Package ‘SSOSVM’

May 6, 2019

Type Package
Title Stream Suitable Online Support Vector Machines
Version 0.2.1
Date 2019-05-06
Author Andrew Thomas Jones, Hien Duy Nguyen, Geoffrey J. McLachlan
Maintainer Andrew Thomas Jones <andrewthomasjones@gmail.com>
Description Soft-margin support vector machines (SVMs) are a common class of classification models. The training of SVMs usually requires that the data be available all at once in a single batch, however the Stochastic majorization-minimization (SMM) algorithm framework allows for the training of SVMs on streamed data instead Nguyen, Jones & McLachlan(2018)<doi:10.1007/s42081-018-0001-y>. This package utilizes the SMM framework to provide functions for training SVMs with hinge loss, squared-hinge loss, and logistic loss.
License GPL-3
Encoding UTF-8
Imports Rcpp (>= 0.12.13), mvtnorm, MASS
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.1.1
Suggests testthat, knitr, rmarkdown, ggplot2, gganimate, gifski
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-05-06 09:10:03 UTC

R topics documented:

- generateSim .. 2
- Hinge .. 2
- Logistic ... 3
- SquareHinge .. 4
- SSOSVM ... 5
- SVMFit ... 5

Index 7
generateSim

Generate Simulations

Description

Generate simple simulations for testing of the algorithms.

Usage

generateSim(NN = 10^4, DELTA = 2, DIM = 2, seed = NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>Number of observations. Default is 10^4</td>
</tr>
<tr>
<td>DELTA</td>
<td>Separation of three groups in standard errors. Default is 2.</td>
</tr>
<tr>
<td>DIM</td>
<td>Number of dimensions in data. Default is 2.</td>
</tr>
<tr>
<td>seed</td>
<td>Random seed if desired.</td>
</tr>
</tbody>
</table>

Value

A list containing:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX</td>
<td>Coordinates of the simulated points.</td>
</tr>
<tr>
<td>YY</td>
<td>Cluster membership of the simulated points.</td>
</tr>
<tr>
<td>YMAT</td>
<td>YY and XX Combined as a single matrix.</td>
</tr>
</tbody>
</table>

Examples

#100 points of dimension 4.
generateSim(NN=100, DELTA=2, DIM=4)

Hinge

Hinge

Description

Fit SVM with Hinge loss function.

Usage

Hinge(YMAT, DIM = 2L, EPSILON = 1e-05, returnAll = FALSE, rho = 1)
Logistic

Arguments

- **YMAT** Data. First column is -1 or 1 indicating the class of each observation. The remaining columns are the coordinates of the data points.
- **DIM** Dimension of data. Default value is 2.
- **EPSILON** Small perturbation value needed in calculation. Default value is 0.00001.
- **returnAll** Return all of theta values? Boolean with default value FALSE.
- **rho** Sensitivity factor to adjust the level of change in the SVM fit when a new observation is added. Default value 1.0

Value

A list containing:

- **THETA** SVM fit parameters.
- **NN** Number of observation points in YMAT.
- **DIM** Dimension of data.
- **THETA_list** THETA at each iteration (new point observed) as YMAT is fed into the algorithm one data point at a time.
- **OMEGA** Intermediate value OMEGA at each iteration (new point observed).

Examples

```r
Ymat <- generateSim(10^4)
h1 <- Hinge(YMAT$YMAT, returnAll=TRUE)

Logistic < Logistic(YMAT, DIM = 2L, EPSILON = 1e-05, returnAll = FALSE, rho = 1)
```

Description

Fit SVM with Logistic loss function.

Usage

```r
Logistic(YMAT, DIM = 2L, EPSILON = 1e-05, returnAll = FALSE, rho = 1)
```

Arguments

- **YMAT** Data. First column is -1 or 1 indicating the class of each observation. The remaining columns are the coordinates of the data points.
- **DIM** Dimension of data. Default value is 2.
- **EPSILON** Small perturbation value needed in calculation. Default value is 0.00001.
- **returnAll** Return all of theta values? Boolean with default value FALSE.
- **rho** Sensitivity factor to adjust the level of change in the SVM fit when a new observation is added. Default value 1.0
Value

A list containing:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THETA</td>
<td>SVM fit parameters.</td>
</tr>
<tr>
<td>NN</td>
<td>Number of observation points in YMAT.</td>
</tr>
<tr>
<td>DIM</td>
<td>Dimension of data.</td>
</tr>
<tr>
<td>THETA_list</td>
<td>THETA at each iteration (new point observed) as YMAT is fed into the algorithm one data point at a time.</td>
</tr>
<tr>
<td>CHI</td>
<td>Intermediate value CHI at each iteration (new point observed).</td>
</tr>
</tbody>
</table>

Examples

```r
YMAT <- generateSim(1e^4)
l1<-logistic(YMAT$YMAT,returnAll=TRUE)
```

Description

Fit SVM with Square Hinge loss function.

Usage

```r
SquareHinge(YMAT, DIM = 2L, EPSILON = 1e-05, returnAll = FALSE, rho = 1)
```

Arguments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YMAT</td>
<td>Data. First column is -1 or 1 indicating the class of each observation. The remaining columns are the coordinates of the data points.</td>
</tr>
<tr>
<td>DIM</td>
<td>Dimension of data. Default value is 2.</td>
</tr>
<tr>
<td>EPSILON</td>
<td>Small perturbation value needed in calculation. Default value is 0.00001.</td>
</tr>
<tr>
<td>returnAll</td>
<td>Return all of theta values? Boolean with default value FALSE.</td>
</tr>
<tr>
<td>rho</td>
<td>Sensitivity factor to adjust the level of change in the SVM fit when a new observation is added. Default value 1.0</td>
</tr>
</tbody>
</table>

Value

A list containing:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THETA</td>
<td>SVM fit parameters.</td>
</tr>
<tr>
<td>NN</td>
<td>Number of observation points in YMAT.</td>
</tr>
<tr>
<td>DIM</td>
<td>Dimension of data.</td>
</tr>
<tr>
<td>THETA_list</td>
<td>THETA at each iteration (new point observed) as YMAT is fed into the algorithm one data point at a time.</td>
</tr>
<tr>
<td>PSI</td>
<td>Intermediate value PSI at each iteration (new point observed).</td>
</tr>
</tbody>
</table>
SSOSVM

Examples

\[\text{YMAT} \leftarrow \text{generateSim}(10^3, \text{DIM}=3) \]
\[\text{sql} \leftarrow \text{SquareHinge}(\text{YMAT} _ \text{YMAT}, \text{DIM}=3, \text{returnAll=TRUE}) \]

SSOSVM

SSOSVM: A package for online training of soft-margin support vector machines (SVMs) using the Stochastic majorization–minimization (SMM) algorithm.

Description

The SSOSVM package allows for the online training of Soft-margin support vector machines (SVMs) using the Stochastic majorization–minimization (SMM) algorithm. \text{SquareHinge}, \text{Hinge} and \text{Logistic} The function \text{generateSim} can also be used to generate simple test sets.

Author(s)

Andrew T. Jones, Hien D. Nguyen, Geoffrey J. McLachlan

References

SVMFit

SSOSVM Fit function

Description

This is the primary function for uses to fit SVMs using this package.

Usage

\[\text{SVMFit} (\text{YMAT}, \text{method} = \text{"logistic"}, \text{EPSILON} = 1e-05, \text{returnAll} = \text{FALSE}, \text{rho} = 1) \]

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{YMAT}</td>
<td>Data. First column is -1 or 1 indicating the class of each observation. The remaining columns are the coordinates of the data points.</td>
</tr>
<tr>
<td>\text{method}</td>
<td>Choice of function used in SVM. Choices are 'logistic', 'hinge' and 'square-Hinge'. Default value is 'logistic'</td>
</tr>
<tr>
<td>\text{EPSILON}</td>
<td>Small perturbation value needed in calculation. Default value is 0.00001.</td>
</tr>
<tr>
<td>\text{returnAll}</td>
<td>Return all of theta values? Boolean with default value FALSE.</td>
</tr>
<tr>
<td>\text{rho}</td>
<td>Sensitivity factor to adjust the level of change in the SVM fit when a new observation is added. Default value 1.0</td>
</tr>
</tbody>
</table>
Value

A list containing:

- **THETA** SVM fit parameters.
- **NN** Number of observation points in YMAT.
- **DIM** Dimension of data.
- **THETA_list** THETA at each iteration (new point observed) as YMAT is fed into the algorithm one data point at a time.
- **PSI, OMEGA, CHI** Intermediate value for PSI, OMEGA, or CHI (depending on method choice) at each iteration (new point observed).

Examples

```r
Sim <- generateSim(10^4)
m1 <- SVMFit(Sim$YMAT)
```
Index

generateSim, 2
Hinge, 2
Logistic, 3
SquareHinge, 4
SSOSVM, 5
SSOSVM-package (SSOSVM), 5
SVMFit, 5