Package ‘ScorePlus’

June 14, 2019

Title Implementation of SCORE, SCORE+ and Mixed-SCORE

Version 0.1

Maintainer Shengming Luo <shengmil@andrew.cmu.edu>

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Imports utils, combinat, limSolve, RSpectra, igraph, igraphdata, stats

NeedsCompilation no

Author Jiashun Jin [aut],
Zheng Tracy Ke [aut],
Shengming Luo [aut, cre]

Repository CRAN

Date/Publication 2019-06-14 08:40:03 UTC

R topics documented:

getMaxDist .. 2
getMembership ... 2
mixedSCORE .. 3
SCORE ... 4
SCOREplus ... 4
vertexHunting ... 5
vertexSearch .. 6

Index 7
getMembership

getMaxDist

find the maximum distance from the convex hull formed by the chosen K vertices

Description

find the maximum distance from the convex hull formed by the chosen K vertices

Usage

getMaxDist(centers, vertex.ind)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>centers</td>
<td>L-by-(K-1) center matrix</td>
</tr>
<tr>
<td>vertex.ind</td>
<td>index of the K centers that forms the convex hull</td>
</tr>
</tbody>
</table>

Value

the maximum distance

getMembership

calculated the membership of each node given ratio matrix and community centers

Description

calculated the membership of each node given ratio matrix and community centers

Usage

getMembership(R, vertices, K, eig.values, eig.vectors)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>n-by-(K-1) ratio matrix</td>
</tr>
<tr>
<td>vertices</td>
<td>K-by-(K-1) community centers</td>
</tr>
<tr>
<td>K</td>
<td>number of communities.</td>
</tr>
<tr>
<td>eig.values</td>
<td>eigenvalues of adjacency matrix.</td>
</tr>
<tr>
<td>eig.vectors</td>
<td>eigenvectors of adjacency matrix.</td>
</tr>
</tbody>
</table>

Value

n-by-K membership matrix
mixedSCORE

Membership estimation algorithm called mixedSCORE

Description

Membership estimation algorithm called mixedSCORE

Usage

mixedSCORE(A, K, verbose = F)

Arguments

A n-by-n binary symmetric adjacency matrix.
K number of communities.
verbose whether generate message

Value

A list containing

R n-by-(K-1) ratio matrix.
L Selected tuning parameter used for vertex hunting algorithm.
theta A vector of the estimated degree heterogeneity parameters
vertices K-by-(K-1) K vertices of the found convex hull
centers L-by-(K-1) L centers by kmeans
memberships n-by-K membership matrix.
purity A vector of maximum membership of each node
hard.cluster.labels A vector of integers indicating hard clustering labels, by assigning the node to the cluster with max membership

Examples

library(igraphdata)
library(igraph)
data('karate')
A = get.adjacency(karate)
k karate.mixed.out = mixedSCORE(A, 2)
k karate.mixed.out$memberships
SCORE

community detection method called SCORE Spectral Clustering On Ratios-of-Eigenvectors (SCORE)

Description

community detection method called SCORE Spectral Clustering On Ratios-of-Eigenvectors (SCORE)

Usage

\[
\text{SCORE}(A, K, \text{threshold} = \text{NULL})
\]

Arguments

- **A**: n-by-n binary symmetric adjacency matrix.
- **K**: number of communities.
- **threshold**: (optional) the threshold of ratio matrix. By default is \(\log(n)\).

Value

A list containing

- **R**: n-by-(K-1) ratio matrix.
- **labels**: A vector of integer indicating the cluster to which each point allocated.

Examples

```r
library(igraphdata)
library(igraph)
data('karate')
A = get.adjacency(karate)
karate.out$labels
```

SCOREplus

community detection method called SCORE+

Description

community detection method called SCORE+

Usage

\[
\text{SCOREplus}(A, k, c = 0.1, r = \text{NULL})
\]
vertexHunting

Arguments

A n-by-n binary symmetric adjacency matrix.
k number of communities (>1).
c (optional) tuning parameter for Graph Laplacian, default is 0.1.
r (optional) latent dimension (>1), if not given, chosen between k and k+1 determined by eigen gap

Value

A list containing

- **label** Predicted community labels
- **ratios** n-by-(K-1) or n-by-r ratio matrix.
- **delta** calculated delta parameter
- **eig.vec** Top r eigen vectors
- **eig.val** Top r eigen values

Examples

```r
library(igraphdata)
library(igraph)
data('karate')
A = get.adjacency(karate)
karate.plus.out = SCOREplus(A, 2)
karate.plus.out$labels
```

vertexHunting

Vertex hunting algorithm to find the cluster centers

Description

Vertex hunting algorithm to find the cluster centers

Usage

```r
vertexHunting(R, K, verbose = F)
```

Arguments

- **R** n-by-(K-1) ratio matrix
- **K** number of communities.
- **verbose** whether or not to show a progress bar
vertexSearch

select the K vertices from given L centers

Description

select the K vertices from given L centers

Usage

vertexSearch(centers, K)

Arguments

centers L-by-(K-1) center matrix
K number of communities.

Value

A list containing

ind a vector of K integers indicating the index of selected K vertices out of L centers.
dist The maximum distance from centers to the convex hull formed by the K selected vertices.
Index

getMaxDist, 2
getMembership, 2

mixedSCORE, 3

SCORE, 4
SCOREplus, 4

vertexHunting, 5
vertexSearch, 6