Package ‘ScottKnott’

July 21, 2021

Type Package
Title The ScottKnott Clustering Algorithm
Version 1.3-0
Date 2021-07-21
Author Enio Jelihovschi, José Cláudio Faria and Ivan Bezerra Allaman
Maintainer Ivan Bezerra Allaman <ivanalaman@gmail.com>
Depends R (>= 4.0.0), base
Imports doBy, xtable
Suggests lme4
Description Perform the balanced (Scott and Knott, 1974) and unbalanced <doi:10.1590/1984-70332017v17n1a1> Scott & Knott algorithm.
License GPL (>= 2)
URL https://github.com/jcfaria/ScottKnott,
 http://nbcgib.uesc.br/lec/software/pac-r/scottknott
Encoding latin1
LazyLoad yes
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2021-07-21 14:30:02 UTC

R topics documented:

ScottKnott-package .. 2
boxplot.SK .. 3
CRD1 .. 5
CRD2 .. 6
FE .. 6
LSD .. 7
Description

The Scott & Knott clustering algorithm is a very useful clustering algorithm widely used as a multiple comparison method in the Analysis of Variance context, as for example Gates and Bilbro (1978), Bony et al. (2001), Dilson et al. (2002) and Jyotsna et al. (2003).

It was developed by Scott, A.J. and Knott, M. (Scott and Knott, 1974). All methods used up to that date as, for example, the t-test, Tukey, Duncan, Newman-Keuls procedures, have overlapping problems. By overlapping we mean the possibility of one or more treatments to be classified in more than one group, in fact, as the number of treatments reach a number of twenty or more, the number of overlappings could increse as reaching 5 or greater what makes almost impossible to the experimenter to really distinguish the real groups to which the means should belong. The Scott & Knott method does not have this problem, what is often cited as a very good quality of this procedure.

The Scott & Knott method make use of a clever algorithm of cluster analysis, where, starting from the the whole group of observed mean effects, it divides, and keep dividing the sub-groups in such a way that the intersection of any two groups formed in that manner is empty.

Using their own words ‘we study the consequences of using a well-known method of cluster analysis to partition the sample treatment means in a balanced design and show how a corresponding likelihood ratio test gives a method of judging the significance of difference among groups abtained’.

Many studies, using the method of Monte Carlo, suggest that the Scott Knott method performs very well compared to other methods due to fact that it has high power and type I error rate almost always in accordance with the nominal levels. The ScottKnott package performs this algorithm starting either from vectors, matrices or dataframes joined as default, aov, aovlist, lm and lmer resulting object of previous analysis of variance. The results are given in the usual way as well as in graphical way using thermometers with diferent group colors.

In a few words, the test of Scott & Knott is a clustering algorithm used as an one of the alternatives where multiple comparizon procedures are applied with a very important and almost unique characteristic: it does not present overlapping in the results.

As of version 1.2-8, the ScottKnott package is able to analyze unbalanced data based on the article ‘Adjusting the Scott-Knott cluster analyzes for unbalanced designs’ by Conrado et al.
Author(s)

Enio Jelihovschi (<eniojelihovs@gmail.com>)
José Cláudio Faria (<joseclaudio.faria@gmail.com>)
Ivan Bezerra Allaman (<ivanalaman@gmail.com>)

References

Usage

S3 method for class 'SK'
boxplot(x,
 mean.type = c('line', 'point', 'none'),
 xlab = NULL,
 mean.col = 'gray',
 mean.pch = 1,
 mean.lwd = 1,
 mean.lty = 1,
 args.legend = NULL,...)

Arguments

x A SK object.
mean.type The type of mean must be plotted. Default is "line".
mean.col A vector of colors for the means representation.
mean.pch A vector of plotting symbols or characters. Only if type are "point".
mean.lwd Line width of mean.
mean.lty Line type of mean. Only if type are "line".
args.legend List of additional arguments to be passed to legend; The default is NULL.
... Optional plotting parameters.

Details

The boxplot.SK function is a S3 method to plot 'SK' objects. The difference to generic function is the Scott & Knott inference under frame and the plot of means within box.

Author(s)

José Cláudio Faria (<joseclaudio.faria@gmail.com>)
Enio Jelihovschi (<eniojelihovs@gmail.com>)
Ivan Bezerra Allaman (<ivanalaman@gmail.com>)

References

See Also

boxplot
Examples

```r
## Examples: Completely Randomized Design (CRD)
## More details: demo(package='SK')
##

library(ScottKnott)
data(CRD1)

## From: formula
# Simple!
sk1 <- SK(y ~ x,
data=CRD1$dfm,
which='x')
boxplot(sk1)

# A little more elaborate!
boxplot(sk1,
mean.lwd=1.3,
mean.col='red')

# A little more!
boxplot(sk1,
mean.lwd=1.3,
mean.lty=2,
mean.col='red',
args.legend=list(x='bottomleft'))

# With point type!
boxplot(sk1,
mean.type='point')

boxplot(sk1,
mean.type='point',
mean.pch=19,
cex=1.5,
mean.col='red')

# With other point
boxplot(sk1,
mean.type='point',
mean.pch='+',
cex=2,
mean.col='blue',
args.legend=list(x='bottomleft'))
```

CRD1

Completely Randomized Design (CRD)
Description

A list illustrating the resources of ScottKnott package related to Completely Randomized Design ('CRD').

Usage

data(CRD1)
CRD1

Details

A simulated data to model a Completely Randomized Design ('CRD') of 4 factor levels and 6 repetitions.

CRD2

Completely Randomized Design (CRD)

Description

A list illustrating the resources of ScottKnott package related to Completely Randomized Design ('CRD').

Usage

data(CRD2)
CRD2

Details

A simulated data to model a Completely Randomized Design ('CRD') of 45 factor levels and 4 repetitions.

FE

Factorial Experiment (FE)

Description

A list illustrating the resources of ScottKnott package related to Factorial Experiment ('FE').

Usage

data(FE)
FE

Details

A simulated data to model a Factorial Experiment ('FE') with 3 factors, 2 levels per factor and 4 blocks.
Description

A list illustrating the resources of ScottKnott package related to Latin Squares Design (‘LSD’).

Usage

```r
data(LSD)
LSD
```

Details

A simulated data to model a Latin Squares Design (‘LSD’) with 5 factor levels, 5 rows and 5 columns.

Description

S3 method to plot SK objects.

Usage

```r
## S3 method for class 'SK'
plot(x, 
    result = TRUE, 
    replicates = TRUE, 
    pch = 19, 
    col = NULL, 
    xlab = NULL, 
    ylab = NULL, 
    xlim = NULL, 
    ylim = NULL, 
    id.lab = NULL, 
    id.las = 1, 
    y1 = TRUE, 
    y1.lty = 3, 
    y1.col = 'gray', 
    dispersion = c('none','mm','sd','ci','cip'), 
    d.lty = 1, 
    d.col = 'black', 
    title = '', ...)```
plot.SK

Arguments

x A SK object.

result The result of the test (letters) should be visible.

replicates The number of replicates should be visible.

pch A vector of plotting symbols or characters.

col A vector of colors for the means representation.

xlab A label for the ‘x’ axis.

ylab A label for the ‘y’ axis.

xlim The ‘x’ limits of the plot.

ylim The ‘y’ limits of the plot.

id.lab Factor level names at ‘x’ axis.

id.las Factor level names written either horizontally or vertically.

yl Horizontal (reference) line connecting the circle to the ‘y’ axis.

yl.lty Line type of ‘yl’.

yl.col Line color of ‘yl’.

dispersion Vertical line through the circle (mean value) linking the minimum to the maximum of the factor level values corresponding to that mean value. Other options are: sd (standard deviation), ci (confidence interval), cip (pooled confidence interval) and none.

d.lty Line type of dispersion.

d.col A vector of colors for the line type of dispersion.

title A title for the plot.

... Optional plotting parameters.

Details

The plot.SK function is a S3 method to plot ‘Scott and Knott’ objects. It generates a series of points (the means) and a vertical line showing the dispersion of the values corresponding to each group mean. The ci options is calculated utilizing each treatment variance as estimating of population variance. The cip options is calculated utilizing the means square error (MSE) as estimating of population variance.

Author(s)

José Cláudio Faria (<joseclaudio.faria@gmail.com>)
Enio Jelihovschi (<eniojelihovs@gmail.com>)
Ivan Bezerra Allaman (<ivanalaman@gmail.com>)

References

See Also

plot

Examples

##
## Examples: Completely Randomized Design (CRD)
## More details: demo(package='SK')
##
library(ScottKnott)
data(CRD2)

## From: formula
sk1 <- with(CRD2, 
    SK(y ~ x, 
        data=dfm, 
        which='x'))

old.par <- par(mar=c(6, 3, 6, 2))
plot(sk1, 
    id.las=2)

plot(sk1, 
    yl=FALSE, 
    disp='sd', 
    id.las=2)

## From: aov
av <- with(CRD2, 
    aov(y ~ x, 
        data=dfm))
summary(av)

sk2 <- SK(x=av, 
    which='x')
plot(sk2, 
    disp='sd', 
    yl=FALSE, 
    id.las=2)

# From: lm
av_lm <- with(CRD2, 
    lm(y ~ x, 
        data=dfm))

sk3 <- SK(x=av_lm, 
    which='x')

par(mfrow=c(2, 1))
plot(sk3, 
    disp='ci', 
    id.las=2)
id.las=2,
yl=FALSE)

plot(sk3,
disp='cip',
id.las=2,
yl=FALSE)

par(mfrow=c(1, 1))
par(old.par)

print.SK  

Print Method for SK objects.

Description

Returns (and prints) a list for objects of class SK.

Usage

## S3 method for class 'SK'
print(x, digits = 2L,...)

Arguments

x  
A given object of the class SK.

digits  
Minimal number of _significant_ digits. The default is 2.

...  
Further arguments (require by generic).

Author(s)

José Cláudio Faria (<joseclaudio.faria@gmail.com>)
Enio G. Jelihovschi (<eniojelihovs@gmail.com>)
Ivan Bezerra Allaman (<ivanalaman@gmail.com>)

See Also

SK
**Examples**

```r
data(RCBD)

sk <- with(RCBD,
 SK(y ~ blk + tra,
 data=dfm,
 which='tra'))

sk
```

---

**RCBD**

*Randomized Complete Block Design (RCBD)*

**Description**

A list illustrating the resources of **ScottKnott** package related to Randomized Complete Block Design (RCBD).

**Usage**

```r
data(RCBD)
RCBD
```

**Details**

A simulated data to model a Randomized Complete Block Design (RCBD) of 5 factor levels, 4 blocks and 4 factor levels repetitions one in each block.

---

**SK**

*The SK Test for Single Experiments*

**Description**

These are methods for objects of class `formula, lm, aov, aovlist` and `lmerMod` for single, factorial, split-plot and split-split-plot experiments.

**Usage**

```r
SK(x,...)

S3 method for class 'formula'
SK(formula,
 data = NULL,
 which = NULL,
 f11 = NULL,
 f12 = NULL,
```

---
Arguments

x, formula  A formula, lm, aov, aovlist and lmerMod class object. Objects of the formula class follow “response variable ~ predicted variable.”
data  A object of the data.frame class. Use only objects of formula class.
which  The name of the treatment to be used in the comparison. The name must be inside quoting marks.
f11  A vector of length 1 giving the level of the first factor in nesting order tested.
f12  A vector of length 1 giving the level of the second factor in nesting order tested.
error  The error to be considered. If from experiment at split plot or split-split plot pay attention! See details!
**SK**

sig.level  
Level of Significance used in the SK algorithm to create the groups of means. The default value is 0.05.

round   
Integer indicating the number of decimal places.

...   
Potential further arguments (required by generic).

**Details**

The function SK returns an object of class SK containing the groups of means plus other necessary variables for summary and plot.

The generic functions summary and plot are used to obtain and print a summary and a plot of the results.

The error arguments may be used whenever the user want a specific error other than the experimental error. At the split plot and split-split plot experiment, combination of error may be specified with "/" in the sequence of the which argument. For example, a object of aovlist class, a possible combination would be error = 'Within/blk:plot' at case block split plot experiment with which = 'subplot:plot' argument.

**Value**

The function SK returns a list of the class SK with the slots:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>out</td>
<td>A list storing the result of Scott &amp; Knott test.</td>
</tr>
<tr>
<td>info</td>
<td>A list storing the descriptive statistics.</td>
</tr>
<tr>
<td>stat</td>
<td>A matrix with the statistics of each clustering process.</td>
</tr>
<tr>
<td>clus</td>
<td>A list with the groups formed in each clustering process.</td>
</tr>
</tbody>
</table>

**Author(s)**

José Cláudio Faria (<joseclaudio.faria@gmail.com>)
Enio Jelihovschi (<eniojelihovs@gmail.com>)
Ivan Bezerra Allaman (<ivanalaman@gmail.com>)

**References**


**Examples**

```r
Examples: Randomized Complete Block Design (RCBD)
More details: demo(package='SK')
##
```
## The parameters can be: formula, aovlist, lm, aovlist and lmerMod

data(RCBD)

## From: formula
sk1 <- with(RCBD,
  SK(y ~ blk + tra,
    data=dfm,
    which='tra'))

summary(sk1)

## From: merMod
## This class is specific of the lme4 package.
## Not run:
if(require(lme4)){
  lmer1 <- with(RCBD,
    lmer(y ~ (1|blk) + tra,
         data=dfm))

  sk2 <- SK(lmer1,
            which='tra')
  summary(sk2)
}

## End(Not run)

## Example: Latin Squares Design (LSD)
## More details: demo(package='SK')

data(LSD)

## From: formula
sk3 <- with(LSD,
  SK(y ~ rows + cols + tra,
    data=dfm,
    which='tra'))

summary(sk3)

## From: aov
av1 <- with(LSD,
  aov(y ~ rows + cols + tra,
       data=dfm))

sk4 <- SK(av1,
          which='tra')

summary(sk4)

## From: lm
lm1 <- with(LSD,
  lm(y ~ rows + cols + tra,
     data=dfm))
sk5 <- SK(lm1, which='tra')
summary(sk5)

##
## Example: Factorial Experiment (FE)
## More details: demo(package='SK')
##
data(FE)
## From: formula
## Main factor: N
sk6 <- with(FE, SK(y ~ blk + N*P*K, data=dfm, which='N'))
summary(sk6)

## Nested: p1/N
# From: formula
n_sk1 <- with(FE, SK(y ~ blk + N*P*K, data=dfm, which='P:N', f1=1))
summary(n_sk1)

## Nested: p2/N
# From: lm
lm2 <- with(FE, lm(y ~ blk + N*P*K, dfm))
n_sk2 <- with(FE, SK(lm2, which='P:N', f1=2))
summary(n_sk2)

## Nested: n1/P
# From: aov
av2 <- with(FE, aov(y ~ blk + N*P*K, dfm))
n_sk3 <- with(FE, SK(av2, which='N:P', f1=1))
summary(n_sk3)

# From: merMod
```r
Not run:
if(require(lme4)){
 lmer2 <- with(FE,
 lmer(y ~ (1|blk) + N*P*K,
 dfm))

 n_sk4 <- with(FE,
 SK(lmer2,
 which='N:P',
 fl1=1))

 summary(n_sk4)
}

End(Not run)

Example: Split-plot Experiment (SPET)
More details: demo(package='SK')
##
data(SPET)

From lm
lm3 <- with(SPET,
 lm(y ~ blk*tra + tra*year,
 dfm))

crotgrantiana/year
sp_sk1 <- SK(lm3,
 which='tra:year',
 f1=1)
summary(sp_sk1)

year1/tra
It is necessary to set year error with trat error in the order of the "which" argument.
It is necessary to inform how to combine the errors
sp_sk2 <- SK(lm3,
 which='year:tra',
 error='Residuals/blk:tra',
 f1=1)
summary(sp_sk2)

From merMod
Only tra
Not run:
if(require(lme4)){
 lmer3 <- with(SPET,
 lmer(y - blk + (1|blk:tra) + tra*year,
 dfm))

 # comparison only tra
 sp_sk3 <- SK(lmer3,
 which = 'tra',
 error = 'blk:tra')

 summary(sp_sk3)
}
```
summary(sp_sk3)

# year/tra
sp_sk4 <- SK(lmer3,
    which='year:tra',
    error='Residual/blk:tra',
    fl1=1)
summary(sp_sk4)
}
## End(Not run)

## Example: Split-split-plot Experiment (SSPE)
## More details: demo(package='SK')
##
data(SSPE)
## From: formula
## Main factor: P
## It is necessary to inform the appropriate error for the test
ssp_sk1 <- with(SSPE,
    SK(y ~ blk + P*SP*SSP + Error(blk/P/SP),
        data=dfm,
        which='P',
        error='blk:P'))
summary(ssp_sk1)

## Main factor: SP
## It is necessary to inform the appropriate error for the test
ssp_sk2 <- with(SSPE,
    SK(y ~ blk + P*SP*SSP + Error(blk/P/SP),
        data=dfm,
        which='SP',
        error='blk:P:SP'))
summary(ssp_sk2)

## Main factor: SSP
ssp_sk3 <- with(SSPE,
    SK(y ~ blk + P*SP*SSP + Error(blk/P/SP),
        data=dfm,
        which='SSP'))
summary(ssp_sk3)

## From: aov
## Main factor: SSP
av3 <- with(SSPE,
    aov(y ~ blk + P*SP*SSP + Error(blk/P/SP),
        data=dfm))
ssp_sk4 <- SK(av3,
    which='SSP')
summary(ssp_sk4)
## Nested: p1/SP
## It is necessary to inform the appropriate error for the test
ssp_sk5 <- SK(av3,
    which='P:SP',
    error='blk:P:SP',
    f1l=1)
summary(ssp_sk5)

## Nested: p1/SSP
ssp_sk6 <- SK(av3,
    which='P:SSP',
    f1l=1)
summary(ssp_sk6)

## Nested: p1/sp1/SSP
## Testing SSP inside of level one of P and level one of SP
ssp_sk7 <- SK(av3,
    which='P:SP:SSP',
    f1l=1,
    f12=1)
summary(ssp_sk7)

## Nested: p2/sp1/SSP
ssp_sk8 <- SK(av3,
    which='P:SP:SSP',
    f1l=2,
    f12=1)
summary(ssp_sk8)

## Nested: sp1/P
## It is necessary to inform the appropriate error for the test
ssp_sk9 <- SK(av3,
    which='SP:P',
    error='blk:P:SP/blk:P',
    f1l=1)
summary(ssp_sk9)

## Nested: ssp1/SP
ssp_sk10 <- SK(av3,
    which='SSP:SP',
    error='Within/blk:P:SP',
    f1l=1)
summary(ssp_sk10)

## Nested: ssp1/sp1/P
## It is necessary to inform the appropriate error for the test
ssp_sk11 <- SK(av3,
    which='SSP:SP:P',
    error='Within/blk:P:SP/blk:P',
    f1l=1,
    f12=1)
summary(ssp_sk11)
## UNBALANCED DATA
The average are adjusted by "Least-Square-Means" methodology.

From: formula
data(CRD2)

uCRD2 <- CRD2$dfm
uCRD2[c(3, 5, 10, 44, 45), 3] <- NA

usk1 <- SK(y ~ x,
data=uCRD2,
which='x')
summary(usk1)

From: lm
ulm1 <- lm(y ~ x,
data=uCRD2)

usk2 <- SK(ulm1,
which='x')
summary(usk2)

Factorial Experiments
Nested: p1/N
From: lm

uFE <- FE$dfm
uFE[c(3, 6, 7, 20, 31, 32), 5] <- NA

ulm2 <- lm(y ~ blk + N*P*K,
uFE)

Nested: p1/N
usk3 <- SK(ulm2,
data=uFE,
which='P:N',
fl1=1)
summary(usk3)

Nested: p2/n2/K
usk4 <- SK(ulm2,
data=uFE,
which='P:N:K',
fl1=2,
fl2=2)
summary(usk4)

---

Completely Randomized Design (CRD)
Description

The experiment consists of 16 treatments (cultivars) of sorghum conducted in a balanced squared lattice design and the yield by plot (kg/plot).

Usage

data(sorghum)
sorghum

Format

An incomplete balanced block design with 4 blocks, 16 treatments, and 5 repetitions, that is, the yield of each treatment is measured 5 times. sorghum is a list with 4 elements. The first ‘tr’ is a factor of length 80 with 16 levels describing the treatments. The second ‘dm’ is data.frame describing the design matrix. Its columns are ‘x’, ‘bl’ (blocks) and ‘r’ repetitions. The third ‘y’ is a numeric vector the yields. The fourth ‘dfm’ is a data frame with four columns. The first three columns are the design matrix and the fourth is ‘y’.

Details

The experiment was conducted at EMBRAPA Milho e Sorgo (The Brazilian Agricultural Research Corporation, Corn and Sorghum section).

Source


Examples

library(ScottKnott)
data(sorghum)

av <- aov(y ~ r/bl + x,
  data=sorghum$dfm)

sk <- SK(av,
  which='x',
  sig.level=0.05)

summary(sk)

plot(sk)
**SPE**  
*Split-plot Experiment (SPE)*

**Description**

A list to illustrate the resources of [ScottKnott](https://CRAN.R-project.org/package=ScottKnott) package related to Split-plot Experiment (‘SPE’).

**Usage**

```r
data(SPE)
SPE
```

**Details**

A simulated data to model a Split-plot Experiment (‘SPE’) with 3 plots, each one split 4 times and 6 repetitions per split.

---

**SPET**  
*Split-plot Experiment in Time (SPET)*

**Description**

The experiment consists of 8 treatments (7 leguminous cover crops and maize) in a Randomized Complete Block Design (‘RCBD’) and the yield by plot (kg/plot).

**Usage**

```r
data(SPET)
SPET
```

**Source**

**SSPE**

*Split-split-plot Experiment (SSPE)*

**Description**

A list to illustrate the resources of **ScottKnot** package related to Split-split-plot Experiment (‘SSPE’).

**Usage**

```r
data(SSPE)
SSPE
```

**Details**

A simulated data to model a Split-split-plot Experiment (‘SSPE’) with 3 plots, each one split 3 times, each split, split again 5 times and 4 repetitions per split-split.

**summary**

*Summary Method for SK Objects*

**Description**

Returns (and prints) a summary list for SK objects.

**Usage**

```r
S3 method for class 'SK'
summary(object,
...)
```

**Arguments**

- `object` A given object of the class SK.
- `...` Potential further arguments (required by generic).

**Author(s)**

José Cláudio Faria (<joseclaudio.faria@gmail.com>)
Enio Jelihovschi (<eniojelihovs@gmail.com>)
Ivan Bezerra Allaman (<ivanalamar@gmail.com>)

**References**

See Also

SK

Examples

```r
Examples: Completely Randomized Design (CRD)
More details: demo(package='SK')
##
data(CRD2)
From: formula
sk1 <- with(CRD2,
 SK(y ~ x,
 data=dfm,
 which='x',
 id.trim=5))
summary(sk1)
```

---

**xtable.SK**

*xtable method for SK objects.*

Description

Convert an SK object to an xtable.SK object, which can then be printed as a LaTeX or HTML table. This function is an additional method to xtable function of xtable package.

Usage

```r
S3 method for class 'SK'
xtable(x, ...)
```

Arguments

- **x**
  - A given object of the class SK.
- **...**
  - Further arguments (require by xtable::xtable).

Author(s)

José Cláudio Faria (<joseclaudio.faria@gmail.com>)
Enio G. Jelihovschi (<eniojelihovs@gmail.com>)
Ivan Bezerra Allaman (<ivanalaman@gmail.com>)
See Also

xtable

Examples

data(RCBD)
### Not run:
  if(require(xtable)){
    lm1 <- with(RCBD,
                 lm(y ~ blk + tra,
                    data=dfm))

    sk1 <- SK(lm1,
              which='tra')
    tb <- xtable(sk1)
    print(tb)
  }

### End(Not run)
Index

* SK
  print.SK, 10
  xtable.SK, 23

* datasets
  CRD1, 5
  CRD2, 6
  FE, 6
  LSD, 7
  RCBD, 11
  sorghum, 19
  SPE, 21
  SPET, 21
  SSPE, 22

* design
  ScottKnott-package, 2

* htest
  ScottKnott-package, 2

* package
  boxplot.SK, 3
  plot.SK, 7
  print.SK, 10
  ScottKnott-package, 2
  SK, 10, 11, 23
  sorghum, 19
  SPE, 21
  SPET, 21
  SSPE, 22
  summary, 22
  xtable, 24
  xtable.SK, 23

plot.SK, 7
print.SK, 10
RCBD, 11
ScottKnott (ScottKnott-package), 2
ScottKnott-package, 2
SK, 10, 11, 23
sorghum, 19
SPE, 21
SPET, 21
SSPE, 22
summary, 22
xtable, 24
xtable.SK, 23

boxplot, 4
boxplot.SK, 3
CRD1, 5
CRD2, 6
FE, 6
LSD, 7
plot, 9