches the number of iterations defined in the max.iter parameter or the portion of unlabeled set, defined in the perc.full parameter, is moved to the enlarged labeled set of the classifiers.

Value

(When model fit) A list object of class "coBC" containing:

- **model** The final N base classifiers trained using the enlarged labeled set.
- **model.index** List of N vectors of indexes related to the training instances used per each classifier. These indexes are relative to the y argument.
- **instances.index** The indexes of all training instances used to train the N models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the y argument.
- **model.index.map** List of three vectors with the same information in model.index but the indexes are relative to instances.index vector.
- **classes** The levels of y factor in classification.
- **pred** The function provided in the pred argument.
- **pred.pars** The list provided in the pred.pars argument.

References

Mohamed Farouk Abdel-Hady, Mohamed Farouk Abdel-Hady and Günther Palm. *Semi-supervised Learning for Regression with Cotraining by Committee* Institute of Neural Information Processing University of Ulm D-89069 Ulm, Germany

Examples

```r
library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)
data(wine)
set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]
```
cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

#We need a model with probability predictions from parsnip
#https://tidymodels.github.io/parsnip/articles/articles/Models.html
#It should be with mode = classification

#For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%
 set_engine("randomForest")

m <- coBC(learner = rf, N = 3,
 perc.full = 0.7,
 u = 100,
 max.iter = 3) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Wine", estimate = .pred_class)

coBCCombine

Combining the hypothesis

Description

This function combines the probabilities predicted by the committee of classifiers.

Usage

```r
coBCCombine(h.prob, classes)
```

Arguments

- `h.prob`: A list of probability matrices.
- `classes`: The classes in the same order that appear in the columns of each matrix in `h.prob`.

Value

A probability matrix
Description

CoBC is a semi-supervised learning algorithm with a co-training style. This algorithm trains \(N \) classifiers with the learning scheme defined in \texttt{gen.learner} using a reduced set of labeled examples. For each iteration, an unlabeled example is labeled for a classifier if the most confident classifications assigned by the other \(N-1 \) classifiers agree on the labeling proposed. The unlabeled examples candidates are selected randomly from a pool of size \(u \).

Usage

\begin{verbatim}
coBCG(y, gen.learner, gen.pred, N = 3, perc.full = 0.7, u = 100, max.iter = 50)
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{y} \hspace{1cm} A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value \texttt{NA}.
\item \texttt{gen.learner} \hspace{1cm} A function for training \(N \) supervised base classifiers. This function needs two parameters, \texttt{indexes} and \texttt{cls}, where \texttt{indexes} indicates the instances to use and \texttt{cls} specifies the classes of those instances.
\item \texttt{gen.pred} \hspace{1cm} A function for predicting the probabilities per classes. This function must be two parameters, \texttt{model} and \texttt{indexes}, where the \texttt{model} is a classifier trained with \texttt{gen.learner} function and \texttt{indexes} indicates the instances to predict.
\item \texttt{N} \hspace{1cm} The number of classifiers used as committee members. All these classifiers are trained using the \texttt{gen.learner} function. Default is 3.
\item \texttt{perc.full} \hspace{1cm} A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-labeling process is stopped. Default is 0.7.
\item \texttt{u} \hspace{1cm} Number of unlabeled instances in the pool. Default is 100.
\item \texttt{max.iter} \hspace{1cm} Maximum number of iterations to execute in the self-labeling process. Default is 50.
\end{itemize}

Details

\texttt{coBCG} can be helpful in those cases where the method selected as base classifier needs a \texttt{learner} and \texttt{pred} functions with other specifications. For more information about the general \texttt{coBC} method, please see \texttt{coBC} function. Essentially, \texttt{coBC} function is a wrapper of \texttt{coBCG} function.

Value

A list object of class "\texttt{coBCG}" containing:

\begin{itemize}
\item \texttt{model} The final \(N \) base classifiers trained using the enlarged labeled set.
\item \texttt{model.index} List of \(N \) vectors of indexes related to the training instances used per each classifier. These indexes are relative to the \texttt{y} argument.
\end{itemize}
instances.index The indexes of all training instances used to train the N models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the y argument.

model.index.map List of three vectors with the same information in model.index but the indexes are relative to instances.index vector.

classes The levels of y factor.

Examples

```r
library(SSLR)
library(caret)

## Load Wine data set
data(wine)

cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x) # scale the attributes

## Prepare data
set.seed(20)
# Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,] # training instances
ytrain <- y[tra.idx] # classes of training instances
# Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances
# Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xitest <- x[tst.idx,] # testing instances
yitest <- y[tst.idx] # classes of testing instances

## Example: Training from a set of instances with 1-NN (knn3) as base classifier.
gen.learner1 <- function(indexes, cls)
  caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred1 <- function(model, indexes)
  predict(model, xtrain[indexes,])
set.seed(1)

trControl_coBCG <- list(gen.learner = gen.learner1, gen.pred = gen.pred1)
mdl1 <- train_generic(ytrain, method = "coBCG", trControl = trControl_coBCG)

# Predict probabilities per instances using each model
h.prob <- lapply(
  X = mdl1$mdl, # mdl1 is a list of models
  FUN = function(m) predict(m, xitest)
)
# Combine the predictions
```

Example: Training from a distance matrix with 1-NN (oneNN) as base classifier.

dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
gen.learner2 <- function(indexes, cls) {
m <- SSLR::oneNN(y = cls)
attr(m, "tra.idxs") <- indexes
m
}

gen.pred2 <- function(model, indexes) {
tra.idxs <- attr(model, "tra.idxs")
d <- dtrain[indexes, tra.idxs]
prob <- predict(model, d, distance.weighting = "none")
prob
}

set.seed(1)
trControl_coBCG2 <- list(gen.learner = gen.learner2, gen.pred = gen.pred2)
md2 <- train_generic(ytrain, method = "coBCG", trControl = trControl_coBCG2)

Predict probabilities per instances using each model
ditest <- proxy::dist(x = xitest, y = xtrain[md2$instances.index,],
 method = "euclidean", by_rows = TRUE)

h.prob <- list()
ninstances <- nrow(dtrain)
for (i in 1:length(md2$model)) {
m <- md2$model[[i]]
D <- ditest[, md2$model.index.map[[i]]]
h.prob[[i]] <- predict(m, D)
}

Combine the predictions
cls2 <- coBCCombine(h.prob, md2$classes)
table(cls2, yitest)
confusionMatrix(cls2, yitest)$overall[1]
Description

cobCRG is based on an ensemble of N diverse regressors. At each iteration and for each regressor, the companion committee labels the unlabeled examples then the regressor select the most informative newly-labeled examples for itself, where the selection confidence is based on estimating the validation error. The final prediction is the average of the estimates of the N regressors.

Usage

cobCRG(learner, N = 3, perc.full = 0.7, u = 100, max.iter = 50)

Arguments

learner model from parsnip package for training a supervised base classifier using a set of instances. This model need to have probability predictions

N The number of classifiers used as committee members. All these classifiers are trained using the gen.learner function. Default is 3.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-labeling process is stopped. Default is 0.7.

u Number of unlabeled instances in the pool. Default is 100.

max.iter Maximum number of iterations to execute in the self-labeling process. Default is 50.

Details

For regression tasks, labeling data is very expensive computationally. Its so slow.

References

Mohamed Farouk Abdel-Hady, Mohamed Farouk Abdel-Hady and Günther Palm. Semi-supervised Learning for Regression with Cotraining by Committee Institute of Neural Information Processing University of Ulm D-89069 Ulm, Germany
Usage

cobBCRegG(
 y,
 gen.learner,
 gen.pred,
 N = 3,
 perc.full = 0.7,
 u = 100,
 max.iter = 50,
 gr = 1
)

Arguments

y A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value `NA`.

gen.learner A function for training N supervised base classifiers. This function needs two parameters, indexes and cls, where indexes indicates the instances to use and cls specifies the classes of those instances.

gen.pred A function for predicting the probabilities per classes. This function must be two parameters, model and indexes, where the model is a classifier trained with gen.learner function and indexes indicates the instances to predict.

N The number of classifiers used as committee members. All these classifiers are trained using the gen.learner function. Default is 3.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-labeling process is stopped. Default is 0.7.

u Number of unlabeled instances in the pool. Default is 100.

max.iter Maximum number of iterations to execute in the self-labeling process. Default is 50.

gr growing rate

Details

For regression tasks, labeling data is very expensive computationally. Its so slow.

References

Mohamed Farouk Abdel-Hady, Mohamed Farouk Abdel-Hady and Günther Palm.
Semi-supervised Learning for Regression with Cotraining by Committee
Institute of Neural Information Processing University of Ulm D-89069 Ulm, Germany
Coffee Time Series Data Set

Description

A dataset containing 56 times series z-normalized. Time series length is 286.

Usage

data(coffee)

Format

A data frame with 56 rows and 287 variables including the class.

Source

Constrained KMeans

General Interface Constrained KMeans

Description

The initialization is the same as seeded kmeans, the difference is that in the following steps the allocation of the clusters in the labelled data does not change.

Usage

consstrained_kmeans(max_iter = 10, method = "euclidean")

Arguments

max_iter maximum iterations in KMeans. Default is 10
method distance method in KMeans: "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski"

References

Sugato Basu, Arindam Banerjee, Raymond Mooney
Semi-supervised clustering by seeding
July 2002 In Proceedings of 19th International Conference on Machine Learning
Examples

```r
library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)

data <- iris

set.seed(1)
#% LABELED
cls <- which(colnames(iris) == "Species")

labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE)
data[-labeled.index,cls] <- NA

m <- constrained_kmeans() %>% fit(Species ~ ., data)
#Get labels (assigning clusters), type = "raw" return factor
labels <- m %>% cluster_labels()
print(labels)

#Get centers
centers <- m %>% get_centers()
print(corners)
```

COREG

General Interface for COREG model

Description

COREG is a semi-supervised learning for regression with a co-training style. This technique uses two kNN regressors with different distance metrics. For each iteration, each regressor labels the unlabeled example which can be most confidently labeled for the other learner, where the labeling confidence is estimated through considering the consistency of the regressor with the labeled example set. The final prediction is made by averaging the predictions of both the refined kNN regressors.

Usage

COREG(max.iter = 50, k1 = 3, k2 = 5, p1 = 3, p2 = 5, u = 100)
Arguments

max.iter maximum number of iterations to execute the self-labeling process. Default is 50.
k1 parameter in first KNN
k2 parameter in second KNN
p1 distance order 1. Default is 3
p2 distance order 1. Default is 5
u Number of unlabeled instances in the pool. Default is 100.

Details

labeling data is very expensive computationally. Its so slow. For executing this model, we need RANN installed.

References

Zhi-Hua Zhou and Ming Li.
Semi-Supervised Regression with Co-Training.
National Laboratory for Novel Software Technology Nanjing University, Nanjing 210093, China

Examples

library(SSLR)

m <- COREG(max.iter = 1)
Democratic Co-Learning is a semi-supervised learning algorithm with a co-training style. This algorithm trains \(N \) classifiers with different learning schemes defined in list `gen.learners`. During the iterative process, the multiple classifiers with different inductive biases label data for each other.

Usage

```
democratic(learners, schemes = NULL)
```

Arguments

- `learners`: List of models from parsnip package for training a supervised base classifier using a set of instances. This model need to have probability predictions

 - `schemes`: List of schemes (col x names in each learner). Default is null, it means that learner uses all x columns

Details

This method trains an ensemble of diverse classifiers. To promote the initial diversity the classifiers must represent different learning schemes. When `x.inst` is `FALSE` all `learners` defined must be able to learn a classifier from the precomputed matrix in `x`. The iteration process of the algorithm ends when no changes occurs in any model during a complete iteration. The generation of the final hypothesis is produced via a weighted majority voting.

Value

(When model fit) A list object of class "democratic" containing:

- `W`: A vector with the confidence-weighted vote assigned to each classifier.
- `model`: A list with the final \(N \) base classifiers trained using the enlarged labeled set.
- `model.index`: List of \(N \) vectors of indexes related to the training instances used per each classifier. These indexes are relative to the `y` argument.
- `instances.index`: The indexes of all training instances used to train the \(N \) models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the `y` argument.
- `model.index.map`: List of three vectors with the same information in `model.index` but the indexes are relative to `instances.index` vector.
- `classes`: The levels of `y` factor.
- `preds`: The functions provided in the `preds` argument.
- `preds.pars`: The set of lists provided in the `preds.pars` argument.
- `x.inst`: The value provided in the `x.inst` argument.
library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

Labeled
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

We need a model with probability predictions from parsnip
https://tidymodels.github.io/parsnip/articles/articles/Models.html
It should be with mode = classification

rf <- rand_forest(trees = 100, mode = "classification") %>%
 set_engine("randomForest")

bt <- boost_tree(trees = 100, mode = "classification") %>%
 set_engine("C5.0")

m <- democratic(learners = list(rf,bt)) %>% fit(Wine ~ ., data = train)

Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Wine", estimate = .pred_class)

With schemes
set.seed(1)
m <- democratic(learners = list(rf,bt),
 schemes = list(c("Malic.Acid","Ash"), c("Magnesium","Proline"))) %>%
 fit(Wine ~ ., data = train)

Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Wine", estimate = .pred_class)
democraticCombine

Combining the hypothesis of the classifiers

Description
This function combines the probabilities predicted by the set of classifiers.

Usage
democraticCombine(pred, W, classes)

Arguments
- pred: A list with the prediction for each classifier.
- W: A vector with the confidence-weighted vote assigned to each classifier during the training process.
- classes: the classes.

Value
The classification proposed.

democraticG

Democratic generic method

Description
Democratic is a semi-supervised learning algorithm with a co-training style. This algorithm trains N classifiers with different learning schemes defined in list gen.learners. During the iterative process, the multiple classifiers with different inductive biases label data for each other.

Usage
democraticG(y, gen.learners, gen.preds)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value NA.</td>
</tr>
<tr>
<td>gen.learners</td>
<td>A list of functions for training N different supervised base classifiers. Each function needs two parameters, indexes and cls, where indexes indicates the instances to use and cls specifies the classes of those instances.</td>
</tr>
<tr>
<td>gen.preds</td>
<td>A list of functions for predicting the probabilities per classes. Each function must be two parameters, model and indexes, where the model is a classifier trained with gen.learner function and indexes indicates the instances to predict.</td>
</tr>
</tbody>
</table>

Details

democraticG can be helpful in those cases where the method selected as base classifier needs a learner and pred functions with other specifications. For more information about the general democratic method, please see democratic function. Essentially, democratic function is a wrapper of democraticG function.

Value

A list object of class "democraticG" containing:

- **W** A vector with the confidence-weighted vote assigned to each classifier.
- **model** A list with the final N base classifiers trained using the enlarged labeled set.
- **model.index** List of N vectors of indexes related to the training instances used per each classifier. These indexes are relative to the y argument.
- **instances.index** The indexes of all training instances used to train the N models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the y argument.
- **model.index.map** List of three vectors with the same information in model.index but the indexes are relative to instances.index vector.
- **classes** The levels of y factor.

References

Yan Zhou and Sally Goldman.

Democratic co-learning.

EMLeastSquaresClassifierSSLR

Description

model from RSSL package

An Expectation Maximization like approach to Semi-Supervised Least Squares Classification

As studied in Krijthe & Loog (2016), minimizes the total loss of the labeled and unlabeled objects by finding the weight vector and labels that minimize the total loss. The algorithm proceeds similar to EM, by subsequently applying a weight update and a soft labeling of the unlabeled objects. This is repeated until convergence.

By default (method="block") the weights of the classifier are updated, after which the unknown labels are updated. method="simple" uses LBFGS to do this update simultaneously. Objective="responsibility" corresponds to the responsibility based, instead of the label based, objective function in Krijthe & Loog (2016), which is equivalent to hard-label self-learning.

Usage

EMLeastSquaresClassifierSSLR(
 x_center = FALSE,
 scale = FALSE,
 verbose = FALSE,
 intercept = TRUE,
 lambda = 0,
 eps = 1e-09,
 y_scale = FALSE,
 alpha = 1,
 beta = 1,
 init = "supervised",
 method = "block",
 objective = "label",
 save_all = FALSE,
 max_iter = 1000
)

Arguments

x_center logical; Should the features be centered?

scale Should the features be normalized? (default: FALSE)

verbose logical; Controls the verbosity of the output

intercept logical; Whether an intercept should be included

lambda numeric; L2 regularization parameter

eps Stopping criterion for the minimization
EMLeastSquaresClassifierSSLR

y_scale logical; whether the target vector should be centered
alpha numeric; the mixture of the new responsibilities and the old in each iteration of the algorithm (default: 1)
beta numeric; value between 0 and 1 that determines how much to move to the new solution from the old solution at each step of the block gradient descent
init objective character; "random" for random initialization of labels, "supervised" to use supervised solution as initialization or a numeric vector with a coefficient vector to use to calculate the initialization
method character; one of "block", for block gradient descent or "simple" for LBFGS optimization (default="block")
objective character; "responsibility" for hard label self-learning or "label" for soft-label self-learning
save_all logical; saves all classifiers trained during block gradient descent
max_iter integer; maximum number of iterations

References

Examples

library(tidyverse)
#' \donttest{
library(tidymodels)
library(caret)
library(SSLR)
data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- EMLeastSquaresClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%
bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)
EMNearestMeanClassifierSSLR

General Interface for EMNearestMeanClassifier model

Description

model from RSSL package Semi-Supervised Nearest Mean Classifier using Expectation Maximization

Expectation Maximization applied to the nearest mean classifier assuming Gaussian classes with a spherical covariance matrix.

Starting from the supervised solution, uses the Expectation Maximization algorithm (see Dempster et al. (1977)) to iteratively update the means and shared covariance of the classes (Maximization step) and updates the responsibilities for the unlabeled objects (Expectation step).

Usage

EMNearestMeanClassifierSSLR(method = "EM", scale = FALSE, eps = 1e-04)

Arguments

method character; Currently only "EM"

scale Should the features be normalized? (default: FALSE)

eps Stopping criterion for the maximinimization

References

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]
```r
cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- EMNearestMeanClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accesing model from RSSL
model <- m$model

#Accuracy
predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Class", estimate = .pred_class)
```

Description

Model from RSSL package R Implementation of entropy regularized logistic regression implementation as proposed by Grandvalet & Bengio (2005). An extra term is added to the objective function of logistic regression that penalizes the entropy of the posterior measured on the unlabeled examples.

Usage

```r
EntropyRegularizedLogisticRegressionSSLR(
  lambda = 0,
  lambda_entropy = 1,
  intercept = TRUE,
  init = NA,
  scale = FALSE,
  x_center = FALSE
)
```

Arguments

- **lambda**: I2 Regularization
- **lambda_entropy**: Weight of the labeled observations compared to the unlabeled observations
- **intercept**: logical; Whether an intercept should be included
- **init**: Initial parameters for the gradient descent
- **scale**: logical; Should the features be normalized? (default: FALSE)
- **x_center**: logical; Should the features be centered?
References

Examples

```r
library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- EntropyRegularizedLogisticRegressionSSLR() %>% fit(Class ~ ., data = train)

#Accuracy
predict(m,test) %>%
bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)
```

fit.model_sslr
Fit with formula and data

Description

Function to fit through the formula

Usage

```r
## S3 method for class 'model_sslr'
fit(object, formula = NULL, data = NULL, ...)
```
fit_decision_tree

Arguments

- `object` is the model
- `formula` is the formula
- `data` is the total data train
- `...` unused in this case

Description

An S4 method to fit decision tree.

Usage

```r
fit_decision_tree(object, ...) 
```

Arguments

- `object` DecisionTree object
- `...` This parameter is included for compatibility reasons.

Description

method in class DecisionTreeClassifier used to build a Decision Tree

Usage

```r
# S4 method for signature 'DecisionTreeClassifier'
fit_decision_tree(
  object,
  X,
  y,
  min_samples_split = 20,
  min_samples_leaf = ceiling(min_samples_split/3),
  w = 0.5
)
```
Arguments

- **object**: A DecisionTreeClassifier object
- **X**: A object that can be coerced as data.frame. Training instances
- **y**: A vector with the labels of the training instances. In this vector the unlabeled instances are specified with the value NA.
- **min_samples_split**: the minimum number of observations to do split
- **min_samples_leaf**: the minimum number of any terminal leaf node
- **w**: weight parameter ranging from 0 to 1

fit_random_forest, RandomForestSemisupervised-method

Fit Random Forest

Description

method in class RandomForestSemisupervised used to build a Decision Tree

Usage

```r
## S4 method for signature 'RandomForestSemisupervised'
fit_random_forest(
  object,
  X,
  y,
  mtry = 2,
  trees = 500,
  min_n = 2,
  w = 0.5,
  replace = TRUE,
  tree_max_depth = Inf,
  sampsize = if (replace) nrow(X) else ceiling(0.632 * nrow(X)),
  min_samples_leaf = if (!is.null(y) && !is.factor(y)) 5 else 1,
  allowParallel = TRUE
)
```

Arguments

- **object**: A RandomForestSemisupervised object
- **X**: A object that can be coerced as data.frame. Training instances
- **y**: A vector with the labels of the training instances. In this vector the unlabeled instances are specified with the value NA.
- **mtry**: number of features in each decision tree
trees number of trees. Default is 5
min_n number of minimum samples in each tree
w weight parameter ranging from 0 to 1
replace replacing type in sampling
tree_max_depth maximum tree depth. Default is Inf
sampsize Size of sample. Default if (replace) nrow(x) else ceiling(.632*nrow(x))
min_samples_leaf the minimum number of any terminal leaf node
allowParallel Execute Random Forest in parallel if doParallel is loaded. Default is TRUE

Value

list of decision trees

Description

Function to fit with x and y

Usage

S3 method for class 'model_sslr'
fit_xy(object, x = NULL, y = NULL, ...)

Arguments

object is the model
x is a data frame or matrix with train dataset without objective feature. X have
 labeled and unlabeled data
y is objective feature with labeled values and NA values in unlabeled data
... unused in this case
fit_x_u

fit_x_u object

Description

fit_x_u

Usage

`fit_x_u(object, ...)`

Arguments

- `object`: object
- `...`: other parameters to be passed

fit_x_u.model_sslr

Fit with x, y (labeled data) and unlabeled data (x_U)

Description

Function to fit with x and y and x_U. Function calcule y with NA values and append in y param

Usage

```r
## S3 method for class 'model_sslr'
fit_x_u(object, x = NULL, y = NULL, x_U = NULL, ...)
```

Arguments

- `object`: is the model
- `x`: is a data frame or matrix with train dataset without objective feature. X only have labeled data
- `y`: is objective feature with labeled values
- `x_U`: train unlabeled data without objective feature
- `...`: This parameter is included for compatibility reasons.
get_centers

Description

Centers clustering

Usage

get_centers(object, ...)

Arguments

object object
... other parameters to be passed

get_centers.model_sslr_fitted

Description

Cluster labels

Usage

S3 method for class 'model_sslr_fitted'
get_centers(object, ...)

Arguments

object model_sslr_fitted model built
... other parameters to be passed
get_class_max_prob

Description

Get value most frequented in vector Used in predictions. It calls a predict with type = "prob" in Decision Tree

Usage

```r
get_class_max_prob(trees, input)
```

Arguments

- **trees**: trees list
- **input**: is input to be predicted

get_class_mean_prob

Description

Get mean probability over all trees as prob vector. It calls a predict with type = "prob" in Decision Tree

Usage

```r
get_class_mean_prob(trees, input)
```

Arguments

- **trees**: trees list
- **input**: is input to be predicted
get_function

FUNCTION TO GET FUNCTION METHOD

Description

FUNCTION TO GET FUNCTION METHOD SPECIFIC

Usage

```r
get_function(met)
```

Arguments

- `met` character

Value

- `method_train (function)`

get_function_generic

FUNCTION TO GET FUNCTION METHOD

Description

FUNCTION TO GET FUNCTION METHOD GENERIC

Usage

```r
get_function_generic(met)
```

Arguments

- `met` character

Value

- `method_train (function)`
get_levels_categoric
Function to get group from gini index

Description

Function to get group from gini index. Used in categorical variable From: https://freakonometrics.hypotheses.org/20736

Usage

```
get_levels_categoric(column, Y)
```

Arguments

- `column` is the column
- `Y` values

get_most_frequented
Get most frequented

Description

Get value most frequented in vector Used in predictions

Usage

```
get_most_frequented(elements)
```

Arguments

- `elements` vector with values

get_value_mean
Get value mean

Description

Get value most frequented in vector Used in predictions. It calls a predict with type = "numeric" in Decision Tree

Usage

```
get_value_mean(trees, input)
```

Arguments

- `trees` trees list
- `input` is input to be predicted
get_x_y

FUNCTION TO GET REAL X AND Y WITH FORMULA AND DATA

Description

FUNCTION TO GET REAL X AND Y WITH FORMULA AND DATA

Usage

get_x_y(form, data)

Arguments

- **form**
 formula

- **data**
 data values, matrix, dataframe..

Value

x (matrix, dataframe...) and y(factor)

gini_or_variance

Gini or Variance by column

Description

function used to calculate the gini coefficient or variance according to the type of the column. This function is called for the creation of the decision tree

Usage

gini_or_variance(X)

Arguments

- **X**
 column to calculate variance or gini
gini_prob

Function to compute Gini index

Description

Function to compute Gini index From: https://freakonometrics.hypotheses.org/20736

Usage

```r
gini_prob(y, classe)
```

Arguments

- `y` values
- `classe` classes

GRFClassifierSSLR

General Interface for GRFClassifier (Label propagation using Gaussian Random Fields and Harmonic) model

Description

Model from RSSL package Implements the approach proposed in Zhu et al. (2003) to label propagation over an affinity graph. Note, as in the original paper, we consider the transductive scenario, so the implementation does not generalize to out of sample predictions. The approach minimizes the squared difference in labels assigned to different objects, where the contribution of each difference to the loss is weighted by the affinity between the objects. The default in this implementation is to use a knn adjacency matrix based on euclidean distance to determine this weight. Setting adjacency="heat" will use an RBF kernel over euclidean distances between objects to determine the weights.

Usage

```r
GRFClassifierSSLR(
  adjacency = "nn",
  adjacency_distance = "euclidean",
  adjacency_k = 6,
  adjacency_sigma = 0.1,
  class_mass_normalization = TRUE,
  scale = FALSE,
  x_center = FALSE
)
```
GRFClassifierSSLR

Arguments

- adjacency: character; "nn" for nearest neighbour graph or "heat" for radial basis adjacency matrix
- adjacency_distance: character; distance metric for nearest neighbour adjacency matrix
- adjacency_k: integer; number of neighbours for the nearest neighbour adjacency matrix
- adjacency_sigma: double; width of the rbf adjacency matrix
- class_mass_normalization: logical; Should the Class Mass Normalization heuristic be applied? (default: TRUE)
- scale: logical; Should the features be normalized? (default: FALSE)
- x_center: logical; Should the features be centered?

References

Examples

```r
library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)

data(wine)

cls <- which(colnames(wine) == "Wine")

# LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
wine[-labeled.index,cls] <- NA

m <- GRFClassifierSSLR() %>% fit(Wine ~ ., data = wine)

# Accessing model from RSSL
model <- m$model

# Predictions of unlabeled
preds_unlabeled <- m %>% predictions()
print(preds_unlabeled)

preds_unlabeled <- m %>% predictions(type = "raw")
print(preds_unlabeled)
```
```r
#Total
y_total <- wine[,cls]
y_total[-labeled.index] <- preds_unlabeled
```

Description

An S4 method to grow tree.

Usage

```r
grow_tree(object, ...)
```

Arguments

- **object**: DecisionTree object
- **...**: This parameter is included for compatibility reasons.

grow_tree,DecisionTreeClassifier-method

Function grow tree

Description

Function to grow tree in Decision Tree

Usage

```r
## S4 method for signature 'DecisionTreeClassifier'
grow_tree(object, X, y, parms, depth = 0)
```

Arguments

- **object**: DecisionTree instance
- **X**: data values
- **y**: classes
- **parms**: parameters for grow tree
- **depth**: depth in tree
knn_regression

Description
create model knn

Usage

```r
knn_regression(k, x, y, p)
```

Arguments

- **k**: parameter in KNN model
- **x**: data
- **y**: vector labeled data
- **p**: distance order

LaplacianSVMSSLR
General Interface for LaplacianSVM model

Description
model from RSSL package Manifold regularization applied to the support vector machine as proposed in Belkin et al. (2006). As an adjacency matrix, we use the k nearest neighbour graph based on a chosen distance (default: euclidean).

Usage

```r
LaplacianSVMSSLR(
  lambda = 1,
  gamma = 1,
  scale = TRUE,
  kernel = kernlab::vanilladot(),
  adjacency_distance = "euclidean",
  adjacency_k = 6,
  normalized_laplacian = FALSE,
  eps = 1e-09
)
```
Arguments

- **lambda**: numeric; L2 regularization parameter
- **gamma**: numeric; Weight of the unlabeled data
- **scale**: logical; Should the features be normalized? (default: FALSE)
- **kernel**: kernlab::kernel to use
- **adjacency_distance**: character; distance metric used to construct adjacency graph from the dist function. Default: "euclidean"
- **adjacency_k**: integer; Number of neighbours used to construct adjacency graph.
- **normalized_laplacian**: logical; If TRUE use the normalized Laplacian, otherwise, the Laplacian is used
- **eps**: numeric; Small value to ensure positive definiteness of the matrix in the QP formulation

References

Examples

```r
library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

library(kernlab)
m <- LaplacianSVMSSLR(kernel=kernlab::vanilladot()) %>%
  fit(Class ~ ., data = train)

#Accessing model from RSSL
model <- m$model

#Accuracy
```
predict(m, test) %>%
 bind_cols(test) %>%
 metrics(truth = "Class", estimate = .pred_class)

lcvqeSSLR
General LCVQE Algorithm

Description
Model from clust
This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a clustering as output.

Usage
lcvqeSSLR(n_clusters = NULL, mustLink = NULL, cantLink = NULL, max_iter = 2)

Arguments
- **n_clusters**: A number of clusters to be considered. Default is NULL (num classes)
- **mustLink**: A list of must-link constraints. NULL Default, constrints same label
- **cantLink**: A list of cannot-link constraints. NULL Default, constrints with different label
- **max_iter**: maximum iterations in KMeans. Default is 2

Note
This models only returns labels, not centers

References
Dan Pelleg, Dorit Baras
K-means with large and noisy constraint sets
2007

Examples
```r
library(tidyverse)  
library(caret)  
library(SSLR)  
library(tidymodels)

data <- iris  
set.seed(1)  
#% LABELED  
cls <- which(colnames(iris) == "Species")

labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE)
```
data[-labeled.index,cls] <- NA

m <- lcvqeSSLR(max_iter = 1) %>% fit(Species ~ ., data)

#Get labels (assigning clusters), type = "raw" return factor
labels <- m %>% cluster_labels()

print(labels)

LinearTSVMSSLR

General Interface for LinearTSVM model

Description

model from RSSL package Implementation of the Linear Support Vector Classifier. Can be solved in the Dual formulation, which is equivalent to SVM or the Primal formulation.

Usage

```r
LinearTSVMSSLR(
  C = 1,
  Cstar = 0.1,
  s = 0,
  x_center = FALSE,
  scale = FALSE,
  eps = 1e-06,
  verbose = FALSE,
  init = NULL
)
```

Arguments

- **C**
 - Cost variable
- **Cstar**
 - numeric; Cost parameter of the unlabeled objects
- **s**
 - numeric; parameter controlling the loss function of the unlabeled objects
- **x_center**
 - logical; Should the features be centered?
- **scale**
 - Whether a z-transform should be applied (default: TRUE)
- **eps**
 - Small value to ensure positive definiteness of the matrix in QP formulation
- **verbose**
 - logical; Controls the verbosity of the output
- **init**
 - numeric; Initial classifier parameters to start the convex concave procedure
Examples

```r
library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- LinearTSVMSSLR() %>% fit(Class ~ ., data = train)

#Accesing model from RSSL
model <- m$model
```

`load_conclust`
Load conclust

Description

function to load conclust package

Usage

`load_conclust()`

`load_parsnip`
Load parsnip

Description

function to load parsnip package

Usage

`load_parsnip()`
load_RANN
Load parsnip

Description

function to load parsnip package

Usage

```r
load_RANN()
```

load_RSSL
Load RSSL

Description

function to load RSSL package

Usage

```r
load_RSSL()
```

MCNearestMeanClassifierSSLR
General Interface for MCNearestMeanClassifier (Moment Constrained Semi-supervised Nearest Mean Classifier) model

Description

model from RSSL package Update the means based on the moment constraints as defined in Loog (2010). The means estimated using the labeled data are updated by making sure their weighted mean corresponds to the overall mean on all (labeled and unlabeled) data. Optionally, the estimated variance of the classes can be re-estimated after this update is applied by setting `update_sigma` to `TRUE`. To get the true nearest mean classifier, rather than estimate the class priors, set them to equal priors using, for instance `prior=matrix(0.5,2)`.

Usage

```r
MCNearestMeanClassifierSSLR(
  update_sigma = FALSE,
  prior = NULL,
  x_center = FALSE,
  scale = FALSE
)
```
Arguments

- **update_sigma**
 - logical; Whether the estimate of the variance should be updated after the means have been updated using the unlabeled data

- **prior**
 - matrix; Class priors for the classes

- **x_center**
 - logical; Should the features be centered?

- **scale**
 - logical; Should the features be normalized? (default: FALSE)

References

Examples

```r
library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)

set.seed(1)

train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]

test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- MCNearestMeanClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accesing model from RSSL
model <- m$model

#Accuracy
predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Class", estimate = .pred_class)
```

mpckmSSLR
General Interface MPC K-Means Algorithm
Description

Model from conclust
This function takes an unlabeled dataset and two lists of must-link and cannot-link constraints as input and produce a clustering as output.

Usage

mpckmSSLR(n_clusters = NULL, mustLink = NULL, cantLink = NULL, max_iter = 10)

Arguments

n_clusters A number of clusters to be considered. Default is NULL (num classes)
mustLink A list of must-link constraints. NULL Default, constrints same label
cantLink A list of cannot-link constraints. NULL Default, constrints with different label
max_iter maximum iterations in KMeans. Default is 10

Note

This models only returns labels, not centers

References

Bilenko, Basu, Mooney
Integrating Constraints and Metric Learning in Semi-Supervised Clustering
2004

Examples

library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)

data <- iris

set.seed(1)
#% LABELED
cls <- which(colnames(iris) == "Species")

labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE)
data[-labeled.index,cls] <- NA

m <- mpckmSSLR() %>% fit(Species ~ ., data)

#Get labels (assing clusters), type = "raw" return factor
labels <- m %>% cluster_labels()

print(labels)
newDecisionTree

Function to create DecisionTree

Description

Function to create DecisionTree

Usage

ewDecisionTree(max_depth)

Arguments

max_depth max depth in tree

Node-class

Class Node for Decision Tree

Description

Class Node for Decision Tree Slots: gini, num_samples, num_samples_per_class, predicted_class_value, feature_index threshold, left, right, probabilities

nullOrNumericOrCharacter-class

An S4 class to represent a class with more types values: null, numeric or character

Description

An S4 class to represent a class with more types values: null, numeric or character
oneNN

1-NN supervised classifier builder

Description

Build a model using the given data to be able to predict the label or the probabilities of other instances, according to 1-NN algorithm.

Usage

```r
oneNN(x = NULL, y)
```

Arguments

- `x`
 - This argument is not used, the reason why he gets is to fulfill an agreement
- `y`
 - a vector with the labels of training instances

Value

A model with the data needed to use 1-NN

predict,DecisionTreeClassifier-method

Function to predict inputs in Decision Tree

Description

Function to predict inputs in Decision Tree

Usage

```r
## S4 method for signature 'DecisionTreeClassifier'
predict(object, inputs, type = "class")
```

Arguments

- `object`
 - The Decision Tree object
- `inputs`
 - data to be predicted
- `type`
 - Is param to define the type of predict. It can be "class", to get class labels Or "prob" to get probabilities for class in each input. Default is "class"
predict.RandomForestSemisupervised-method

Function to predict inputs in Decision Tree

Description

Function to predict inputs in Decision Tree

Usage

S4 method for signature 'RandomForestSemisupervised'
predict(
 object,
 inputs,
 type = "class",
 confident = "max_prob",
 allowParallel = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>argument</th>
<th>type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>The Decision Tree object</td>
<td></td>
</tr>
<tr>
<td>inputs</td>
<td>data to be predicted</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>class raw</td>
<td></td>
</tr>
<tr>
<td>confident</td>
<td>Is param to define the type of predict. It can be "max_prob", to get class with sum of probability is the maximum Or "vote" to get the most frequented class in all trees. Default is "max_prob"</td>
<td></td>
</tr>
<tr>
<td>allowParallel</td>
<td>Execute Random Forest in parallel if doParallel is loaded.</td>
<td></td>
</tr>
</tbody>
</table>

predict.coBC

Predictions of the coBC method

Description

Predicts the label of instances according to the coBC model.

Usage

S3 method for class 'coBC'
predict(object, x, ...)

Arguments

- **object**: coBC model built with the `coBC` function.
- **x**: An object that can be coerced to a matrix. Depending on how the model was built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- ... This parameter is included for compatibility reasons.

Details

For additional help see `coBC` examples.

Value

Vector with the labels assigned.

predict.COREG
Predictions of the COREG method

Description

Predicts the label of instances according to the COREG model.

Usage

```r
## S3 method for class 'COREG'
predict(object, x, type = "numeric", ...)
```

Arguments

- **object**: Self-training model built with the `COREG` function.
- **x**: A object that is data of predict in principal model (numeric)
- **type**: A object that is data of predict in principal model (numeric)
- ... This parameter is included for compatibility reasons.

Details

For additional help see `COREG` examples.

Value

Vector with the labels assigned (numeric).
predict.democratic
Predictions of the Democratic method

Description
Predicts the label of instances according to the democratic model.

Usage
```r
## S3 method for class 'democratic'
predict(object, x, ...)
```

Arguments
- `object` Democratic model built with the `democratic` function.
- `x` A object that can be coerced as matrix. Depending on how was the model built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- `...` This parameter is included for compatibility reasons.

Details
For additional help see `democratic` examples.

Value
Vector with the labels assigned.

predict.EMLeastSquaresClassifierSSLR
Predict EMLeastSquaresClassifierSSLR

Description
Predict EMLeastSquaresClassifierSSLR

Usage
```r
## S3 method for class 'EMLeastSquaresClassifierSSLR'
predict(object, x, ...)
```

Arguments
- `object` is the object
- `x` is the dataset
- `...` This parameter is included for compatibility reasons.
predict.EMNearestMeanClassifierSSLR

Predict EMNearestMeanClassifierSSLR

Description

Predict EMNearestMeanClassifierSSLR

Usage

```r
## S3 method for class 'EMNearestMeanClassifierSSLR'
predict(object, x, ...)
```

Arguments

- `object` is the object
- `x` is the dataset
- `...` This parameter is included for compatibility reasons.

predict.EntropyRegularizedLogisticRegressionSSLR

Predict EntropyRegularizedLogisticRegressionSSLR

Description

Predict EntropyRegularizedLogisticRegressionSSLR

Usage

```r
## S3 method for class 'EntropyRegularizedLogisticRegressionSSLR'
predict(object, x, ...)
```

Arguments

- `object` is the object
- `x` is the dataset
- `...` This parameter is included for compatibility reasons.
predict.LaplacianSVMSSLR

Predict LaplacianSVMSSLR

Description

Predict LaplacianSVMSSLR

Usage

S3 method for class 'LaplacianSVMSSLR'
predict(object, x, ...)

Arguments

object is the object
x is the dataset
... This parameter is included for compatibility reasons.

predict.LinearTSVMSSLR

Predict LinearTSVMSSLR

Description

Predict LinearTSVMSSLR

Usage

S3 method for class 'LinearTSVMSSLR'
predict(object, x, ...)

Arguments

object is the object
x is the dataset
... This parameter is included for compatibility reasons.
predict.MCNearestMeanClassifierSSLR

Predict MCNearestMeanClassifierSSLR

Description

Predict MCNearestMeanClassifierSSLR

Usage

```r
## S3 method for class 'MCNearestMeanClassifierSSLR'
predict(object, x, ...)  
```

Arguments

- `object` is the object
- `x` is the dataset
- `...` This parameter is included for compatibility reasons.

predict.model_sslr_fitted

Predictions of model_sslr_fitted class

Description

Predicts from model. There are different types: class, prob, raw class returns tibble with one column, prob returns tibble with probabilities class columns raw returns factor or numeric values

Usage

```r
## S3 method for class 'model_sslr_fitted'
predict(object, x, type = NULL, ...)  
```

Arguments

- `object` model_sslr_fitted model built.
- `x` A object that can be coerced as matrix. Depending on how was the model built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- `type` of predict in principal model: class, raw, prob, vote, max_prob, numeric
- `...` This parameter is included for compatibility reasons.

Value

tibble or vector.
predict.OneNN

Model Predictions

Description

This function predicts the class label of instances or its probability of pertaining to each class based on the distance matrix.

Usage

```r
## S3 method for class 'OneNN'
predict(object, dists, type = "prob", ...)
```

Arguments

- **object**: A model of class OneNN built with `oneNN`
- **dists**: A matrix of distances between the instances to classify (by rows) and the instances used to train the model (by column)
- **type**: A string that can take two values: "class" for computing the class of the instances or "prob" for computing the probabilities of belonging to each class.
- **...**: Currently not used.

Value

If `type` is equal to "class" a vector of length equal to the rows number of matrix `dists`, containing the predicted labels. If `type` is equal to "prob" it returns a matrix which has `nrow(dists)` rows and a column for every class, where each cell represents the probability that the instance belongs to the class, according to 1NN.

predict.RandomForestSemisupervised_fitted

Predictions of the SSLRDecisionTree_fitted method

Description

Predicts the label of instances according to the RandomForestSemisupervised_fitted model.

Usage

```r
## S3 method for class 'RandomForestSemisupervised_fitted'
predict(object, x, type = "class", confident = "max_prob", ...)
```
Arguments

- **object**: RandomForestSemisupervised_fitted.
- **x**: A object that can be coerced as matrix. Depending on how was the model built, x is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- **type**: of predict in principal model
- **confident**: Is param to define the type of predict. It can be "max_prob", to get class with sum of probability is the maximum Or "vote" to get the most frequented class in all trees. Default is "max_prob"
- ... This parameter is included for compatibility reasons.

Value

Vector with the labels assigned.
predict.setred

Predictions of the SETRED method

Description

Predicts the label of instances according to the setred model.

Usage

S3 method for class 'setred'
predict(object, x, col_name = ".pred_class", ...)

Arguments

- `object`: SETRED model built with the `setred` function.
- `x`: A object that can be coerced as matrix. Depending on how was the model built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- `col_name`: is the colname from returned tibble in class type. The same from parsnip and tidymodels Default is `.pred_class`
- `...`: This parameter is included for compatibility reasons.

Details

For additional help see `setred` examples.

Value

Vector with the labels assigned.

predict.snnrce

Predictions of the SNNRCE method

Description

Predicts the label of instances according to the snnrce model.

Usage

S3 method for class 'snnrce'
predict(object, x, ...)

Arguments

object SNNRCE model built with the \texttt{snnrce} function.

\texttt{x} A object that can be coerced as matrix. Depending on how was the model built, \texttt{x} is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.

\ldots This parameter is included for compatibility reasons.

Details

For additional help see \texttt{snnrce} examples.

Value

Vector with the labels assigned.

\begin{center}
\begin{tabular}{ll}
\textit{predict.snnrceG} & \textit{Predictions of the SNNRCE method} \\
\end{tabular}
\end{center}

Description

Predicts the label of instances according to the \texttt{snnrceG} model.

Usage

\begin{verbatim}
S3 method for class 'snnrceG'
predict(object, D, \ldots)
\end{verbatim}

Arguments

\begin{verbatim}
object model instance
D distance matrix
\ldots This parameter is included for compatibility reasons.
\end{verbatim}
predict.SSLRDecisionTree_fitted

Predictions of the SSLRDecisionTree_fitted method

Description

Predicts the label of instances SSLRDecisionTree_fitted model.

Usage

```r
## S3 method for class 'SSLRDecisionTree_fitted'
predict(object, x, type = "class", ...)
```

Arguments

- `object`: model SSLRDecisionTree_fitted.
- `x`: A object that can be coerced as matrix. Depending on how was the model built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- `type`: of predict in principal model
- `...`: This parameter is included for compatibility reasons.

Value

Vector with the labels assigned.

predict.triTraining

Predictions of the Tri-training method

Description

Predicts the label of instances according to the triTraining model.

Usage

```r
## S3 method for class 'triTraining'
predict(object, x, ...)
```

Arguments

- `object`: Tri-training model built with the `triTraining` function.
- `x`: A object that can be coerced as matrix. Depending on how was the model built, `x` is interpreted as a matrix with the distances between the unseen instances and the selected training instances, or a matrix of instances.
- `...`: This parameter is included for compatibility reasons.
predict.USMLeastSquaresClassifierSSLR

Description

Predict USMLeastSquaresClassifierSSLR

Usage

```r
## S3 method for class 'USMLeastSquaresClassifierSSLR'
predict(object, x, ...)
```

Arguments

- `object` is the object
- `x` is the dataset
- `...` This parameter is included for compatibility reasons.

predict.TSVMSSLR

Description

Predict TSVMSSLR

Usage

```r
## S3 method for class 'TSVMSSLR'
predict(object, x, ...)
```

Arguments

- `object` is the object
- `x` is the dataset
- `...` This parameter is included for compatibility reasons.
predict.WellSVMSSLR

Description

Predict WellSVMSSLR

Usage

```r
## S3 method for class 'WellSVMSSLR'
predict(object, x, ...)
```

Arguments

- `object` is the object
- `x` is the dataset
- `...` This parameter is included for compatibility reasons.

predictions

predictions unlabeled data

Description

Predictions

Usage

```r
predictions(object, ...)
```

Arguments

- `object` object
- `...` other parameters to be passed
predictions.GRFClassifierSSLR

Predictions of unlabeled data

Description

Predictions

Usage

S3 method for class 'GRFClassifierSSLR'
predictions(object, ...)

Arguments

object object
... other parameters to be passed

predictions.model_sslr_fitted

Predictions of unlabeled data

Description

Predictions of unlabeled data (transductive) raw returns factor or numeric values

Usage

S3 method for class 'model_sslr_fitted'
predictions(object, type = "class", ...)

Arguments

object model_sslr_fitted model built
type of predict in principal model: class, raw
... other parameters to be passed
predict_inputs

An S4 method to predict inputs.

Description

An S4 method to predict inputs.

Usage

predict_inputs(object, ...)

Arguments

object DecisionTree object
...
This parameter is included for compatibility reasons.

predict_inputs,DecisionTreeClassifier-method

Predict inputs Decision Tree

Description

Function to predict one input in Decision Tree

Usage

S4 method for signature 'DecisionTreeClassifier'
predict_inputs(object, inputs, type = "class")

Arguments

object DecisionTree object
inputs inputs to be predicted
type type prediction, class or prob
print.model_sslr

Print model SSLR

Description

Print model SSLR

Usage

```r
## S3 method for class 'model_sslr'
print(object)
```

Arguments

- **object**
 - model_sslr object to print

RandomForestSemisupervised-class

Class Random Forest

Description

Class Random Forest Slots: mtry, trees, min_n, w, classes, mode

seeded_kmeans

General Interface Seeded KMeans

Description

The difference with traditional Kmeans is that in this method implemented, at initialization, there are as many clusters as the number of classes that exist of the labelled data, the average of the labelled data of a given class

Usage

```r
seeded_kmeans(max_iter = 10, method = "euclidean")
```

Arguments

- **max_iter**
 - maximum iterations in KMeans. Default is 10
- **method**
 - distance method in KMeans: "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski"
selfTraining

References

Sugato Basu, Arindam Banerjee, Raymond Mooney
Semi-supervised clustering by seeding
July 2002 In Proceedings of 19th International Conference on Machine Learning

Examples

library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)

data <- iris

set.seed(1)
#% LABELED
cls <- which(colnames(iris) == "Species")

labeled.index <- createDataPartition(data$Species, p = .2, list = FALSE)
data[-labeled.index,cls] <- NA

m <- seeded_kmeans() %>% fit(Species ~ ., data)

#Get labels (assing clusters), type = "raw" return factor
labels <- m %>% cluster_labels()
print(labels)

#Get centers
centers <- m %>% get_centers()
print(centers)

selfTraining

General Interface for Self-training model

Description

Self-training is a simple and effective semi-supervised learning classification method. The self-training classifier is initially trained with a reduced set of labeled examples. Then it is iteratively retrained with its own most confident predictions over the unlabeled examples. Self-training follows a wrapper methodology using a base supervised classifier to establish the possible class of unlabeled instances.

Usage

selfTraining(learner, max.iter = 50, perc.full = 0.7, thr.conf = 0.5)
Arguments

learner model from parsnip package for training a supervised base classifier using a set of instances. This model need to have probability predictions (or optionally a distance matrix) and it’s corresponding classes.

max.iter maximum number of iterations to execute the self-labeling process. Default is 50.

perc.full A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-training process is stopped. Default is 0.7.

thr.conf A number between 0 and 1 that indicates the confidence threshold. At each iteration, only the newly labelled examples with a confidence greater than this value (thr.conf) are added to the training set.

Details

For predicting the most accurate instances per iteration, selfTraining uses the predictions obtained with the learner specified. To train a model using the learner function, it is required a set of instances (or a precomputed matrix between the instances if x.inst parameter is FALSE) in conjunction with the corresponding classes. Additional parameters are provided to the learner function via the learner.pars argument. The model obtained is a supervised classifier ready to predict new instances through the pred function. Using a similar idea, the additional parameters to the pred function are provided using the pred.pars argument. The pred function returns the probabilities per class for each new instance. The value of the thr.conf argument controls the confidence of instances selected to enlarge the labeled set for the next iteration.

The stopping criterion is defined through the fulfillment of one of the following criteria: the algorithm reaches the number of iterations defined in the max.iter parameter or the portion of the unlabeled set, defined in the perc.full parameter, is moved to the labeled set. In some cases, the process stops and no instances are added to the original labeled set. In this case, the user must assign a more flexible value to the thr.conf parameter.

Value

(When model fit) A list object of class "selfTraining" containing:

- **model** The final base classifier trained using the enlarged labeled set.
- **instances.index** The indexes of the training instances used to train the model. These indexes include the initial labeled instances and the newly labeled instances. Those indexes are relative to x argument.
- **classes** The levels of y factor.
- **pred** The function provided in the pred argument.
- **pred.pars** The list provided in the pred.pars argument.

References

David Yarowsky.
Unsupervised word sense disambiguation rivaling supervised methods.
selfTrainingG

Examples

```r
library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(train$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

#We need a model with probability predictions from parsnip
#https://tidymodels.github.io/parsnip/articles/articles/Models.html
#It should be with mode = classification

#For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%
  set_engine("randomForest")

m <- selfTraining(learner = rf,
  perc.full = 0.7,
  thr.conf = 0.5, max.iter = 10) %>%
  fit(Wine ~ ., data = train)

#Accuracy
predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Wine", estimate = .pred_class)
```

Self-training generic method

Description

Self-training is a simple and effective semi-supervised learning classification method. The self-training classifier is initially trained with a reduced set of labeled examples. Then it is iteratively retrained with its own most confident predictions over the unlabeled examples. Self-training follows a wrapper methodology using one base supervised classifier to establish the possible class of unlabeled instances.
Usage

```r
selfTrainingG(
    y,
    gen.learner,
    gen.pred,
    max.iter = 50,
    perc.full = 0.7,
    thr.conf = 0.5
)
```

Arguments

- **y**: A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value `NA`.
- **gen.learner**: A function for training a supervised base classifier. This function needs two parameters, indexes and cls, where indexes indicates the instances to use and cls specifies the classes of those instances.
- **gen.pred**: A function for predicting the probabilities per classes. This function must be two parameters, model and indexes, where the model is a classifier trained with `gen.learner` function and indexes indicates the instances to predict.
- **max.iter**: Maximum number of iterations to execute the self-labeling process. Default is 50.
- **perc.full**: A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-training process is stopped. Default is 0.7.
- **thr.conf**: A number between 0 and 1 that indicates the confidence threshold. At each iteration, only the newly labelled examples with a confidence greater than this value (`thr.conf`) are added to the training set.

Details

SelfTrainingG can be helpful in those cases where the method selected as base classifier needs `learner` and `pred` functions with other specifications. For more information about the general self-training method, please see the `selfTraining` function. Essentially, the `selfTraining` function is a wrapper of the `selfTrainingG` function.

Value

A list object of class "selfTrainingG" containing:

- **model**: The final base classifier trained using the enlarged labeled set.
- **instances.index**: The indexes of the training instances used to train the `model`. These indexes include the initial labeled instances and the newly labeled instances. Those indexes are relative to the `y` argument.
Examples

library(SSLR)

Load Wine data set
data(wine)
cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x)

set.seed(20)

Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,]
ytrain <- y[tra.idx]

Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA

Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xtest <- x[tst.idx,] # testing instances
ytest <- y[tst.idx] # classes of instances in xtest

Use the unlabeled examples for transductive testing
xttest <- x[tra.idx[tra.na.idx],] # transductive testing instances
yttest <- y[tra.idx[tra.na.idx]] # classes of instances in xttest

library(caret)

PREPARE DATA
data <- cbind(xtrain, Class = ytrain)

dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
ditest <- as.matrix(proxy::dist(x = xtest, y = xtrain, method = "euclidean", by_rows = TRUE))

ddata <- cbind(dtrain, Class = ytrain)
ddata <- as.data.frame(ddata)

ktrain <- as.matrix(exp(-0.048 * dtrain ^ 2))
kdata <- cbind(ktrain, Class = ytrain)
kdata <- as.data.frame(kdata)

ktrain <- as.matrix(exp(-0.048 * dtrain ^ 2))
ktest <- as.matrix(exp(-0.048 * ditest ^ 2))
General Interface for SETRED model

Description

SETRED (SElf-TRaining with EDiting) is a variant of the self-training classification method (as implemented in the function `selfTraining`) with a different addition mechanism. The SETRED classifier is initially trained with a reduced set of labeled examples. Then, it is iteratively retrained.
with its own most confident predictions over the unlabeled examples. SETRED uses an amending scheme to avoid the introduction of noisy examples into the enlarged labeled set. For each iteration, the mislabeled examples are identified using the local information provided by the neighborhood graph.

Usage

```r
setred(
  dist = "Euclidean",
  learner,
  theta = 0.1,
  max.iter = 50,
  perc.full = 0.7,
  D = NULL
)
```

Arguments

- **dist**: A distance function or the name of a distance available in the proxy package to compute. Default is "Euclidean" the distance matrix in the case that D is NULL.
- **learner**: model from parsnip package for training a supervised base classifier using a set of instances. This model need to have probability predictions (or optionally a distance matrix) and it's corresponding classes.
- **theta**: Rejection threshold to test the critical region. Default is 0.1.
- **max.iter**: maximum number of iterations to execute the self-labeling process. Default is 50.
- **perc.full**: A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-training process is stopped. Default is 0.7.
- **D**: A distance matrix between all the training instances. This matrix is used to construct the neighborhood graph. Default is NULL, this means the method create a matrix with dist param

Details

SETRED initiates the self-labeling process by training a model from the original labeled set. In each iteration, the learner function detects unlabeled examples for which it makes the most confident prediction and labels those examples according to the pred function. The identification of mislabeled examples is performed using a neighborhood graph created from the distance matrix. Most examples possess the same label in a neighborhood. So if an example locates in a neighborhood with too many neighbors from different classes, this example should be considered problematic. The value of the theta argument controls the confidence of the candidates selected to enlarge the labeled set. The lower this value is, the more restrictive is the selection of the examples that are considered good. For more information about the self-labeled process and the rest of the parameters, please see selfTraining.

Value

(When model fit) A list object of class "setred" containing:
model The final base classifier trained using the enlarged labeled set.

instances.index The indexes of the training instances used to train the model. These indexes include the initial labeled instances and the newly labeled instances. Those indexes are relative to x argument.

classes The levels of y factor.

pred The function provided in the pred argument.
pred.pars The list provided in the pred.pars argument.

References

Ming Li and ZhiHua Zhou.
Setred: Self-training with editing.

Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

We need a model with probability predictions from parsnip
https://tidymodels.github.io/parsnip/articles/articles/Models.html
It should be with mode = classification

For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%
 set_engine("randomForest")

m <- setred(learner = rf,
 theta = 0.1,
 max.iter = 2,
 perc.full = 0.7) %>% fit(Wine ~ ., data = train)
Accuracy

```r
predict(m, test) %>%
  bind_cols(test) %>%
  metrics(truth = "Wine", estimate = .pred_class)
```

Another example, with dist matrix

```r
distance <- as.matrix(proxy::dist(train[, -cls], method = "Euclidean",
                    by_rows = TRUE, diag = TRUE, upper = TRUE))
m <- setred(learner = rf,
          theta = 0.1,
          max.iter = 2,
          perc.full = 0.7,
          D = distance) %>% fit(Wine ~ ., data = train)
```

Accuracy

```r
predict(m, test) %>%
  bind_cols(test) %>%
  metrics(truth = "Wine", estimate = .pred_class)
```

setredG

SETRED generic method

Description

SETRED is a variant of the self-training classification method (`selfTraining`) with a different addition mechanism. The SETRED classifier is initially trained with a reduced set of labeled examples. Then it is iteratively retrained with its own most confident predictions over the unlabeled examples. SETRED uses an amending scheme to avoid the introduction of noisy examples into the enlarged labeled set. For each iteration, the mislabeled examples are identified using the local information provided by the neighborhood graph.

Usage

```r
setredG(
  y,
  D,
  gen.learner,
  gen.pred,
  theta = 0.1,
  max.iter = 50,
  perc.full = 0.7
)
```
Arguments

- **y**
 A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value NA.

- **D**
 A distance matrix between all the training instances. This matrix is used to construct the neighborhood graph.

- **gen.learner**
 A function for training a supervised base classifier. This function needs two parameters, indexes and cls, where indexes indicates the instances to use and cls specifies the classes of those instances.

- **gen.pred**
 A function for predicting the probabilities per classes. This function must be two parameters, model and indexes, where the model is a classifier trained with gen.learner function and indexes indicates the instances to predict.

- **theta**
 Rejection threshold to test the critical region. Default is 0.1.

- **max.iter**
 Maximum number of iterations to execute the self-labeling process. Default is 50.

- **perc.full**
 A number between 0 and 1. If the percentage of new labeled examples reaches this value the self-training process is stopped. Default is 0.7.

Details

SetredG can be helpful in those cases where the method selected as base classifier needs a learner and pred functions with other specifications. For more information about the general setred method, please see setred function. Essentially, setred function is a wrapper of setredG function.

Value

A list object of class "setredG" containing:

- **model**
 The final base classifier trained using the enlarged labeled set.

- **instances.index**
 The indexes of the training instances used to train the model. These indexes include the initial labeled instances and the newly labeled instances. Those indexes are relative to the y argument.

Examples

```r
library(SSLR)
library(caret)

## Load Wine data set
data(wine)

# Load Wine data set
cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x) # scale the attributes

data(wine)

## Prepare data
set.seed(20)
# Use 50% of instances for training
```
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,] # training instances
ytrain <- y[tra.idx] # classes of training instances
Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances
Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xitest <- x[tst.idx,] # testing instances
yitest <- y[tst.idx] # classes of testing instances
Compute distances between training instances
D <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
Example: Training from a set of instances with 1-NN (knn3) as base classifier.
Compute distances between training instances
D <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
Example: Training from a set of instances with 1-NN (knn3) as base classifier.
gen.learner <- function(indexes, cls)
 caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred <- function(model, indexes)
 predict(model, xtrain[indexes,])
trControl_SETRED1 <- list(D = D, gen.learner = gen.learner,
 gen.pred = gen.pred)
md1 <- train_generic(ytrain, method = "setredG", trControl = trControl_SETRED1)
'md1 <- setredG(y = ytrain, D, gen.learner, gen.pred)'
cls1 <- predict(md1$model, xitest, type = "class")
table(cls1, yitest)
confusionMatrix(cls1, yitest)$overall[1]

Example: Training from a distance matrix with 1-NN (oneNN) as base classifier
ngen.learner <- function(indexes, cls) {
 m <- SSLR::oneNN(y = cls)
 attr(m, "tra.idxs") <- indexes
 m
}
gen.pred <- function(model, indexes) {
 tra.idxs <- attr(model, "tra.idxs")
 d <- D[indexes, tra.idxs]
 prob <- predict(model, d, distance.weighting = "none")
 prob
}
trControl_SETRED2 <- list(D = D, gen.learner = gen.learner,
 gen.pred = gen.pred)
md2 <- train_generic(ytrain, method = "setredG", trControl = trControl_SETRED2)

ditest <- proxy::dist(x = xitest, y = xtrain[md2$instances.index,],
 method = "euclidean", by_rows = TRUE)

cls2 <- predict(md2$model, ditest, type = "class")
table(cls2, yitest)

confusionMatrix(cls2, yitest)$overall[1]

snnrce

General Interface for SNNRCE model

Description

SNNRCE (Self-training Nearest Neighbor Rule using Cut Edges) is a variant of the self-training classification method ([selfTraining](#)) with a different addition mechanism and a fixed learning scheme (1-NN). SNNRCE uses an amending scheme to avoid the introduction of noisy examples into the enlarged labeled set. The mislabeled examples are identified using the local information provided by the neighborhood graph. A statistical test using cut edge weight is used to modify the labels of the misclassified examples.

Usage

`snnrce(x.inst = TRUE, dist = "Euclidean", alpha = 0.1)`

Arguments

- `x.inst` A boolean value that indicates if `x` is or not an instance matrix. Default is `TRUE`.
- `dist` A distance function available in the `proxy` package to compute the distance matrix in the case that `x.inst` is `TRUE`.
- `alpha` Rejection threshold to test the critical region. Default is 0.1.

Details

SNNRCE initiates the self-labeling process by training a 1-NN from the original labeled set. This method attempts to reduce the noise in examples by labeling those instances with no cut edges in the initial stages of self-labeling learning. These highly confident examples are added into the training set. The remaining examples follow the standard self-training process until a minimum number of examples will be labeled for each class. A statistical test using cut edge weight is used to modify the labels of the misclassified examples. The value of the `alpha` argument defines the critical region where the candidates examples are tested. The higher this value is, the more relaxed it is the selection of the examples that are considered mislabeled.
Value

(When model fit) A list object of class "snnrce" containing:

- **model** The final base classifier trained using the enlarged labeled set.
- **instances.index** The indexes of the training instances used to train the model. These indexes include the initial labeled instances and the newly labeled instances. Those indexes are relative to x argument.
- **classes** The levels of y factor.
- **x.inst** The value provided in the x.inst argument.
- **dist** The value provided in the dist argument when x.inst is TRUE.
- **xtrain** A matrix with the subset of training instances referenced by the indexes instances.index when x.inst is TRUE.

References

Examples

```r
library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(wine)
set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- snnrce(x.inst = TRUE,
            dist = "Euclidean",
            alpha = 0.1) %>% fit(Wine ~ ., data = train)

predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Wine", estimate = .pred_class)
```
SSLRDecisionTree General Interface Decision Tree model

Description

Decision Tree is a simple and effective semi-supervised learning method. Based on the article "Semi-supervised classification trees". It also offers many parameters to modify the behavior of this method. It is the same as the traditional Decision Tree algorithm, but the difference is how the gini coefficient is calculated (classification). In regression we use SSE metric (different from the original investigation) It can be used in classification or regression. If Y is numeric is for regression, classification in another case

Usage

SSLRDecisionTree(
 max_depth = 30,
 w = 0.5,
 min_samples_split = 20,
 min_samples_leaf = ceiling(min_samples_split/3)
)

Arguments

max_depth A number from 1 to Inf. Is the maximum number of depth in Decision Tree
Default is 30
w weight parameter ranging from 0 to 1. Default is 0.5
min_samples_split the minimum number of observations to do split. Default is 20
min_samples_leaf the minimum number of any terminal leaf node. Default is ceiling(min_samples_split/3)

Details

In this model we can make predictions with prob type

References

Jurica Levati, Michelangelo Ceci, Dragi Kocev, Saso Dzeroski.
Semi-supervised classification trees.
Published online: 25 March 2017 © Springer Science Business Media New York 2017

Examples

library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)
SSLRRandomForest

General Interface Random Forest model

Description

Random Forest is a simple and effective semi-supervised learning method. It is the same as the traditional Random Forest algorithm, but the difference is that it uses Semi-supervised Decision Trees. It can be used in classification or regression. If Y is numeric, it is for regression, classification in another case.

Usage

SSLRRandomForest(
 mtry = NULL,
 trees = 500,
 min_n = NULL,
 w = 0.5,
 replace = TRUE,
 tree_max_depth = Inf,
)
SSLRRandomForest

sampsize = NULL,
min_samples_leaf = NULL,
allowParallel = TRUE
)

Arguments

mtry number of features in each decision tree. Default is null. This means that mtry = log(n_features) + 1
trees number of trees. Default is 500
min_n number of minimum samples in each tree Default is null. This means that uses all training data
w weight parameter ranging from 0 to 1. Default is 0.5
replace replacing type in sampling. Default is true
tree_max_depth maximum tree depth. Default is Inf
sampsize Size of sample. Default if (replace) nrow(x) else ceiling(.632*nrow(x))
min_samples_leaf the minimum number of any terminal leaf node. Default is 1
allowParallel Execute Random Forest in parallel if doParallel is loaded. Default is TRUE

Details

We can use paralleling processing with doParallel package and allowParallel = TRUE.

References

Jurica Levati, Michelangelo Ceci, Dragi Kocev, Saso Dzeroski.
Semi-supervised classification trees.
Published online: 25 March 2017 © Springer Science Business Media New York 2017

Examples

library(tidyverse)
library(caret)
library(SSLR)
library(tidymodels)

data(wine)

set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,]
test <- wine[-train.index,]

cls <- which(colnames(wine) == "Wine")

#% LABELED
labeled.index <- createDataPartition(train$Wine, p = .2, list = FALSE)
train[-labeled,index,cls] <- NA

m <- SSLRRandomForest(trees = 5, w = 0.3) %>% fit(Wine ~ ., data = train)

#Accuracy
predict(m, test) %>%
 bind_cols(test) %>%
 metrics(truth = "Wine", estimate = .pred_class)

#For probabilities
predict(m, test, type = "prob")

train_generic

FUNCTION TO TRAIN GENERIC MODEL

Description

FUNCTION TO TRAIN GENERIC MODEL

Usage

`train_generic(y, ...)`

Arguments

- `y` (optional) factor (classes)
- `...` list parms trControl (method...)

Value

model trained

trITraining

General Interface for Tri-training model

Description

Tri-training is a semi-supervised learning algorithm with a co-training style. This algorithm trains three classifiers with the same learning scheme from a reduced set of labeled examples. For each iteration, an unlabeled example is labeled for a classifier if the other two classifiers agree on the labeling proposed.
Usage

\texttt{triTraining(learner)}

Arguments

\texttt{learner} model from parsnip package for training a supervised base classifier using a set of instances. This model need to have probability predictions (or optionally a distance matrix) and it's corresponding classes.

Details

Tri-training initiates the self-labeling process by training three models from the original labeled set, using the \texttt{learner} function specified. In each iteration, the algorithm detects unlabeled examples on which two classifiers agree with the classification and includes these instances in the enlarged set of the third classifier under certain conditions. The generation of the final hypothesis is produced via the majority voting. The iteration process ends when no changes occur in any model during a complete iteration.

Value

A list object of class "triTraining" containing:

\begin{itemize}
 \item \texttt{model} The final three base classifiers trained using the enlarged labeled set.
 \item \texttt{model.index} List of three vectors of indexes related to the training instances used per each classifier. These indexes are relative to the \texttt{y} argument.
 \item \texttt{instances.index} The indexes of all training instances used to train the three models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the \texttt{y} argument.
 \item \texttt{model.index.map} List of three vectors with the same information in \texttt{model.index} but the indexes are relative to \texttt{instances.index} vector.
 \item \texttt{classes} The levels of \texttt{y} factor.
 \item \texttt{pred} The function provided in the \texttt{pred} argument.
 \item \texttt{pred.pars} The list provided in the \texttt{pred.pars} argument.
 \item \texttt{x.inst} The value provided in the \texttt{x.inst} argument.
\end{itemize}

References

ZhiHua Zhou and Ming Li.
\textit{Tri-training: exploiting unlabeled data using three classifiers.}

Examples

\begin{itemize}
 \item library(tidyverse)
 \item library(tidymodels)
 \item library(caret)
 \item library(SSLR)
\end{itemize}
triTrainCombine

Combining the hypothesis

This function combines the predictions obtained by the set of classifiers.

Usage

triTrainCombine(pred)

Arguments

pred A list with the predictions of each classifiers

Value

A vector of classes

data(wine)
set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[train.index,

 test <- wine[-train.index,

 cls <- which(colnames(wine) == "Wine")

LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

We need a model with probability predictions from parsnip
https://tidymodels.github.io/parsnip/articles/articles/Models.html
It should be with mode = classification

For example, with Random Forest
rf <- rand_forest(trees = 100, mode = "classification") %>%
 set_engine("randomForest")

m <- triTraining(learner = rf) %>% fit(Wine ~ ., data = train)

Accuracy
predict(m,test) %>%
 bind_cols(test) %>%
 metrics(truth = "Wine", estimate = .pred_class)
triTrainingG

Tri-training generic method

Description

Tri-training is a semi-supervised learning algorithm with a co-training style. This algorithm trains three classifiers with the same learning scheme from a reduced set of labeled examples. For each iteration, an unlabeled example is labeled for a classifier if the other two classifiers agree on the labeling proposed.

Usage

triTrainingG(y, gen.learner, gen.pred)

Arguments

y A vector with the labels of training instances. In this vector the unlabeled instances are specified with the value NA.

gen.learner A function for training three supervised base classifiers. This function needs two parameters, indexes and cls, where indexes indicates the instances to use and cls specifies the classes of those instances.

gen.pred A function for predicting the probabilities per classes. This function must be two parameters, model and indexes, where the model is a classifier trained with gen.learner function and indexes indicates the instances to predict.

Details

TriTrainingG can be helpful in those cases where the method selected as base classifier needs a learner and pred functions with other specifications. For more information about the general triTraining method, please see the triTraining function. Essentially, the triTraining function is a wrapper of the triTrainingG function.

Value

A list object of class "triTrainingG" containing:

model The final three base classifiers trained using the enlarged labeled set.

model.index List of three vectors of indexes related to the training instances used per each classifier. These indexes are relative to the y argument.

instances.index The indexes of all training instances used to train the three models. These indexes include the initial labeled instances and the newly labeled instances. These indexes are relative to the y argument.

model.index.map List of three vectors with the same information in model.index but the indexes are relative to instances.index vector.
Examples

library(SSLR)
library(caret)

Load Wine data set
data(wine)

cls <- which(colnames(wine) == "Wine")
x <- wine[, - cls] # instances without classes
y <- wine[, cls] # the classes
x <- scale(x) # scale the attributes

Prepare data
set.seed(20)
Use 50% of instances for training
tra.idx <- sample(x = length(y), size = ceiling(length(y) * 0.5))
xtrain <- x[tra.idx,] # training instances
ytrain <- y[tra.idx] # classes of training instances
Use 70% of train instances as unlabeled set
tra.na.idx <- sample(x = length(tra.idx), size = ceiling(length(tra.idx) * 0.7))
ytrain[tra.na.idx] <- NA # remove class information of unlabeled instances
Use the other 50% of instances for inductive testing
tst.idx <- setdiff(1:length(y), tra.idx)
xitest <- x[tst.idx,] # testing instances
yitest <- y[tst.idx] # classes of testing instances

Example: Training from a set of instances with 1-NN (knn3) as base classifier.
gen.learner <- function(indexes, cls)
caret::knn3(x = xtrain[indexes,], y = cls, k = 1)
gen.pred <- function(model, indexes)
predict(model, xtrain[indexes,])

Train
set.seed(1)
trControl_triTraining1 <- list(gen.learner = gen.learner,
gen.pred = gen.pred)
md1 <- train_generic(ytrain, method = "triTrainingG", trControl = trControl_triTraining1)

Predict testing instances using the three classifiers
pred <- lapply(
 X = md1$model,
 FUN = function(m) predict(m, xitest, type = "class")
)
Combine the predictions
cls1 <- triTrainingCombine(pred)
table(cls1, yitest)

confusionMatrix(cls1, yitest)$overall[1]
```r
# Example: Training from a distance matrix with 1-NN (oneNN) as base classifier.
dtrain <- as.matrix(proxy::dist(x = xtrain, method = "euclidean", by_rows = TRUE))
gen.learner <- function(indexes, cls) {
m <- SSLR::oneNN(y = cls)
attr(m, "tra.idxs") <- indexes
m
}
gen.pred <- function(model, indexes) {
tra.idxs <- attr(model, "tra.idxs")
d <- dtrain[indexes, tra.idxs]
prob <- predict(model, d, distance.weighting = "none")
prob
}

# Train
set.seed(1)
trControl_triTraining2 <- list(gen.learner = gen.learner,
gen.pred = gen.pred)
md2 <- train_generic(ytrain, method = "triTrainingG", trControl = trControl_triTraining2)

# Predict
ditest <- proxy::dist(x = xitest, y = xtrain[md2$instances.index,],
method = "euclidean", by_rows = TRUE)

# Predict testing instances using the three classifiers
pred <- mapply(
FUN = function(m, indexes) {
  D <- ditest[, indexes]
  predict(m, D, type = "class")
},
m = md2$model,
indexes = md2$model.index.map,
SIMPLIFY = FALSE
)
# Combine the predictions
cls2 <- triTrainingCombine(pred)
table(cls2, yitest)
confusionMatrix(cls2, yitest)$overall[1]
```

TSVMSSLR

General Interface for TSVM (Transductive SVM classifier using the convex concave procedure) model
Description

model from RSSL package Transductive SVM using the CCCP algorithm as proposed by Collobert et al. (2006) implemented in R using the quadprog package. The implementation does not handle large datasets very well, but can be useful for smaller datasets and visualization purposes. C is the cost associated with labeled objects, while Cstar is the cost for the unlabeled objects. s control the loss function used for the unlabeled objects: it controls the size of the plateau for the symmetric ramp loss function. The balancing constraint makes sure the label assignments of the unlabeled objects are similar to the prior on the classes that was observed on the labeled data.

Usage

```r
TSVMSSLR(
  C = 1,
  Cstar = 0.1,
  kernel = kernlab::vanilladot(),
  balancing_constraint = TRUE,
  s = 0,
  x_center = TRUE,
  scale = FALSE,
  eps = 1e-09,
  max_iter = 20,
  verbose = FALSE
)
```

Arguments

- `C`: numeric; Cost parameter of the SVM
- `Cstar`: numeric; Cost parameter of the unlabeled objects
- `kernel`: kernlab::kernel to use
- `balancing_constraint`: logical; Whether a balancing constraint should be enforced that causes the fraction of objects assigned to each label in the unlabeled data to be similar to the label fraction in the labeled data.
- `s`: numeric; parameter controlling the loss function of the unlabeled objects (generally values between -1 and 0)
- `x_center`: logical; Should the features be centered?
- `scale`: If TRUE, apply a z-transform to all observations in X and X_u before running the regression
- `eps`: numeric; Stopping criterion for the maximinimization
- `max_iter`: integer; Maximum number of iterations
- `verbose`: logical; print debugging messages, only works for vanilladot() kernel (default: FALSE)

References

Examples

```r
library(tidyverse)
library(caret)
library(tidymodels)
library(SSLR)

data(breast)
set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

library(kernlab)
m <- TSVMSSLR(kernel = kernlab::vanilladot()) %>% fit(Class ~ ., data = train)

#Accessing model from RSSL
model <- m$model
```

USMLeastSquaresClassifierSSLR

General Interface for USMLeastSquaresClassifier (Updated Second Moment Least Squares Classifier) model

Description

model from RSSL package This methods uses the closed form solution of the supervised least squares problem, except that the second moment matrix \((X'X)\) is exchanged with a second moment matrix that is estimated based on all data. See for instance Shaffer1991, where in this implementation we use all data to estimate \(E(X'X)\), instead of just the labeled data. This method seems to work best when the data is first centered \(x_center=TRUE\) and the outputs are scaled using \(y_scale=TRUE\).

Usage

```r
USMLeastSquaresClassifierSSLR(
  lambda = 0,
  intercept = TRUE,
  x_center = FALSE,
  scale = FALSE,
  y_scale = FALSE,
)```
Arguments

lambda numeric; L2 regularization parameter
intercept logical; Whether an intercept should be included
x_center logical; Should the features be centered?
scale logical; Should the features be normalized? (default: FALSE)
y_scale logical; whether the target vector should be centered
... Not used
use_Xu_for_scaling logical; whether the unlabeled objects should be used to determine the mean and scaling for the normalization

References


Examples

library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- USMLeastSquaresClassifierSSLR() %>% fit(Class ~ ., data = train)

#Accessing model from RSSLR
model <- m$model

#Accuracy
predict(m,test) %>%
  bind_cols(test) %>%
metrics(truth = "Class", estimate = .pred_class)

---

**WellSVMSSLR** General Interface for WellSVM model

**Description**

Model from RSSL package WellSVM is a minimax relaxation of the mixed integer programming problem of finding the optimal labels for the unlabeled data in the SVM objective function. This implementation is a translation of the Matlab implementation of Li (2013) into R.

**Usage**

```r
WellSVMSSLR(
 C1 = 1,
 C2 = 0.1,
 gamma = 1,
 x_center = TRUE,
 scale = FALSE,
 use_Xu_for_scaling = FALSE,
 max_iter = 20
)
```

**Arguments**

- **C1** double; A regularization parameter for labeled data, default 1;
- **C2** double; A regularization parameter for unlabeled data, default 0.1;
- **gamma** double; Gaussian kernel parameter, i.e., $k(x,y) = \exp(-\text{gamma}^2\|x-y\|^2/\text{avg})$ where avg is the average distance among instances; when gamma = 0, linear kernel is used. default gamma = 1;
- **x_center** logical; Should the features be centered?
- **scale** logical; Should the features be normalized? (default: FALSE)
- **use_Xu_for_scaling** logical; whether the unlabeled objects should be used to determine the mean and scaling for the normalization
- **max_iter** integer; Maximum number of iterations

**References**


Example(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)

data(breast)

set.seed(1)
train.index <- createDataPartition(breast$Class, p = .7, list = FALSE)
train <- breast[ train.index,]
test <- breast[-train.index,]

cls <- which(colnames(breast) == "Class")

#% LABELED
labeled.index <- createDataPartition(breast$Class, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA

m <- WellSVMSSLR() %>% fit(Class ~ ., data = train)

#Accesing model from RSSL
model <- m$model

#Accuracy
predict(m,test) %>%
  bind_cols(test) %>%
  metrics(truth = "Class", estimate = .pred_class)

---

wine Wine recognition data

Description

This dataset is the result of a chemical analysis of wine grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.

Usage

data(wine)

Format

A data frame with 178 rows and 14 variables including the class.
Details

The dataset is taken from the UCI data repository, to which it was donated by Riccardo Leardi, University of Genova. The attributes are as follows:

- Alcohol
- Malic acid
- Ash
- Alcalinity of ash
- Magnesium
- Total phenols
- Flavanoids
- Nonflavanoid phenols
- Proanthocyanins
- Color intensity
- Hue
- OD280/OD315 of diluted wines
- Proline
- Wine (class)

Source

https://archive.ics.uci.edu/ml/datasets/Wine
Index

* datasets
  abalone, 4
  breast, 6
  coffee, 19
  wine, 95
  abalone, 4
  best_split, 5
  best_split, DecisionTreeClassifier-method, 5
  breast, 6
  calculate_gini, 6
  cclsSSLR, 7
  check_value, 8
  check_xy_interface, 9
  ckmeansSSLR, 9
  cluster_labels, 10
  cluster_labels.model_sslr_fitted, 11
  coBC, 11, 14, 54
  coBCCombine, 13
  coBCG, 14
  coBCReg, 16
  coBCRegG, 17
  coffee, 19
  constrained_kmmeans, 19
  COREG, 20, 54
  DecisionTreeClassifier-class, 21
  democratic, 22, 25, 55
  democraticCombine, 24
  democraticG, 24
  EMLeastSquaresClassifierSSLR, 26
  EMNearestMeanClassifierSSLR, 28
  EntropyRegularizedLogisticRegressionSSLR, 29
  fit.model_sslr, 30
  fit_decision_tree, 31
  fit_decision_tree, DecisionTreeClassifier-method, 31
  fit_random_forest, RandomForestSemisupervised-method, 32
  fit_x_u, 34
  fit_x_u.model_sslr, 34
  fit_xy.model_sslr, 33
  get_centers, 35
  get_centers.model_sslr_fitted, 35
  get_class_max_prob, 36
  get_class_mean_prob, 36
  get_function, 37
  get_function_generic, 37
  get_levels_categorical, 38
  get_most_frequented, 38
  get_value_mean, 38
  get_x_y, 39
  gini_or_variance, 39
  gini_prob, 40
  GRFClassifierSSLR, 40
  grow_tree, 42
  grow_tree, DecisionTreeClassifier-method, 42
  knn_regression, 43
  LaplacianSVMSSLR, 43
  lcvqeSSLR, 45
  LinearTSVMSSLR, 46
  load_conclust, 47
  load_parsnip, 47
  load_RANN, 48
  load_RSSL, 48
  MCNearestMeanClassifierSSLR, 48
  mpckmSSLR, 49
  newDecisionTree, 51
  Node-class, 51
  nullOrNumericOrCharacter-class, 51
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>oneNN</td>
<td>52, 59</td>
</tr>
<tr>
<td>predict, DecisionTreeClassifier-method</td>
<td>52</td>
</tr>
<tr>
<td>predict, RandomForestSemisupervised-method</td>
<td>53</td>
</tr>
<tr>
<td>predict.coBC</td>
<td>53</td>
</tr>
<tr>
<td>predict.COREG</td>
<td>54</td>
</tr>
<tr>
<td>predict.democratic</td>
<td>55</td>
</tr>
<tr>
<td>predict.EMLeastSquaresClassifierSSLR</td>
<td>55</td>
</tr>
<tr>
<td>predict.EMNearestMeanClassifierSSLR</td>
<td>56</td>
</tr>
<tr>
<td>predict.EntropyRegularizedLogisticRegressionSSLR</td>
<td>56</td>
</tr>
<tr>
<td>predict.LaplacianSVMSSLR</td>
<td>57</td>
</tr>
<tr>
<td>predict.LinearTSVMSSLR</td>
<td>57</td>
</tr>
<tr>
<td>predict.MCNearestMeanClassifierSSLR</td>
<td>58</td>
</tr>
<tr>
<td>predict.model_sslr_fitted</td>
<td>58</td>
</tr>
<tr>
<td>predict.ONE NN</td>
<td>59</td>
</tr>
<tr>
<td>predict.RandomForestSemisupervised_fitted</td>
<td>59</td>
</tr>
<tr>
<td>predict.selfTraining</td>
<td>60</td>
</tr>
<tr>
<td>predict.setred</td>
<td>61</td>
</tr>
<tr>
<td>predict.snnrce</td>
<td>61</td>
</tr>
<tr>
<td>predict.snnrceG</td>
<td>62</td>
</tr>
<tr>
<td>predict.SSLRDecisionTree_fitted</td>
<td>63</td>
</tr>
<tr>
<td>predict.triTraining</td>
<td>63</td>
</tr>
<tr>
<td>predict.TSV MSSLR</td>
<td>64</td>
</tr>
<tr>
<td>predict.USMLEastSquaresClassifierSSLR</td>
<td>64</td>
</tr>
<tr>
<td>predict.WellSV MSSLR</td>
<td>65</td>
</tr>
<tr>
<td>predict_inputs, DecisionTreeClassifier-method</td>
<td>67</td>
</tr>
<tr>
<td>predictions</td>
<td>65</td>
</tr>
<tr>
<td>predictions.GRFClassifierSSLR</td>
<td>66</td>
</tr>
<tr>
<td>predictions.model_sslr_fitted</td>
<td>66</td>
</tr>
<tr>
<td>print.model_sslr</td>
<td>68</td>
</tr>
<tr>
<td>RandomForestSemisupervised-class</td>
<td>68</td>
</tr>
<tr>
<td>seeded_kmeans</td>
<td>68</td>
</tr>
<tr>
<td>selfTraining</td>
<td>60, 69, 72, 74, 75, 77, 80</td>
</tr>
<tr>
<td>selfTrainingG</td>
<td>71</td>
</tr>
<tr>
<td>setred</td>
<td>61, 74, 78</td>
</tr>
<tr>
<td>setredG</td>
<td>77</td>
</tr>
<tr>
<td>snnrce</td>
<td>62, 80</td>
</tr>
</tbody>
</table>

- SSLR Decision Tree: 82
- SSLR RandomForest: 83
- SVM: 46
- train generic: 85
- triTraining: 63, 64, 85, 88
- triTrainingCombine: 87
- triTrainingG: 88
- TSV MSSLR: 90
- USMLEastSquaresClassifierSSLR: 92
- WellSV MSSLR: 94
- Wine: 95