Package ‘SWMPrExtension’

May 4, 2020

Type Package
Title Functions for Analyzing and Plotting Estuary Monitoring Data
Version 1.1.4
Maintainer Dave Eslinger <dave.eslinger@noaa.gov>
Description Tools for performing routine analysis and plotting tasks with environmental data from the System Wide Monitoring Program of the National Estuarine Research Reserve System <http://cdmo.baruch.sc.edu/>. This package builds on the functionality of the SWMPr package <https://cran.r-project.org/package=SWMPr>, which is used to retrieve and organize the data. The combined set of tools address common challenges associated with continuous time series data for environmental decision making, and are intended for use in annual reporting activities. References:

BugReports https://github.com/NOAA-OCM/SWMPrExtension/issues
License CC0
Encoding UTF-8
LazyData true
Depends R (>= 3.5.0), SWMPr
Imports broom, dplyr, EnvStats, flextable, ggplot2, ggthemes, grDevices, leaflet, lubridate, magrittr, mapprotools, methods, officer, tidyr, scales, RColorBrewer, rgdal, rgeos, rlang, sp

RoxygenNote 7.1.0
NeedsCompilation no
Author Julie Padilla [aut, ctb],
Marcus Beck [ctb],
Kimberly Cressman [ctb],
R topics documented:

annual_range ... 3
assign_season .. 5
cbm_spatial .. 6
create_sk_flextable_list ... 7
create_sk_national_ft_reserves ... 8
create_sk_national_ft_results ... 9
elknmnut ... 10
generate_results_table .. 13
generate_station_table .. 14
get_reserve ... 15
generate_results_table .. 13
get_shp_name ... 16
get_sites .. 16
get_site_code ... 17
get_site_coordinates .. 18
historical_daily_range .. 18
historical_range ... 20
import_local_nut ... 22
lm_p_labs ... 24
load_shp_file .. 25
national_sk_map ... 25
raw_boxplot ... 27
remove_inf_and_nan .. 28
reserve_locs ... 29
res_custom_map .. 29
res_custom_sk_map ... 31
res_local_map .. 33
res_national_map .. 34
res_sk_map ... 36
seasonal_barplot .. 38
seasonal_boxplot .. 38
seasonal_dot ... 40
set_date_breaks ... 45
sk_seasonal .. 46
sk_tidy ... 48
annual_range

Description
Assess variability within each season for a single year

Usage

```r
annual_range(swmp_in, ...)
```

S3 method for class 'swmp'

```r
annual_range(
  swmp_in,
  param = NULL,
  target_yr = NULL,
  criteria = NULL,
  free_y = FALSE,
  log_trans = FALSE,
  converted = FALSE,
  criteria_lab = "WQ Threshold",
  plot_title = FALSE,
  plot = TRUE,
  ...
)
```

Arguments

- `swmp_in` input swmp object
- `...` additional arguments passed to other methods. See `assign_season`
- `param` chr string of variable to plot
- `target_yr` numeric, the target year that should be compared against the historic range. If target year is not specified then the dot will not be plotted.
- `criteria` numeric, a numeric criteria that will be plotted as a horizontal line
annual_range

free_y .logical, should the y-axis be free? Defaults to FALSE. If FALSE, defaults to zero, unless negative values are present. If TRUE, y-axis limits are selected by ggplot

log_trans.logical, should y-axis be log? Defaults to FALSE

converted.logical, were the units converted from the original units used by CDMO? Defaults to FALSE. See y_labeler for details.

criteria_lab.chr, label for the threshold criteria defined in criteria. Defaults to "WQ Threshold"

plot_title.logical, should the station name be included as the plot title? Defaults to FALSE

plot.logical, should a plot be returned? Defaults to TRUE

Details

This function summarizes average daily values, average daily minimums/maximums, and absolute minimums/maximums across user-defined seasons for a target year (target_yr).

The user also has the option to add a threshold hold line using the criteria argument. Typically, this value is a water quality threshold, which is why criteria_lab defaults to 'WQ Threshold'. However, the user has the option to specify any other type of threshold they wish. when doing so, the value for criteria_lab should be changed accordingly.

Value

Returns a ggplot object

Author(s)

Julie Padilla

See Also

ggplot, assign_season, y_labeler

Examples

```r
## get data, prep
data(elksmwq)
dat <- elkswmq

dat <- qaqc(elksmwq, qaqc_keep = c('0', '3', '5'))
do_plt <- annual_range(dat, param = 'do_mgl', target_yr = 2012)
do_plt <- annual_range(dat, param = 'do_mgl', target_yr = 2012, criteria = 2)
```
assign_season

Assign seasons to SWMP sampling data

Description
Assign seasons to SWMP sampling data on a monthly basis or user-defined seasonal basis

Usage
assign_season(
 data,
 season_grps = NULL,
 season_names = NULL,
 season_start = NULL,
 abb = TRUE
)

Arguments
- data: a vector of POSIXct dates
- season_grps: A list of seasons. Months (1-12) are assigned to different groups based on user preference. Defaults to 12 months, starting with January. Must assign a minimum of two seasons
- season_names: A string vector of season names. The number of season names must match the length of the season list. A minimum of two seasons must be assigned (e.g., 'Wet', 'Dry'). Defaults to 12 months, starting with January. The number of season names must match the number of seasons
- season_start: defaults to 12 months, starting with January
- abb: logical, should abbreviations for month names be used? Defaults to TRUE

Details
A helper function used by multiple data analyses to assign seasons to sampling data and to order the seasons. To assist with plotting, the seasons are assigned as factors. Seasons are assigned by first grouping the months into a list of season_grps and then specifying one name for each grouping using season_names. If season_grps is specified then season_names must also be defined. If neither argument is specified than the season assignments will default to monthly values. Using the season_start argument, the user can designate which season should be the first factor level. This assignment affects plot order for most functions. If season_start is not specified, then it will default to the first season in the list (January for monthly seasons and the first season in season_names for user-defined seasons).

Value
Returns a vector of ordered season factors.
cbm_spatial

Spatial Data from Chesapeake Bay - Maryland

Description
Shapefile for Chesapeake Bay - Maryland reserve boundary

Usage
data(cbm_spatial)

Format
A SpatialPolygons object
create_sk_flextable_list

Source

CDMO

References

create_sk_flextable_list

Create a List of Flextable Objects

Description

Create a list of flextable objects to display Seasonal Kendall results in the NERRS reserve level template

Usage

create_sk_flextable_list(
 sk_result,
 stations,
 param,
 trend_col = c("#247BA0", "#A3DFFF", "#D9D9D9", "white"),
 font_col_default = "#444E65",
 font_sz_stn = 6,
 font_sz_result = 12,
 font_sz_head = 6,
 ht_head = 0.28,
 ht_body = 0.202,
 is_swmp = TRUE,
 stn_name = NULL,
 stn_abbrev = NULL,
 par_name = NULL
)

Arguments

sk_result a data.frame of reformatted results from sk_seasonal
stations chr, vector of stations to be displayed
param chr, vector of parameters to be displayed
trend_col chr, a four element vector that specifies colors for increasing, decreasing, no change, and insufficient data trends
font_col_default chr, default color to be used for trend table
Parameters

- **font_sz_stn**: int, specify the font size of displayed station names.
- **font_sz_result**: int, specify the font size of the displayed results.
- **font_sz_head**: int, specify the font size of the table header row.
- **ht_head**: num, specify the cell height of the table body rows. Units for this parameter are inches.
- **ht_body**: num, specify the cell height of the table header row. Units for this parameter are inches.
- **is_swmp**: logical, are the station names and parameter names consistent with SWMP station and parameter names? If either of these conditions is false then this parameter should be set to FALSE and then the user should define stn_name, stn_abbrev, and par_name. Default is TRUE.
- **stn_name**: chr, a list of full station names that the user would like to add to the trend table (e.g., "Cat Point").
- **stn_abbrev**: chr, a list of station abbreviations that the user would like to add to the trend table (e.g., "CP" as an abbreviation for Cat Point).
- **par_name**: chr, a list of parameter names to be used if the names do not match standard CDMO parameters.

Details

This function is intended for internal use with the NERRS reserve level reporting scripts. Using the results from the reserve level trend analysis, create_sk_flextable_list creates a list of two flextable objects to be displayed in the NERRS reserve level template. The first flextable in the list contains the two-letter station IDs for each station and the full location name of each station. The second table lists the seasonal kendall results and the names of the parameters of interest.

Value

Returns a list of flextable objects.

Author(s)

Julie Padilla

create_sk_national_ft_reserves

Create a Flextable Object of Reserve Names

Description

Create a flextable of reserve names for use with the NERRS national level template.
create_sk_national_ft_reserves

Usage

create_sk_national_ft_reserves(
 sk_result,
 font_sz_stn = 8,
 font_sz_head = 8,
 ht_head = 0.75,
 ht_body = 0.2
)

Arguments

sk_result a data.frame of reformatted results from sk_seasonal
font_sz_stn int, specify the font size of displayed station names
font_sz_head int, specify the font size of the table header row
ht_head num, specify the cell height of the table body rows. Units for this parameter are
 in inches.
ht_body num, specify the cell height of the table header row. Units for this parameter are
 in inches.

Details

This function is intended for internal use with the NERRS national level reporting scripts. Using
results from the reserve level trend analyses, create_sk_national_ft_reserves creates a
flextable object of reserve names for display in the NERRS national level template.

Value

Returns a flextable object

Author(s)

Julie Padilla
Usage

create_sk_national_ft_results(
 sk_result,
 param,
 font_sz_result = 12,
 font_sz_head = 8,
 ht_head = 0.375,
 ht_body = 0.2
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sk_result</td>
<td>a data.frame of reformatted results generated by national Level template scripts from reserve level handoff files</td>
</tr>
<tr>
<td>param</td>
<td>chr, the name of the parameter that corresponds to the seasonal kendall results in sk_result</td>
</tr>
<tr>
<td>font_sz_result</td>
<td>int, specify the font size of the displayed results</td>
</tr>
<tr>
<td>font_sz_head</td>
<td>int, specify the font size of the table header row</td>
</tr>
<tr>
<td>ht_head</td>
<td>num, specify the cell height of the table body rows. Units for this parameter are in inches.</td>
</tr>
<tr>
<td>ht_body</td>
<td>num, specify the cell height of the table header row. Units for this parameter are in inches.</td>
</tr>
</tbody>
</table>

Details

This function is intended for internal use with the NERRS national level reporting scripts. Using results from the reserve level trend analyses, create_sk_national_ft_results creates a flextable object of seasonal kendall results to be displayed in the NERRS national level template.

Value

Returns a flextable object

Author(s)

Julie Padilla

elknmnut

Nutrient Data from Elkhorn Slough - North Marsh Station

Description

Monthly nutrient data from Elkhorn Slough North Marsh station
Usage

data(elknmmut)

Format

A data.frame object

Source

CDMO

References

elksmwq Water Quality Data from Elkhorn Slough - South Marsh Station

Description

Water Quality data from Elkhorn Slough South Marsh station

Usage

data(elksmwq)

Format

A data.frame object

Source

CDMO

References

elk_spatial

Spatial Data from Elkhorn Slough

Description

Shapefile for Elkhorn Slough reserve boundary

Usage

data(elk_spatial)

Format

A `SpatialPolygons` object

Source

CDMO

References

ft_col_names

Convert Parameter Abbreviations

Description

Convert SWMP parameter abbreviations into formats appropriate for use with NERRS reserve level template `flextable`

Usage

`ft_col_names(param)`

Arguments

- `param` chr, vector of parameter abbreviations

Details

A helper function used internally by `create_sk_flextable_list` to label `flextable` columns in the trend table for the reserve level report.
generate_results_table

Filter Reformatted Seasonal Kendall Results

Description

Filters a dataframe of user-specified results for display in the NERRS reserve level report.

Usage

```r
generate_results_table(sk_result, stations, param)
```

Arguments

- `sk_result`: a dataframe of reformatted seasonal kendall results from `sk_seasonal`.
- `stations`: chr, vector of station names included in `sk_result` that will be displayed in the NERRS reserve level report.
- `param`: chr, vector of parameters included in `sk_result` that will be displayed in the NERRS reserve level report.

Details

A helper function used internally by `create_sk_flextable_list` to create a dataframe of user-specified parameters to be displayed in the reserve level report.

Value

Returns a dataframe of user-specified results to be displayed.

Author(s)

Julie Padilla
generate_station_table

Filter Reformatted Seasonal Kendall Results

Description
Filters a dataframe of user-specified results for display in the NERRS reserve level report

Usage
generate_station_table(sk_result, stations)

Arguments
- sk_result: a data.frame of reformatted seasonal kendall results from sk_seasonal.
- stations: chr, vector of stations listed in sk_result that should be displayed in the NERRS reserve level report

Details
Used internally by create_sk_flextable_list to create a data.frame of user specified parameters to be displayed

Value
Returns a data.frame of user-specified results to be displayed

Author(s)
Julie Padilla

geographic_unique_stations

Return a vector of geographically unique NERR Stations

Description
Creates an alphabetically sorted, vector of geographically unique stations for mapping

Usage
geographic_unique_stations(nerr_site_id)

Arguments
- nerr_site_id: chr vector of valid NERR stations
get_reserve

Details
This function is intended for internal use with the NERRS reserve level reporting scripts and is used along with `res_local_map`. It takes a vector of NERR site ids and only returns geographically unique locations.

Value
returns a vector of NERR stations

Author(s)
Julie Padilla

Examples
```r
stns <- c("apacpnut", "apacpwq", "apadbnut", "apadbwq", "apaebmet", "apaebnut", "apaebwq", "apaesnut", "apaeswq")
geographic_unique_stations(stns)
```

get_reserve
Identify NERRS reserve from metadata

Description
Identify the NERRS reserve from metadata in the data file

Usage
```r
get_reserve(data.file)
```

Arguments
- `data.file` location of data

Details
This function is intended for internal use with the NERRS reserve level reporting scripts. It determines the name of the full name of the NERRS reserve associated with the data in the user-specified data folder.

Value
Returns a character string of the full reserve name

Author(s)
Julie Padilla
get_shp_name
Identify shapefile for NERRS reserve

Description
Identify the shapefile name associated with the reserve in the data file.

Usage
```r
get_shp_name(gis.file.loc)
```

Arguments
- `gis.file.loc` path to gis file location

Details
This function is intended for internal use with the NERRS reserve level reporting scripts. It identifies the name of the shapefile associated with the NERRS reserve.

Value
Returns a character string of the shapefile for the reserve boundary

Author(s)
Julie Padilla

get_sites
Identify NERRS reserve stations from metadata

Description
Identify the NERRS reserve sampling stations based on the metadata in the data file.

Usage
```r
get_sites(
  data.file,
  type = c("wq", "nut", "met"),
  active = TRUE,
  primary = TRUE
)
```
get_site_code

Arguments

- data.file: location of data
- type: chr string of data station type ('wq', 'nut', or 'met')
- active: logical. Should inactive stations be excluded? Defaults to TRUE
- primary: logical. Should non-primary stations be excluded? Defaults to TRUE

Details

This function is intended for internal use with the NERRS reserve level reporting scripts. It returns the sampling stations associated with the data in the user-specified data folder.

Value

Returns a character vector of reserve stations

Author(s)

Julie Padilla

get_site_code
Return NERRS reserve site code based on data in the data file

Description

Identify the 3-letter NERRS reserve code from metadata in the data file

Usage

get_site_code(data.file)

Arguments

- data.file: data source location

Details

This function is intended for internal use with the NERRS reserve level reporting scripts. It returns the 3-letter reserve code associated with the data in the user-specified data folder.

Value

Returns 3-letter, reserve site code as chr

Author(s)

Julie Padilla
get_site_coordinates Identify NERRS sampling locations from metadata

Description

Identify the latitude/longitude for sampling stations based on the metadata in the data file

Usage

get_site_coordinates(data.file, active = TRUE)

Arguments

data.file location of data
active logical. Only return active stations?

Details

This function is intended for internal use with the NERRS reserve level reporting scripts. It returns the names, station codes, and coordinates associated with the data in the user-specified data folder.

Value

Returns a dataframe of station ids, station names, lat/long

Author(s)

Julie Padilla

historical_daily_range

Historical Daily Range Timeseries

Description

Compare daily averages for a target year to historical highs and lows
Usage

```r
historical_daily_range(swmpr_in, ...)  
## S3 method for class 'swmpr'
historical_daily_range(
    swmpr_in,
    param = NULL,
    hist_rng = NULL,
    target_yr = NULL,
    criteria = NULL,
    free_y = FALSE,
    log_trans = FALSE,
    converted = FALSE,
    criteria_lab = "WQ Threshold",
    plot_title = FALSE,
    plot = TRUE,
    ...
)
```

Arguments

- `swmpr_in`: input swmpr object
- `...`: not used
- `param`: chr string of variable to plot
- `hist_rng`: numeric vector, if historic range is not specified then the min/max values of the data set will be used.
- `target_yr`: numeric, the target year that should be compared against the historic range. If target year is not specified then dot will not be plotted
- `criteria`: numeric, a numeric criteria that will be plotted as a horizontal line
- `free_y`: logical, should the y-axis be free? Defaults to FALSE. If FALSE, defaults to zero, unless negative values are present. If TRUE, y-axis limits are selected by ggplot
- `log_trans`: logical, should y-axis be log? Defaults to FALSE
- `converted`: logical, were the units converted from the original units used by CDMO? Defaults to FALSE. See `y_labeler` for details.
- `criteria_lab`: chr, label for the threshold criteria defined in `criteria`. Defaults to "WQ Threshold"
- `plot_title`: logical, should the station name be included as the plot title? Defaults to FALSE
- `plot`: logical, should a plot be returned? Defaults to TRUE

Details

This function compares the average daily minimums/maximums and absolute daily minimums/maximums from a historical range to the average daily value from a target year. If `hist_rng` is not specified then the minimum and maximum years within the data set will be used. If `target_yr` is not specified then only the results for the `hist_rng` will be returned.
The user also has the option to add a threshold line using the criteria argument. Typically, this value is a water quality threshold, which is why criteria_lab defaults to 'WQ Threshold'. However, the user has the option to specify any other type of threshold they wish. when doing so, the value for criteria_lab should be changed accordingly.

Value

Returns a ggplot object

Author(s)

Julie Padilla, Kimberly Cressman

See Also

ggplot, y_labeler

Examples

data(apacpwq)
dat <- apacpwq
dat <- qaqc(apacpwq, qaqc_keep = c('0', '3', '5'))
with criteria
y <- historical_daily_range(dat, param = 'do_mgl', target_yr = 2013, criteria = 2)
w/o criteria
x <- historical_daily_range(dat, param = 'do_mgl', target_yr = 2013)
add a y label
x <- x + labs(x = NULL, y = "Dissolved Oxygen (mg/L)")

historical_range

historical_range
Historical Monthly/Seasonal Range Timeseries

Description

Compare seasonal averages/minimums-maximums for a target year to historical seasonal averages/minimums-maximums
Usage

```r
historical_range(swmpr_in, ...) # S3 method for class 'swmpr'
historical_range(
  swmpr_in,
  param = NULL,
  hist_rng = NULL,
  target_yr = NULL,
  criteria = NULL,
  free_y = FALSE,
  log_trans = FALSE,
  converted = FALSE,
  criteria_lab = "WQ Threshold",
  plot_title = FALSE,
  plot = TRUE,
  ...
)
```

Arguments

- `swmpr_in`: input swmpr object
- `...`: additional arguments passed to other methods. See `assign_season`
- `param`: chr string of variable to plot
- `hist_rng`: numeric vector, if historic range is not specified then the min/max values of the data set will be used.
- `target_yr`: numeric, the target year that should be compared against the historic range. If target year is not specified then dot will not be plotted
- `criteria`: numeric, a numeric criteria that will be plotted as a horizontal line
- `free_y`: logical, should the y-axis be free? Defaults to FALSE. If FALSE, defaults to zero, unless negative values are present. If TRUE, y-axis limits are selected by ggplot
- `log_trans`: logical, should y-axis be log? Defaults to FALSE
- `converted`: logical, were the units converted from the original units used by CDMO? Defaults to FALSE. See `y_labeler` for details.
- `criteria_lab`: chr, label for the threshold criteria defined in `criteria`. Defaults to "WQ Threshold"
- `plot_title`: logical, should the station name be included as the plot title? Defaults to FALSE
- `plot`: logical, should a plot be returned? Defaults to TRUE

Details

This function summarizes average daily values and average daily minimums/maximums across user-defined seasons for a target year (`target_yr`) and for a historical range (`hist_rng`). If `hist_rng` is not specified then the minimum and maximum years within the data set will be used. If `target_yr` is not specified then only the results for the `hist_rng` will be returned.
The user also has the option to add a threshold hold line using the `criteria` argument. Typically, this value is a water quality threshold, which is why `criteria_lab` defaults to 'WQ Threshold'. However, the user has the option to specify any other type of threshold they wish. When doing so, the value for `criteria_lab` should be changed accordingly.

Value

Returns a `ggplot` object

Author(s)

Julie Padilla, Kimberly Cressman

See Also

`ggplot`, `assign_season`, `y_labeler`

Examples

data(elksmwq)

```r
dat <- qaqc(elksmwq, qaqc_keep = c('0', '3', '5'))
# with criteria
y <- historical_range(dat, param = 'do_mgl', target_yr = 2013, criteria = 2)
# w/o criteria
x <- historical_range(dat, param = 'do_mgl', target_yr = 2013)

# add a y label
x <- x + labs(x = NULL, y = "Dissolved Oxygen (mg/L)")
```

import_local_nut

Import local CDMO data

Description

Import local data that were obtained from the CDMO through the zip downloads feature

Usage

```r
import_local_nut(path, station_code, collMethd = c(1, 2), trace = FALSE)
```
import_local_nut

Arguments

- **path**: chr string of full path to .csv files with raw data, can be a zipped or unzipped directory where the former must include the .zip extension.
- **station_code**: chr string of station to import, typically 7 or 8 characters including wq, nut, or met extensions, may include full name with year, excluding file extension.
- **collMethd**: chr string of nutrient data to subset. 1 indicates monthly, 2 indicates diel. Default is both diel and monthly data.
- **trace**: logical indicating if progress is sent to console, default FALSE.

Details

The function is designed to import local data that were downloaded from the CDMO outside of R. This approach works best for larger data requests, specifically those from the zip downloads feature in the advanced query section of the CDMO. The function may also work using data from the data export system, but this feature has not been extensively tested. The downloaded data will be in a compressed folder that includes multiple .csv files by year for a given data type (e.g., apacpwq2002.csv, apacpwq2003.csv, apacpnut2002.csv, etc.). The import_local function can be used to import files directly from the compressed folder or after the folder is decompressed. In the former case, the requested files are extracted to a temporary directory and then deleted after they are loaded into the current session. An example dataset is available online to illustrate the format of the data provided through the zip downloads feature. See the link below to access these data. All example datasets included with the package were derived from these raw data.

Occasionally, duplicate time stamps are present in the raw data. The function handles duplicate entries differently depending on the data type (water quality, weather, or nutrients). For water quality and nutrient data, duplicate time stamps are simply removed. Note that nutrient data often contain replicate samples with similar but not duplicated time stamps within a few minutes of each other. Replicates with unique time stamps are not removed but can be further processed using rem_reps. Weather data prior to 2007 may contain duplicate time stamps at frequencies for 60 (hourly) and 144 (daily) averages, in addition to 15 minute frequencies. Duplicate values that correspond to the smallest value in the frequency column (15 minutes) are retained.

This function differs from import_local in that it allows for special handling of nutrient data. Using this function, the user can separate diel sampling data from low-tide sampling data using the collMethd argument.

Zip download request through CDMO: http://cdmo.baruch.sc.edu/aqs/zips.cfm

Example dataset: https://s3.amazonaws.com/swmpexdata/zip_ex.zip

Value

Returns a swmpr object with all parameters and QAQC columns for the station. The full date range in the raw data are also imported.

Author(s)

Marcus Beck, Julie Padilla (additional of codecollMethd argument) maintainer: Julie Padilla
See Also

all_params, all_params_dtrng, rem_reps, single_param

lm_p_labs

P-Value labels for Plotting

Description

Generate a dataframe of p-value labels based on p-values from linear regression

Usage

```r
lm_p_labs(dat_in)
```

Arguments

- `dat_in`: data.frame with year, season, min, mean, max columns

Details

A helper function that returns a data.frame of p-value labels for use with the `seasonal_dot`. P-values are taken from linear regression `lm`.

Value

Returns data.frame for use with `seasonal_dot`

Author(s)

Julie Padilla

See Also

- `lm`
load_shp_file

Load and format shapefile for reserve level map

Description

Load and format shapefile for use with res_local_map

Usage

load_shp_file(path, dissolve_boundaries = TRUE)

Arguments

path path to shapefile and name
dissolve_boundaries logical, should reserve boundaries be dissolved? Defaults to TRUE

Details

This function is intended for internal use with the NERRS reserve level reporting scripts. It loads a NERRS boundary shp file and dissolves unnecessary reserve boundaries. The resulting sp object is then used with res_sk_map and res_local_map

Value

Returns a sp object

Author(s)

Julie Padilla

national_sk_map

Reserve National Map with Seasonal Kendall Results

Description

Create a base map for NERRS reserves in ggplot with seasonal kendall results

Usage

national_sk_map(
 incl = c("contig", "AK", "HI", "PR"),
 highlight_states = NULL,
 sk_reserves = NULL,
 sk_results = NULL,
 sk_fill_colors = c("#247BA0", "#A3DFFF", "#444E65", "#595959"),
 agg_county = TRUE
)
Arguments

incl chr vector to include AK, HI, and PR (case sensitive)
highlight_states chr vector of state FIPS codes
sk_reserves chr vector of 3 letter reserve codes that have seasonal kendall results
sk_results chr vector of seasonal kendall results. Results can be 'inc', 'dec', 'insig', or 'insuff' which stand for 'increasing trend', 'decreasing trend', 'statistically insignificant trend', or 'insufficient data to detect trend'
sk_fill_colors chr vector of colors used to fill seasonal kendall result markers
agg_county logical, should counties be aggregated to the state-level? Defaults to TRUE

Details

Create a base map of the US with options for including AK, HI, and PR. The user can choose which states and NERRS reserves to highlight. This function was developed, in part, from a blog post by Bob Rudis.

To ensure the proper plotting of results, the order of the results vector for sk_results should match the order of the reserves vector for sk_reserves.

Value

Returns a ggplot object

Author(s)

Bob Rudis, Julie Padilla

Maintainer: Julie Padilla

References

Examples

```r
# National map highlighting west coast states and NERRS (including AK)
nerr_states_west <- c('02', '06', '41', '53')
nerrs_codes <- c('pdb', 'sos', 'sfb', 'elk', 'tjr', 'kac')
nerrs_sk_results <- c('inc', 'inc', 'dec', 'insig', 'insuff', 'dec')
national_sk_map(sk_reserve = errs_codes, sk_results = errs_sk_results)
```
Description

Boxplots of raw data by user-defined season for a target year

Usage

raw_boxplot(swmp_in, ...)
S3 method for class 'swmp'
raw_boxplot(
 swmp_in,
 param = NULL,
 target_yr = NULL,
 criteria = NULL,
 free_y = FALSE,
 log_trans = FALSE,
 converted = FALSE,
 plot_title = FALSE,
 ...
)

Arguments

swmp_in input swmp object
... additional arguments passed to other methods. See assign_season and y_labeler.
param chr string of variable to plot
target_yr numeric, if target year is not specified then all data in the data frame will be used.
criteria numeric, a numeric criteria that will be plotted as a horizontal line
free_y logical, should the y-axis be free? Defaults to FALSE. If FALSE, defaults to zero, unless negative values are present. If TRUE, y-axis limits are selected by ggplot
log_trans logical, should y-axis be log? Defaults to FALSE
converted logical, were the units converted from the original units used by CDMO? Defaults to FALSE. See y_labeler for details.
plot_title logical, should the station name be included as the plot title? Defaults to FALSE

Details

This function produces boxplots of raw, unaggregated data by user-specified season for year of interest
remove_inf_and_nan

Value

A `ggplot` object

Author(s)

Julie Padilla

See Also

`ggplot`, `assign_season`, `y_labeler`

Examples

```r
## get data, prep
data(elksmwq)
dat <- elksmwq

dat <- qaqc(elksmwq, qaqc_keep = c('0', '3', '5'))
raw_boxplot(dat, param = 'do_mgl')
```

remove_inf_and_nan

Description

Replace Inf, -Inf, and NaN in a matrix with NA

Usage

`remove_inf_and_nan(x)`

Arguments

- `x` input matrix

Details

This function replaces Inf, -Inf, and NaN in a matrix with NA. It is used internally by several functions.

Value

Returns a matrix object
reserve_locs

Author(s)
Julie Padilla

reserve_locs
NERRS Sampling Location Data Frame

Description
Create a data.frame of selected NERRS locations for plotting with *res_national_map*

Usage
```
reserve_locs(incl = c("contig", "AK", "HI", "PR"), subset_reserve = NULL)
```

Arguments
- `incl`
 Str vector to include AK, HI, and PR
- `subset_reserve`
 chr string of 3 letter reserve IDs to include as data points. To include He’eia use the reserve code ‘HEA’.

Details
A helper function used to generate a `data.frame` of selected reserve locations for use with *res_national_map*.

Value
Returns a `data.frame` for internal use with *res_national_map*

Author(s)
Julie Padilla

res_custom_map

Description
Create a stylized reserve-level map of custom station locations for use with the reserve level reporting template
Usage

res_custom_map(
 stations,
 x_loc,
 y_loc,
 bbox,
 shp,
 station_labs = TRUE,
 station_col = NULL,
 lab_loc = NULL,
 scale_pos = "bottomleft"
)

Arguments

stations chr string of the reserve stations to include in the map
x_loc num vector of x coordinates for stations
y_loc num vector of y coordinates for stations
bbox a bounding box associated with the reserve. Must be in the format of c(X1, Y1, X2, Y2)
shp SpatialPolygons object
station_labs logical, should stations be labeled? Defaults to TRUE
station_col chr vector of colors used to color station points. Defaults to 'black'.
lab_loc chr vector of 'R' and 'L', one letter for each station. if no lab_loc is specified then labels will default to the left.
scale_pos scale_pos where should the scale be placed? Options are 'topleft', 'topright', 'bottomleft', or 'bottomright'. Defaults to 'bottomleft'

Details

Creates a stylized, reserve-level base map. The user can specify the reserve and stations to plot. The user can also specify a bounding box. For multi-component reserves, the user should specify a bounding box that highlights the component of interest.

This function does not automatically detect conflicts between station labels. The lab_loc argument allows the user to specify "R" or "L" for each station to prevent labels from conflicting with each other.

This function is intended to be used with mapview::mapshot to generate a png for the reserve-level report.

Value

Returns a leaflet object

Author(s)

Julie Padilla
Examples

```r
### set plotting parameters
stns <- c('custom stn 1', 'custom stn 2')
x_coords <- c(-121.735281, -121.750369)
y_coords <- c(36.850377, 36.806667)
shp_fl <- elk_spatial
bounding_elk <- c(-121.810978, 36.868218, -121.708667, 36.764050)
lab_dir <- c('L', 'R')
pos <- 'bottomleft'

### plot
res_custom_map(stations = stns, x_loc = x_coords, y_loc = y_coords,
bbox = bounding_elk, lab_loc = lab_dir, scale_pos = pos, shp = shp_fl)

res_custom_map(stations = stns, x_loc = x_coords, y_loc = y_coords,
bbox = bounding_elk, lab_loc = lab_dir, scale_pos = pos,
shp = shp_fl, station_col = c('red', 'green'))
```

res_custom_sk_map

Local Reserve Map With Seasonal Kendall Results for Custom Stations

Description

Create a stylized reserve-level map of seasonal kendall results from custom station locations for use with the reserve level reporting template.

Usage

```r
res_custom_sk_map(stations = stations, x_loc = x_coords, y_loc = y_coords,
bbox = bbox, shp = shp, station_labs = station_labs, lab_loc = lab_loc,
scale_pos = scale_pos)
```

Arguments

- **stations**: chr string of the reserve stations to include in the map
- **x_loc**: num vector of x coordinates for stations
- **y_loc**: num vector of y coordinates for stations
```
res_custom_sk_map

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sk_result</td>
<td>vector of values denoting direction and significance of seasonal kendall results. Result should be c('inc', 'dec', 'insig') for sig. negative, no sig. results, and sig. positive result</td>
</tr>
<tr>
<td>bbox</td>
<td>a bounding box associated with the reserve. Must be in the format of c(X1, Y1, X2, Y2)</td>
</tr>
<tr>
<td>shp</td>
<td>SpatialPolygons object</td>
</tr>
<tr>
<td>station_labs</td>
<td>logical, should stations be labeled? Defaults to TRUE</td>
</tr>
<tr>
<td>lab_loc</td>
<td>chr vector of 'R' and 'L', one letter for each station. if no lab_loc is specified then labels will default to the left.</td>
</tr>
<tr>
<td>scale_pos</td>
<td>scale_pos where should the scale be placed? Options are 'topleft', 'topright', 'bottomleft', or 'bottomright'. Defaults to 'bottomleft'</td>
</tr>
</tbody>
</table>

Details

Creates a stylized, reserve-level base map for displaying seasonal kendall results from sk_seasonal. The user can specify the reserve and stations to plot. The user can also specify a bounding box. For multi-component reserves, the user should specify a bounding box that highlights the component of interest.

To display seasonal trends, the user must specify c('inc', 'dec', 'insig') for each station listed in the stations argument.

Value

returns a leaflet object. This function is intended to be used with mapshot to generate a png for the reserve level report

Author(s)

Julie Padilla

Examples

```r
set plotting parameters
stns <- c('custom stn 1', 'custom stn 2')
x_coords <- c(-121.735281, -121.750369)
y_coords <- c(36.850377, 36.806667)
shp_fl <- elk_spatial
bounding_elk <- c(-121.810978, 36.868218, -121.708667, 36.764050)
lab_dir <- c('R', 'L')
trnds <- c('inc', 'dec')
pos <- 'bottomleft'

plot
res_custom_sk_map(stations = stns, x_loc = x_coords, sk_result = trnds, y_loc = y_coords, bbox = bounding_elk, lab_loc = lab_dir, scale_pos = pos, shp = shp_fl)
```
**res_local_map**

**Local Reserve Map**

**Description**
Create a stylized reserve-level map for use with the reserve level reporting template.

**Usage**

```
res_local_map(
 nerr_site_id,
 stations,
 bbox,
 shp,
 station_labs = TRUE,
 lab_loc = NULL,
 scale_pos = "bottomleft"
)
```

**Arguments**

- `nerr_site_id` chr string of the reserve to make, first three characters used by NERRS
- `stations` chr string of the reserve stations to include in the map
- `bbox` a bounding box associated with the reserve. Must be in the format of c(X1, Y1, X2, Y2)
- `shp` SpatialPolygons object
- `station_labs` logical, should stations be labeled? Defaults to TRUE
- `lab_loc` chr vector of 'R' and 'L', one letter for each station. if no lab_loc is specified then labels will default to the left.
- `scale_pos` scale_pos where should the scale be placed? Options are 'topleft', 'topright', 'bottomleft', or 'bottomright'. Defaults to 'bottomleft'

**Details**

Creates a stylized, reserve-level base map. The user can specify the reserve and stations to plot. The user can also specify a bounding box. For multi-component reserves, the user should specify a bounding box that highlights the component of interest.

This function does not automatically detect conflicts between station labels. The lab_loc argument allows the user to specify "R" or "L" for each station to prevent labels from conflicting with each other.

This function is intended to be used with mapview::mapshot to generate a png for the reserve-level report.

**Value**

returns a leaflet object
Examples

## a compact reserve
### set plotting parameters
stations <- sampling_stations[(sampling_stations$NERR.Site.ID == 'elk' & sampling_stations$Status == 'Active'), ][Station.Code
to_match <- c('wq', 'met')
stns <- stations[grep(paste(to_match, collapse = '|'), stations)]
shp_fl <- elk_spatial
bounding_elk <- c(-121.810978, 36.868218, -121.708667, 36.764050)
lab_dir <- c('L', 'R', 'L', 'L')
labs <- c('ap', 'cw', 'nm', 'sm', 'vm')
pos <- 'bottomleft'

### plot
res_local_map('elk', stations = stns, bbox = bounding_elk,
lab_loc = lab_dir, scale_pos = pos, shp = shp_fl)

## a multicomponent reserve (show two different bounding boxes)
### set plotting parameters
stations <- sampling_stations[(sampling_stations$NERR.Site.ID == 'cbm' & sampling_stations$Status == 'Active'), ][Station.Code
to_match <- c('wq', 'met')
stns <- stations[grep(paste(to_match, collapse = '|'), stations)]
shp_fl <- cbm_spatial
bounding_cbm_1 <- c(-77.393, 39.741, -75.553, 38.277)
bounding_cbm_2 <- c(-76.862006, 38.811571, -76.596508, 38.642454)
lab_dir <- c('L', 'R', 'L', 'L')
labs <- c('ap', 'cw', 'nm', 'sm', 'vm')
pos <- 'bottomleft'

### plot
res_local_map('cbm', stations = stns, bbox = bounding_cbm_1,
lab_loc = lab_dir, scale_pos = pos, shp = shp_fl)
res_local_map('cbm', stations = stns, bbox = bounding_cbm_2,
lab_loc = lab_dir, scale_pos = pos, shp = shp_fl)

res_national_map
Reserve National Map
res_national_map

Description

Create a base map for NERRS reserves in ggplot

Usage

res_national_map(
  incl = c("contig", "AK", "HI", "PR"),
  highlight_states = NULL,
  highlight_reserves = NULL,
  agg_county = TRUE
)

Arguments

incl  chr vector to include AK, HI, and PR (case sensitive)
highlight_states  chr vector of state FIPS codes
highlight_reserves  chr vector of 3 letter reserve codes
agg_county  logical, should counties be aggregated to the state-level? Defaults to TRUE

Details

Create a base map of the US with options for including AK, HI, and PR. The user can choose which states and NERRS reserves to highlight. This function was developed, in part, from a blog post by Bob Rudis.

Value

Returns a ggplot object

Author(s)

Bob Rudis, Julie Padilla Maintainer: Julie Padilla

References


Examples

```r
National map highlighting states with NERRS
res_national_map(highlight_states = nerr_states)
```
res_national_map()

nerr_states_west <- c('02', '06', '41', '53')
nerrs_codes <- c('pdb', 'sos', 'sfb', 'elk', 'tjr', 'kac')

res_national_map(highlight_states = nerr_states_west, highlight_reserve = nerrs_codes)

res_sk_map Local Reserve Map With Seasonal Kendall Results

Description

Create a stylized reserve-level map of seasonal kendall results for use with the reserve level reporting template

Usage

res_sk_map(
  nerr_site_id,
  stations,
  sk_result = NULL,
  bbox,
  shp,
  station_labs = TRUE,
  lab_loc = NULL,
  scale_pos = "bottomleft"
)

Arguments

nerr_site_id chr string of the reserve to make, first three characters used by NERRS
stations chr string of the reserve stations to include in the map
sk_result vector of values denoting direction and significance of seasonal kendall results. Result should be c('inc', 'dec', 'insig', 'insuff') for significant positive, significant negative, no significant results, and insufficient data to calculate result.
bbox a bounding box associated with the reserve. Must be in the format of c(X1, Y1, X2, Y2)
shp SpatialPolygons object
station_labs logical, should stations be labeled? Defaults to TRUE
lab_loc chr vector of 'R' and 'L', one letter for each station. if no lab_loc is specified then labels will default to the left.
scale_pos scale_pos where should the scale be placed? Options are 'topleft', 'topright', 'bottomleft', or 'bottomright'. Defaults to 'bottomleft'
Details

Creates a stylized, reserve-level base map for displaying seasonal kendall results from `sk_seasonal`. The user can specify the reserve and stations to plot. The user can also specify a bounding box. For multi-component reserves, the user should specify a bounding box that highlights the component of interest.

To display seasonal trends, the user must specify `c('inc', 'dec', 'insig')` for each station listed in the `stations` argument.

Value

returns a leaflet object. This function is intended to be used with mapshot to generate a png for the reserve level report

Author(s)

Julie Padilla

Examples

## a compact reserve
### set plotting parameters
stations <-
sampling_stations[(sampling_stations$NERR.Site.ID == 'elk' & sampling_stations$Status == 'Active'),]$Station.Code
to_match <- c('wq')
stns <- stations[grep(paste(to_match, collapse = '|'), stations)]
shp_fl <- elk_spatial
bounding_elk <- c(-121.810978, 36.868218, -121.708667, 36.764050)
pos <- 'bottomleft'
sk_res <- c('inc', 'dec', 'dec', 'insig')

### plot
res_sk_map('elk', stations = stns, sk_result = sk_res, bbox = bounding_elk, scale_pos = pos, shp = shp_fl)

## a multicomponent reserve (showing two different bounding boxes)
### set plotting parameters
stations <-
sampling_stations[(sampling_stations$NERR.Site.ID == 'cbm' & sampling_stations$Status == 'Active'),]$Station.Code
to_match <- c('wq')
stns <- stations[grep(paste(to_match, collapse = '|'), stations)]
shp_fl <- cbm_spatial
bounding_cbm_1 <- c(-77.393, 39.741, -75.553, 38.277)
bounding_cbm_2 <- c(-76.862006, 38.811571, -76.596508, 38.642454)
pos <- 'bottomleft'
sk_res <- c('inc', 'dec', 'dec', 'insig')

### plot
res_sk_map('cbm', stations = stns, sk_result = sk_res, bbox = bounding_cbm_1,
seasonal_barplot

scale_pos = pos, shp = shp_fl)

res_sk_map('cbm', stations = stns, sk_result = sk_res, bbox = bounding_cbm_2, scale_pos = pos, shp = shp_fl)

____________________________________________________________________
sampling_stations  Detailed of NERRS site data
____________________________________________________________________

Description

Metadata on NERRS stations provided by the Central Data Management Office (CDMO) when data is downloaded

Usage

data(sampling_stations)

Format

A data.frame object

Source

CDMO

References


____________________________________________________________________

seasonal_barplot  Cumulative Bar Plot

____________________________________________________________________

Description

Cumulative bar plot over a historic range
Usage

seasonal_barplot(swmpr_in, ...)  

## S3 method for class 'swmpr'
seasonal_barplot(  
  swmpr_in,  
  param = NULL,  
  hist_rng = NULL,  
  log_trans = FALSE,  
  converted = FALSE,  
  hist_avg = TRUE,  
  bar_position = "stack",  
  season_facet = FALSE,  
  plot_title = FALSE,  
  plot = TRUE,  
...  
)

Arguments

swmpr_in	input swmpr object
... | additional arguments passed to other methods. See assign_season
param | chr string of variable to plot
hist_rng | numeric vector, if historic range is not specified then the min/max values of the data set will be used.
log_trans | logical, should y-axis be log? Defaults to FALSE
converted | logical, were the units converted from the original units used by CDMO? Defaults to FALSE. See y_labeler for details.
hist_avg | logical, should a historical average be included? Defaults to TRUE.
bar_position | chr string, options available are stack or dodge. Defaults to stack
season_facet | logical, should plot be faceted by season? Defaults to FALSE.
plot_title | logical, should the station name be included as the plot title? Defaults to FALSE
plot | logical, should a plot be returned? Defaults to TRUE

Details

This function uses barplots to summarize parameters that are best viewed on a cumulative basis (e.g., precipitation). Data are aggregated on a seasonal and annual basis.

There are two ways to make interannual comparisons: on an aggregate basis and on a seasonal basis. If the argument season_facet = FALSE then parameter totals from each season will be added together to compose one, multi-color bar. If season_facet = TRUE then parameter totals from each season separated into multiple plots for easier intra-season comparison across years.

Value

A ggplot object
Author(s)

Julie Padilla

See Also

ggplot, assign_season, y_labeler

Examples

data(apaebmet)
dat <- qaqc(apaebmet, qaqc_keep = c('0', '3', '5'))
x <- seasonal_barplot(dat, param = 'totprcp'
, season_grps = list(c(1,2,3), c(4,5,6), c(7,8,9), c(10, 11, 12))
, season_names = c('Winter', 'Spring', 'Summer', 'Fall')
, hist_avg = TRUE
, converted = FALSE)

# return a table instead of a figure
y <- seasonal_barplot(dat, param = 'totprcp'
, season_grps = list(c(1,2,3), c(4,5,6), c(7,8,9), c(10, 11, 12))
, season_names = c('Winter', 'Spring', 'Summer', 'Fall')
, converted = FALSE
, plot = FALSE)

## divide plot into seasonal facets
x <- seasonal_barplot(dat, param = 'totprcp'
, season_grps = list(c(1,2,3), c(4,5,6), c(7,8,9), c(10, 11, 12))
, season_names = c('Winter', 'Spring', 'Summer', 'Fall')
, season_facet = TRUE
, hist_avg = TRUE
, converted = FALSE)

## convert from mm to in
dat$totprcp <- dat$totprcp / 25.4
x <- seasonal_barplot(dat, param = 'totprcp'
, season_grps = list(c(1,2,3), c(4,5,6), c(7,8,9), c(10, 11, 12))
, season_names = c('Winter', 'Spring', 'Summer', 'Fall')
, hist_avg = TRUE
, converted = TRUE)
seasonal_boxplot

Description

Annual time series for year of interest on top of long-term percentiles

Usage

seasonal_boxplot(swmpr_in, ...)

## S3 method for class 'swmpr'
seasonal_boxplot(swmpr_in, param = NULL, hist_rng = NULL, target_yr = NULL, criteria = NULL, free_y = FALSE, log_trans = FALSE, converted = FALSE, criteria_lab = "WQ Threshold", stat_lab = "Average", plot_title = FALSE, plot = TRUE, FUN = function(x) mean(x, na.rm = TRUE), ...)

Arguments

- `swmpr_in`: input swmpr object
- `...`: additional arguments passed to other methods. See `assign_season`
- `param`: chr string of variable to plot
- `hist_rng`: numeric vector, if historic range is not specified then the min/max values of the data set will be used.
- `target_yr`: numeric, the target year that should be compared against the historic range. If target year is not specified then dot will not be plotted
- `criteria`: numeric, a numeric criteria that will be plotted as a horizontal line
- `free_y`: logical, should the y-axis be free? Defaults to FALSE. If FALSE, defaults to zero, unless negative values are present. If TRUE, y-axis limits are selected by ggpplot
- `log_trans`: logical, should y-axis be log? Defaults to FALSE
- `converted`: logical, were the units converted from the original units used by CDMO? Defaults to FALSE. See `y_labeler` for details.
- `criteria_lab`: chr, label for the threshold criteria defined in `criteria`. Defaults to "WQ Threshold"
- `stat_lab`: chr, label for the summary statistic defined in `FUN`. Defaults to "Average"
- `plot_title`: logical, should the station name be included as the plot title? Defaults to FALSE
- `plot`: logical, should a plot be returned? Defaults to TRUE
- `FUN`: function used to aggregate daily SWMP data
seasonal_boxplot

Details

This function uses boxplots to summarize statistics calculated on a daily basis across user-defined seasons for all years within the historic range (hist_rng). If hist_rng is not specified then the minimum and maximum years within the data set will be used. The summary statistics used to generate the boxplots are ggplot2 defaults: the center of the box is a median, and the lower/upper limits of the box are the 25-th and 75-th percentiles. The whiskers extend to the furthest data point within 1.5 * inter-quartile range (IQR). The dots beyond the whiskers are data points that are greater than 1.5 * IQR. If the user selects a target_yr, then a median summary statistic value will be plotted as a point against the boxplots.

Using the FUN argument, the user can specify the daily summary statistic to use. Commonly used statistics are min(x,na.rm = TRUE), mean(x,na.rm = TRUE), and max(x,na.rm = TRUE). After specifying FUN, the user should also specify stat_lab, which is used to construct appropriate legend labels.

The user also has the option to add a threshold hold line using the criteria argument. Typically, this value is a water quality threshold, which is why criteria_lab defaults to 'WQ Threshold'. However, the user has the option to specify any other type of threshold they wish. when doing so, the value for criteria_lab should be changed accordingly.

Value

Returns a ggplot object or a data.frame if plot = FALSE

Author(s)

Julie Padilla

See Also

ggplot, assign_season

Examples

dat <- elksmwq

dat <- qaqc(dat, qaqc_keep = c('0', '3', '5'))

do_plt <- seasonal_boxplot(dat, param = 'do_mgl')

do_plt <- seasonal_boxplot(dat, param = 'do_mgl',
                          target_yr = 2015,
                          season = list(c(1,2,3), c(4,5,6), c(7,8,9), c(10, 11, 12)),
                          season_names = c('Winter', 'Spring', 'Summer', 'Fall'),
                          season_start = 'Spring')

do_plt_min <- seasonal_boxplot(dat, param = 'do_mgl',
                          stat_lab = 'Minimum', FUN = function(x) min(x, na.rm = TRUE))
seasonal_dot

\[
\text{do_plt_max} \leftarrow \text{seasonal_boxplot}(\text{dat}, \text{param} = \text{'do_mgl'}, \\
\text{stat_lab} = \text{'Maximum'}, \text{FUN} = \text{function(x) max(x, na.rm = TRUE)})
\]

## Seasonal Dot Plot

### Description
Plot average/min/max seasonal values faceted by season

### Usage
`seasonal_dot(swmp_in, ...)`

```
S3 method for class 'swmpr'
seasonal_dot(
 swmp_in,
 param = \text{NULL},
 lm_trend = \text{FALSE},
 lm_lab = \text{FALSE},
 free_y = \text{FALSE},
 log_trans = \text{FALSE},
 converted = \text{FALSE},
 plot_title = \text{FALSE},
 plot = \text{TRUE},
 ...
)
```

### Arguments
- **swmp_in**: input swmp object
- **...**: additional arguments passed to other methods. See assign_season
- **param**: chr string of variable to plot
- **lm_trend**: logical, add linear trend line?
- **lm_lab**: logical, add significance label? Statistically significant results will appear in bold.
- **free_y**: logical, should the y-axis be free? Defaults to \text{FALSE}. If \text{FALSE}, defaults to zero, unless negative values are present. If \text{TRUE}, y-axis limits are selected by ggplot
- **log_trans**: logical, should y-axis be log? Defaults to \text{FALSE}
- **converted**: logical, were the units converted from the original units used by CDMO? Defaults to \text{FALSE}. See y_labeler for details.
- **plot_title**: logical, should the station name be included as the plot title? Defaults to \text{FALSE}
- **plot**: logical, should a plot be returned? Defaults to \text{TRUE}
Details

This function summarizes minimum, mean, and maximum values calculated on a seasonal basis to allow for easier intra-season comparisons over time.

`lm_trend = TRUE` adds a linear regression to the plot, and `lm_lab = TRUE` will add p-values from the linear regression to the plot. If the p-values are significant (p < 0.05) then the text will appear in bold. `lm_lab` text is color coded to match with the corresponding dots.

Value

Returns a `ggplot` object

Author(s)

Julie Padilla

See Also

`ggplot`, `assign_season`, `y_labeler`

Examples

```r
dat_wq <- elkswq
#dat_wq <- subset(dat_wq, subset = c('2010-01-01 0:00', '2017-01-01 0:00'))
dat_wq <- qaqc(dat_wq, qaqc_keep = c(0, 3, 5))

x <- seasonal_dot(dat_wq, param = 'do_mgl'
, lm_trend = TRUE
, lm_lab = TRUE
, plot_title = TRUE)
```

```r
x <- seasonal_dot(dat_wq, param = 'do_mgl'
, lm_trend = FALSE
, lm_lab = FALSE
, plot_title = TRUE)
```

```r
x <- seasonal_dot(dat_wq, param = 'do_mgl'
, lm_trend = TRUE
, lm_lab = FALSE
, plot_title = TRUE)
```

```r
dat_nut <- elknmnut
dat_nut <- subset(dat_nut, subset = c('2007-01-01 0:00', '2017-01-01 0:00'))
dat_nut <- qaqc(dat_nut, qaqc_keep = c(0, 3, 5))

x <- seasonal_dot(dat_nut
```
Description

Select reasonable breaks for `scale_x_datetime`

Usage

```r
set_date_breaks(rng)
```

Arguments

- `rng` date range years

Details

A helper function for easier date label setting

Value

Returns a chr string for `date_breaks`

Author(s)

Julie Padilla

See Also

- `set_date_break_labs`, `scale_x_datetime`
### set_date_break_labs

*Set reasonable date breaks labels*

**Description**

Select reasonable labels for breaks used in `scale_x_datetime`

**Usage**

```r
set_date_break_labs(rng)
```

**Arguments**

- `rng` date range years

**Details**

A helper function for easier date label setting

**Value**

Returns a chr string for `date_labels`

**Author(s)**

Julie Padilla

**See Also**

`set_date_breaks`, `scale_x_datetime`

---

### sk_seasonal

*Seasonal Kendall Analysis for Seasonal Data*

**Description**

Non-parametric test for monotonic seasonal trends
Usage

```
sk_seasonal(swmp_in, ...)
```

## S3 method for class 'swmp'

```
sk_seasonal(
 swmp_in,
 param = NULL,
 alpha = 0.05,
 data_min = 5,
 envStats_summary = FALSE,
 stat_lab = "Average",
 FUN = function(x) mean(x, na.rm = TRUE),
 ...
)
```

Arguments

- `swmp_in` input swmp object
- `...` additional arguments passed to other methods. See `assign_season`
- `param` chr string of variable to plot
- `alpha` num, alpha value to use to significance test. Defaults to 0.05.
- `data_min` num, the minimum number of observations required to perform the analysis. Defaults to 5
- `envStats_summary` logical, should the standard `EnvStats::kendallSeasonalTrendTest` be returned? Defaults to FALSE. See Details for more information.
- `stat_lab` chr, label for the summary statistic defined in `FUN`. Defaults to "Average".
- `FUN` function used to aggregate seasonal SWMP data.

Details

This function performs a seasonal kendall test on seasonally aggregated values using `kendallSeasonalTrendTest`. Data are aggregated on a user-specified seasonal basis using the `FUN` argument. For example, using default settings, `sk_seasonal` would perform a seasonal kendall test on average monthly values. However, if the user set `FUN = min(x, na.rm = TRUE)` then a seasonal kendall would be performed on monthly minimum values.

If `EnvStats_summary = TRUE` then the detailed output summary from `kendallSeasonalTrendTest` will be returned. If `EnvStats_summary = FALSE` then an abbreviated summary will be returned in a `data.frame`. The abbreviated summary contains the station name, the type of statistic used to summarize the data on a seasonal basis (specified by `stat_lab`), and the following results from `kendallSeasonalTrendTest`: tau, slope, p-value for the chi-square test, and the p-value for the trend test.

Value

Returns a `data.frame` object or a summary from `EnvStats::kendallSeasonalTrendTest`
sk_tidy

Author(s)
Julie Padilla

See Also
assign_season, y_labeler, kendallSeasonalTrendTest

Examples

dat_wq <- elksmwq
dat_wq <- qaqc(dat_wq, qaqc_keep = c(0, 3, 5))
x <- sk_seasonal(dat_wq, param = 'temp')

sk_tidy  Tidy Seasonal Kendall Results

Description
Tidy results from kendallSeasonalTrendTest

Usage
sk_tidy(data, station, param, stat, alpha = 0.05)

Arguments
data a htest object produced by kendallSeasonalTrendTest
station chr string sampling station
param chr string of variable to plot
stat chr, label to be used for statistic used to group data
alpha num, significance level. Defaults to 0.05

Details
A helper function used by sk_seasonal to return a table of tidied values.

Value
Returns a data.frame of results from kendallSeasonalTrendTest

Author(s)
Julie Padilla
std_param_check

Standard Parameter Check

Description

Determine if a parameter is one of the standard SWMP parameters

Usage

std_param_check(param)

Arguments

param chr string of variable abbreviation

Details

A helper function used internally by several plotting functions to determine if parameter has a standard y-axis label. To accommodate the needs of the reserve-level annual report, this function also recognizes dissolved organic phosphorus (DIP) and dissolved inorganic nitrogen (DIN) as standard parameters.

Value

Returns TRUE or FALSE

Author(s)

Julie Padilla

Examples

std_param_check('do_mgl')

std_param_check('nitrogen')
summarise_handoff_files

*Summarise Hand-off Files from Reserve Level Reports*

Description

Summarise the seasonal kendall results from reserve level report hand-off files

Usage

```r
summarise_handoff_files(path, param, res_region = NULL)
```

Arguments

- `path`: chr string of full path to .csv handoff files
- `param`: chr string of variable to summarise
- `res_region`: a `data.frame` of look-up values that match 3-letter NERR site ids with regions

Details

This function is intended for use with the NERRS national level reporting scripts. It returns a `data.frame` that summarises the result of the reserve level seasonal kendall trend analyses found in the hand-off files generated by the reserve level reporting scripts. The summary groups reserves into regional classifications based on user-specified regions given in `res_region`.

Value

Returns a `data.frame`

Author(s)

Julie Padilla

---

threshold_criteria_plot

*Water Quality Threshold Plot For Parameters With Criteria*

Description

Observed data compared against user-defined water quality thresholds
Usage

threshold_criteria_plot(swmpr_in, ...)

## S3 method for class 'swmpr'
threshold_criteria_plot(
  swmpr_in,
  param = NULL,
  rng = NULL,
  thresholds = NULL,
  threshold_labs = c("Good", "Fair", "Poor"),
  threshold_cols = c("#ABD9E9", "#FFFFCC", "#FEC596"),
  crit_threshold = NULL,
  log_trans = FALSE,
  monthly_smooth = FALSE,
  plot_title = FALSE,
  ...
)

Arguments

- **swmpr_in**: input swmpr object
- **...**: additional arguments passed to other methods. See `y_labeler`.
- **param**: chr string of the variable to plot
- **rng**: num, years to include in the plot. This variable can either be one year (e.g., `rng = 2012`), or two years (e.g., `rng = c(2012, 2016)`). If range is not specified then the entire data set will be used.
- **thresholds**: numeric vector, numeric criteria that will be plotted in the background
- **threshold_labs**: chr vector of labels for categories created by `thresholds`.
- **threshold_cols**: chr vector of color values for categories created by `thresholds`.
- **crit_threshold**: num, value at which the critical threshold line should be plotted. Typically the same value used to establish the 'Poor' threshold.
- **log_trans**: logical, should y-axis be log? Defaults to `FALSE`
- **monthly_smooth**: logical, calculate a monthly average? Defaults to `FALSE`
- **plot_title**: logical, should the station name be included as the plot title? Defaults to `FALSE`

Details

This function visualizes exceedances of numeric criteria which are specified using `thresholds`. Suggested numeric criteria for several parameters (dissolved oxygen, dissolved inorganic phosphorus, dissolved inorganic nitrogen, and chlorophyll-a) can be found in the USEPA National Coastal Condition Report (2012).

If the parameter of interest does not have numeric criteria, then `threshold_percentile_plot` is recommended.
Value

Returns a \texttt{ggplot} object

Author(s)

Julie Padilla

References


See Also

\texttt{ggplot, y_labeler}

Examples

\begin{verbatim}
data(apacpwq)
dat_wq <- apacpwq
dat_wq <- qaqc(dat_wq, qaqc_keep = c(0, 3, 5))

## Due to the volume of instantaneous data, these plots are a bit slow
x <-
threshold_criteria_plot(dat_wq, param = 'do_mgl'
, rng = 2012
, thresholds = c(2, 5)
, threshold_labs = c('Poor', 'Fair', 'Good')
, monthly_smooth = TRUE
, threshold_cols = c('#FEC596', '#FFFFCC', '#ABD9E9'))

y <-
threshold_criteria_plot(dat_wq, param = 'do_mgl'
, thresholds = c(2, 5)
, threshold_labs = c('Poor', 'Fair', 'Good')
, threshold_cols = c('#FEC596', '#FFFFCC', '#ABD9E9'))

z <-
threshold_criteria_plot(dat_wq, param = 'do_mgl'
, rng = 2012
, thresholds = c(2, 5)
, threshold_labs = c('Poor', 'Fair', 'Good')
, threshold_cols = c('#FEC596', '#FFFFCC', '#ABD9E9')
, monthly_smooth = TRUE)

## A few examples with only two thresholds
xx <-
threshold_criteria_plot(dat_wq, param = 'do_mgl'
, rng = 2012
, thresholds = c(2, 2)
\end{verbatim}
# A dummy blank ('') value must be added as a threshold label
threshold_labs = c('Poor', '', 'Good')
threshold_cols = c('#FEC596', '#FFFFCC', '#ABD9E9')
monthly_smooth = TRUE)

xy <- threshold_criteria_plot(dat_wq, param = 'do_mgl'
  , rng = 2012
  , thresholds = c(5, 5)
  
  # A dummy blank ('') value must be added as a threshold label
  , threshold_labs = c('Poor', '', 'Good')
  , threshold_cols = c('#FEC596', '#FEC596', '#ABD9E9')
  , monthly_smooth = TRUE)

xz <- threshold_criteria_plot(dat_wq, param = 'do_mgl'
  , rng = 2012
  , thresholds = c(2, 5)
  , threshold_labs = c('Poor', 'Good', 'Poor')
  , threshold_cols = c('#FEC596', '#ABD9E9', '#FEC596')
  , monthly_smooth = TRUE)

data(apacpnut)
dat_nut <- apacpnut

dat_nut <- qaqc(dat_nut, qaqc_keep = c(0, 3, 5))
dat_nut <- rem_reps(dat_nut)

x <- threshold_criteria_plot(dat_nut, param = 'chla_n'
  , thresholds = c(2, 5)
  , threshold_labs = c('Good', 'Fair', 'Poor'))

y <- threshold_criteria_plot(dat_nut, param = 'chla_n'
  , rng = 2012
  , thresholds = c(2, 5)
  , threshold_labs = c('Good', 'Fair', 'Poor'))

## Nutrient plots are not capable of accidentally displaying any kind of smooth
z <- threshold_criteria_plot(dat_nut, param = 'chla_n'
  , rng = 2012
  , thresholds = c(2, 5)
  , threshold_labs = c('Good', 'Fair', 'Poor')
  , monthly_smooth = TRUE)
threshold_identification

Tabulate Threshold Exceedances

Description

Tabulate user-specified threshold exceedances

Usage

threshold_identification(swmpr_in, ...)

## S3 method for class 'swmpr'
threshold_identification(
  swmpr_in,
  param,
  parameter_threshold,
  threshold_type,
  time_threshold = NULL,
  ...
)

Arguments

swmpr_in input swmpr object
...
param vector of parameters to evaluate
parameter_threshold vector of numerical thresholds to evaluate parameters against
threshold_type vector of logical operators ('<', '>', '<=', '>=', '==', '!=')
time_threshold The amount of time an event must last to be counted (in hours)

Details

This function creates tabular summary of events when a user-specified threshold is exceeded.
Before using this function, the user must apply setstep to normalize the datetimestamp time step.
For MET and WQ data, the user must specify time_threshold. This argument is the minimum
duration that an event must last in order to be counted. For example, if time_threshold = 2, param = "do_mgl", parameter_threshold = 2, and threshold_type = "<" then dissolved oxygen must
be lower than 2 mg/L for more than two hours or the event will not be summarized in the final table. For NUT parameters, all exceedances are included in the tabular summary.
Recommended thresholds for chlorophyll-a, dissolved inorganic nitrogen, dissolved inorganic phosphorus, and dissolved oxygen can be found in the National Coastal Condition Assessment 2010 (USEPA 2016)
**threshold_identification**

### Value

Returns a data frame of threshold exceedances by parameter

### Author(s)

Julie Padilla

### References


### Examples

```r
wq <- apacpwq
dat_wq <- qaqc(wq, qaqc_keep = c(0, 3, 5))
dat_wq <- setstep(dat_wq)

wq_pars<- threshold_identification(dat_wq, param = c('do_mgl', 'ph', 'temp')
 , parameter_threshold = c(2, 5, 30)
 , threshold_type = c('<', '<', '>'), time_threshold = 2)

wq_par<- threshold_identification(dat_wq, param = c('do_mgl')
 , parameter_threshold = c(2)
 , threshold_type = c('<'), time_threshold = 2)

time_threshold and setstep are not necessary for monthly parameters
nut <- apacpnut
dat_nut <- qaqc(nut, qaqc_keep = c(0, 3, 5))

nut_pars <- threshold_identification(dat_nut, param = c('chla_n', 'po4f')
 , parameter_threshold = c(10, 0.01)
 , threshold_type = c('>', '>'))

nut_par <- threshold_identification(dat_nut, param = c('chla_n')
 , parameter_threshold = c(10)
 , threshold_type = c('>'))

nut_err <- threshold_identification(dat_nut, param = c('chla_n')
 , parameter_threshold = c(30)
 , threshold_type = c('>'))
```
threshold_percentile_plot

Threshold Percentile Plot

Description

Observed data compared against user-defined percentiles

Usage

threshold_percentile_plot(swmpr_in, ...)

## S3 method for class 'swmp'
threshold_percentile_plot(
  swmpr_in,
  param = NULL,
  hist_rng = NULL,
  target_yr = NULL,
  percentiles = c(0.05, 0.95),
  free_y = FALSE,
  by_month = FALSE,
  log_trans = FALSE,
  converted = FALSE,
  plot_title = FALSE,
  ...
)

Arguments

swmpr_in input swmpr object
...
additional arguments passed to other methods (not used for this function).
param chr, variable to plot
hist_rng num, years to include in the plot. This variable can either be one year (e.g., hist_rng = 2012), or two years (e.g. hist_rng = c(2012,2016)). If range is not specified then the entire data set will be used.
target_yr num, year of interest for plotting. If not specified, the entire data set will be plotted.
percentiles num, percentiles to calculate (maximum: 2). Defaults to 5th and 95th percentiles.
free_y logical, should the y-axis be free? Defaults to FALSE. If FALSE, defaults to zero, unless negative values are present. If TRUE, y-axis limits are selected by ggplot
by_month logical, should percentiles be calculated on a monthly basis? Defaults to FALSE
log_trans logical, should y-axis be log? Defaults to FALSE
converted logical, were the units converted from the original units used by CDMO? Defaults to FALSE. See y_labeler for details.
plot_title logical, should the station name be included as the plot title? Defaults to FALSE
Details

This function provides an alternative to `threshold_criteria_plot`. For parameters that may not have numeric threshold criteria, a percentile threshold can be used instead. For a one-tailed analysis, the 90-th percentile is recommended. For a two-tailed analysis, the 5-th and 95-th percentiles are recommended.

Using `by_month`, the user can specify whether the percentiles should be calculated on a monthly basis or by using the entire data set.

Recommended thresholds for chlorophyll-a, dissolved inorganic nitrogen, dissolved inorganic phosphorus, and dissolved oxygen can be found in the National Coastal Condition Assessment 2010 (USEPA 2016)

Value

Returns a `ggplot` object

Author(s)

Julie Padilla

References


See Also

`ggplot`

Examples

```r
dat_wq <- qaqc(elksmwq, qaqc_keep = c(0, 3, 5))
dat_wq <- subset(dat_wq, subset = '2007-01-01 0:00', operator = '>=')

x <-
 threshold_percentile_plot(dat_wq, param = 'do_mgl',
 , hist_rng = c(2007, 2014), by_month = FALSE)

y <-
 threshold_percentile_plot(dat_wq, param = 'do_mgl', percentiles = c(0.95)
 , hist_rng = c(2007, 2014), target_yr = 2014, by_month = FALSE)

x2 <-
 threshold_percentile_plot(dat_wq, param = 'do_mgl'
 , hist_rng = c(2007, 2014), by_month = TRUE)

y2 <-
 threshold_percentile_plot(dat_wq, param = 'do_mgl'
 , hist_rng = c(2007, 2014), target_yr = 2014, by_month = TRUE)
```
dat_nut <- qaqc(ekmnmut, qaqc_keep = c(0, 3, 5))
dat_nut <- subset(dat_nut, subset = '2007-01-01 0:00', operator = '>=')
dat_nut <- rem_reps(dat_nut)

x <-
    threshold_percentile_plot(dat_nut, param = 'chla_n'
    , hist_rng = c(2007, 2014), by_month = FALSE)

y <-
    threshold_percentile_plot(dat_nut, param = 'chla_n'
    , hist_rng = c(2007, 2014), target_yr = 2016, by_month = FALSE)

threshold_summary

Summary Plots for Threshold Identification

Description

Summary plots for threshold identification analysis

Usage

threshold_summary(swmpr_in, ...)

## S3 method for class 'swmpr'
threshold_summary(
    swmpr_in,
    param = NULL,
    summary_type = c("month", "season", "year"),
    parameter_threshold = NULL,
    threshold_type = NULL,
    time_threshold = NULL,
    converted = FALSE,
    pal = "Set3",
    plot_title = FALSE,
    plot = TRUE,
    label_y_axis = TRUE,
    ...
)

Arguments

swmpr_in input swmpr object
...
additional arguments passed to other methods. See assign_season for more details.
param chr string of variable to plot (one only)
summary_type  Choose from month, season, or year aggregation
parameter_threshold  vector of numerical thresholds to evaluate parameters against
threshold_type  vector of logical operators ('<', '>', '<=', '>=', '==', '!=')
time_threshold  The amount of time an event must last to be counted (in hours)
converted  logical, were the units converted from the original units used by CDMO? Defaults to FALSE. See y_labeler for details.
pal  Select a palette for boxplot fill colors. See scale_fill_brewer for more details.
plot_title  logical, should the station name be included as the plot title? Defaults to FALSE
plot  logical, should a plot be returned? Defaults to TRUE
label_y_axis  logical, include label for y-axis?

Details
This function provides a graphical or tabular summary of the results from threshold_identification.
The user can summarize results on a monthly, seasonal, or annual basis by specifying summary_type = c('month', 'season', 'year'). If summary_type = 'season', then the user should also define season, season_names, and season_start, as required by assign_season. The user can specify 'month' for nutrient parameters, but this is not recommended and will produce a warning.
Recommended thresholds for chlorophyll-a, dissolved inorganic nitrogen, dissolved inorganic phosphorus, and dissolved oxygen can be found in the National Coastal Condition Assessment 2010 (USEPA 2016)

Value
Returns a ggplot object (if plot = TRUE) or a dataframe (if plot = FALSE)

Author(s)
Julie Padilla

References

See Also
assign_season, ggplot, threshold_identification, scale_fill_brewer

Examples
## Water quality examples
dat_wq <- qaqc(apacpwq, qaqc_keep = c(0, 3, 5))
dat_wq <- setstep(dat_wq)
title_labeler

Generate Plot Title Based on NERR Site ID

Description

Generate a plot title based on SWMP station abbreviation

Usage

    title_labeler(nerr_site_id)

Arguments

    nerr_site_id  chr string of NERR site id
Details

A helper function used internally by several plotting functions to generate plot titles.

Value

Returns character vector

Author(s)

Julie Padilla

Examples

```r
ttl <- title_labeler('elkapwq')
```

---

**us_laea**

*US County Map*

---

Description

US County boundaries from the US Census Bureau’s MAF/TIGER geographic database. Reprojected using Lambert Azimuthal Equal Area.

Usage

```r
data(us_laea)
```

Format

A `SpatialPolygonsDataFrame` object

Source

**US Census Bureau**

References

United States Census Bureau. Data accessed from the US Census Bureau website: http://www2.census.gov/geo/tiger/GENZ2010/gz_2010_us_050_00_20m.zip; accessed 06 April 2018
y_count_labeler

Generate y-axis Label Based on SWMP Parameter Abbreviation

Description

Generate a y-axis label based on SWMP parameter abbreviation and threshold criteria

Usage

```r
y_count_labeler(
 param,
 parameter_threshold,
 threshold_type,
 time_threshold = NULL,
 converted = FALSE
)
```

Arguments

- `param` chr string of variable abbreviation
- `parameter_threshold` vector of numerical thresholds to evaluate parameters against
- `threshold_type` vector of logical operators ('<', '>', '<=', '>=', '==', '!=')
- `time_threshold` The amount of time an event must last to be counted (in hours)
- `converted` logical, should the parameter label units be converted from metric to english? Defaults to FALSE. Currently available for temp, depth, cdepth, level, clevel, atemp, wspd, maxwspd, and totprcp

Details

A helper function used internally by several plotting functions to generate y-axis labels. This function does not convert sample results from metric to english. It only adjusts the units in the y-axis label.

Value

Returns character vector or an unevaluated expression

Author(s)

Julie Padilla

Examples

```r
y_lab <- y_count_labeler(param = 'do_mgl', parameter_threshold = 2, threshold_type = '<', time_threshold = 2, converted = FALSE)
```
y_labeler

Generate y-axis Label Based on SWMP Parameter Abbreviation

Description

Generate a y-axis label based on SWMP parameter abbreviation

Usage

y_labeler(param, converted = FALSE)

Arguments

param chr string of variable abbreviation
converted logical, should the parameter label units be converted from metric to english? Defaults to FALSE. Currently available for temp, depth, cdepth, level, clevel, atemp, wspd, maxwspd, and totprcp

Details

A helper function used internally by several plotting functions to generate y-axis labels. This function does not convert sample results from metric to english. It only adjusts the units in the y-axis label.

Value

Returns character vector or an unevaluated expression

Author(s)

Julie Padilla

Examples

y_lab <- y_labeler('do_mgl')
Index

*Topic datasets
  cbm_spatial, 6
  elk_spatial, 12
  elkmmnut, 10
  elkswq, 11
  sampling_stations, 38
  us_laea, 61

all_params, 24
all_params_dtrng, 24
annual_range, 3
assign_season, 3, 4, 5, 21, 22, 27, 28, 39–44, 47, 48, 58, 59

cbm_spatial, 6
create_sk_flexttable_list, 7, 12–14
create_sk_national_ft_reserves, 8
create_sk_national_ft_results, 9
data.frame, 11, 38

elk_spatial, 12
elkmnut, 10
elkswwq, 11

flextable, 8–10, 12
ft_col_names, 12

generate_results_table, 13
generate_station_table, 14
geographic_unique_stations, 14
get_reserve, 15
get_shp_name, 16
get_site_code, 17
get_site_coordinates, 18
get_sites, 16
ggplot, 4, 20, 22, 26, 28, 35, 39, 40, 42, 44, 52, 57, 59

historical_daily_range, 18
historical_range, 20

import_local, 23
import_local_nut, 22
kendallSeasonalTrendTest, 47, 48
lm, 24
lm_p_labs, 24
load_shp_file, 25

national_sk_map, 25
raw_boxplot, 27
rem_reps, 23, 24
remove_inf_and_nan, 28
res_custom_map, 29
res_custom_sk_map, 31
res_local_map, 15, 25, 33
res_national_map, 29, 34
res_sk_map, 25, 36
reserve_locs, 29

sampling_stations, 38
scale_fill_brewer, 59
scale_x_datetime, 45, 46
seasonal_barplot, 38
seasonal_boxplot, 40
seasonal_dot, 24, 43
set_date_break_labs, 45, 46
set_date_breaks, 45, 46
setstep, 54
single_param, 24
sk_seasonal, 7, 9, 13, 14, 32, 37, 46, 48
sk_tidy, 48
sp, 25
SpatialPolygons, 6, 12
SpatialPolygonsDataFrame, 61
std_param_check, 49
summarise_handoff_files, 50

threshold_criteria_plot, 50, 57
threshold_identification, 54, 59
INDEX

threshold_percentile_plot, 56
threshold_summary, 58
title_labeler, 60

us_laea, 61

y_count_labeler, 62
y_labeler, 4, 20, 22, 27, 28, 40, 44, 48, 51, 52, 63