Package ‘SelectBoost’

February 23, 2020

Type Package

Title A General Algorithm to Enhance the Performance of Variable Selection Methods in Correlated Datasets

Version 2.0.0

Date 2020-02-23

Depends R (>= 2.10)

biocViews

Imports lars, glmnet, igraph, parallel, msgps, Rfast, methods, Cascade, graphics, grDevices, varbvs, spls, abind

Suggests knitr, rmarkdown, mixOmics, CascadeData

Author Frederic Bertrand [cre, aut] (<https://orcid.org/0000-0002-0837-8281>), Myriam Maumy-Bertrand [aut] (<https://orcid.org/0000-0002-4615-1512>), Ismail Aouadi [ctb], Nicolas Jung [ctb]

Maintainer Frederic Bertrand <frederic.bertrand@math.unistra.fr>

Description An implementation of the selectboost algorithm (Bertrand et al. 2020, <arXiv:1810.01670>), which is a general algorithm that improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. It can either produce a confidence index for variable selection or it can be used in an experimental design planning perspective.

License GPL-3

Encoding UTF-8

Classification/MSC 62H11, 62J12, 62J99

LazyData true

VignetteBuilder knitr

RoxygenNote 7.0.0

BugReports
https://github.com/fbertran/SelectBoost/issues

NeedsCompilation
no

Repository
CRAN

Date/Publication
2020-02-23 13:30:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AICc_BIC_glmnetB</td>
<td>3</td>
</tr>
<tr>
<td>auto.analyze</td>
<td>4</td>
</tr>
<tr>
<td>autoboost</td>
<td>5</td>
</tr>
<tr>
<td>autoboost.res.x</td>
<td>8</td>
</tr>
<tr>
<td>autoboost.res.x.adapt</td>
<td>8</td>
</tr>
<tr>
<td>autoboost.res.x2</td>
<td>8</td>
</tr>
<tr>
<td>autoboost.res.x2.adapt</td>
<td>9</td>
</tr>
<tr>
<td>boost</td>
<td>9</td>
</tr>
<tr>
<td>Cascade_confidence</td>
<td>12</td>
</tr>
<tr>
<td>Cascade_example</td>
<td>13</td>
</tr>
<tr>
<td>fastboost</td>
<td>13</td>
</tr>
<tr>
<td>fastboost.res.x</td>
<td>16</td>
</tr>
<tr>
<td>fastboost.res.x.adapt</td>
<td>16</td>
</tr>
<tr>
<td>fastboost.res.x2</td>
<td>16</td>
</tr>
<tr>
<td>fastboost.res.x2.adapt</td>
<td>17</td>
</tr>
<tr>
<td>force.non.inc</td>
<td>17</td>
</tr>
<tr>
<td>group_func_1</td>
<td>18</td>
</tr>
<tr>
<td>group_func_2</td>
<td>19</td>
</tr>
<tr>
<td>miscplot</td>
<td>20</td>
</tr>
<tr>
<td>network.confidence-class</td>
<td>21</td>
</tr>
<tr>
<td>plot.selectboost</td>
<td>21</td>
</tr>
<tr>
<td>plot.summary.selectboost</td>
<td>23</td>
</tr>
<tr>
<td>plot_selectboost_cascade</td>
<td>24</td>
</tr>
<tr>
<td>results_simuls_reverse_engineering_v3</td>
<td>25</td>
</tr>
<tr>
<td>SelectBoost</td>
<td>28</td>
</tr>
<tr>
<td>selectboost_cascade</td>
<td>29</td>
</tr>
<tr>
<td>simulation</td>
<td>31</td>
</tr>
<tr>
<td>summary.selectboost</td>
<td>33</td>
</tr>
<tr>
<td>trajC0</td>
<td>35</td>
</tr>
<tr>
<td>var_select</td>
<td>37</td>
</tr>
<tr>
<td>var_select_all</td>
<td>41</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
</tr>
</tbody>
</table>
AICc and BIC for glmnet logistic models

Description

Compute AICc and BIC for glmnet logistic models.

Usage

\[
\text{rerr}(v1, v2) \\
\text{ridge_logistic}(X, Y, \text{lambda}, \beta_0, \beta, \text{maxiter} = 1000, \text{tol} = 1e-10) \\
\text{BIC(glmnetB)}(Z, Y, \text{glmnet.model}, \alpha, \text{modelSet}, \text{reducer} = "\text{median}") \\
\text{AICc(glmnetB)}(Z, Y, \text{glmnet.model}, \alpha, \text{modelSet}, \text{reducer} = "\text{median}")
\]

Arguments

- \(v1\) A numeric vector.
- \(v2\) A numeric vector.
- \(X\) A numeric matrix.
- \(Y\) A numeric 0/1 vector.
- \(\text{lambda}\) A numeric value.
- \(\beta_0\) A numeric value. Initial intercept value.
- \(\beta\) A numeric vector. Initial coefficient values.
- \(\text{maxiter}\) A numeric value. Maximum number of iterations.
- \(\text{tol}\) A numeric value. Tolerance value.
- \(Z\) A numeric matrix.
- \(\text{glmnet.model}\) A fitted glmnet model.
- \(\alpha\) A numeric value.
- \(\text{modelSet}\) Modelset to consider.
- \(\text{reducer}\) A character value. Reducer function. Either 'median' or 'mean'.

Details

Calculate AICc and BIC for glmnet logistic models from the glmnetB function of the package rLogistic https://github.com/echi/rLogistic and adapted to deal with non finite exponential values in AICc and BIC computations.

Value

A list relevant to model selection.
auto.analyze

Find limits for selectboost analysis

Description

Find limits for selectboost analysis.

Usage

auto.analyze(x, ...)

S3 method for class 'selectboost'
auto.analyze(x, ...)
Arguments

- `x` Numerical matrix. Selectboost object.
- `...` Passed to the summary.selectboost function.

Details

plot.summary.selectboost returns an invisible list and creates four graphics. Two plots the proportion of selection with respect to \(c_0 \) (by step or according to real scale). On the third graph, no bar means a proportion of selection less than prop.level. Confidence intervals are computed at the conf.int.level level. Barplot of the confidence index (1-min(\(c_0 \), such that proportion(\(c_0 > conf.threshold)\)).

Value

list of results.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>

References

See Also

fastboost and autoboost

Other Selectboost analyze functions: plot.summary.selectboost(), trajC0()

Examples

data(autoboost.res.x)
auto.analyze(autoboost.res.x)

data(autoboost.res.x2)
auto.analyze(autoboost.res.x2)

autoboost

Autoboost

Description

All in one use of selectboost that avoids redondant fitting of distributions and saves some memory.
Usage

autoboost(
 X,
 Y,
 ncores = 4,
 group = group_func_1,
 func = lasso_msgps_AICc,
 corrfunc = "cor",
 use.parallel = FALSE,
 B = 100,
 step.num = 0.1,
 step.limit = "none",
 risk = 0.05,
 verbose = FALSE,
 step.scale = "quantile",
 normalize = TRUE,
 steps.seq = NULL,
 debug = FALSE,
 version = "lars",
 ...
)

Arguments

X Numerical matrix. Matrix of the variables.
Y Numerical vector or factor. Response vector.

group Function. The grouping function. Defaults to group_func_1.
func Function. The variable selection function. Defaults to lasso_msgps_AICc.
corrfunc Character value or function. Used to compute associations between the variables. Defaults to "cor".
use.parallel Boolean. To use parallel computing (doMC) download the extended package from Github. Set to FALSE.
B Numerical value. Number of resampled fits of the model. Defaults to 100.

step.num Numerical value. Step value for the c0 sequence. Defaults to 0.1.
step.limit Character value. If "Pearson", truncates the c0 sequence using a Pearson based p-value. Defaults to "none".
risk Numerical value. Risk level when finding limits based on c0=0 values. Defaults to 0.05.

verbose Boolean. Defaults to FALSE.
step.scale Character value. How to compute the c0 sequence if not user-provided: either "quantile" or "linear". Defaults to "quantile".
normalize Boolean. Shall the X matrix be centered and scaled? Defaults to TRUE.

steps.seq Numeric vector. User provided sequence of c0 values to use. Defaults to NULL.
Details

autoboost returns a numeric matrix. For each of the variable (column) and each of the c0 (row), the entry is proportion of times that the variable was selected among the B resampled fits of the model. Fitting to the same group of variables is only performed once (even if it occurred for another value of c0), which greatly speeds up the algorithm.

Value

A numeric matrix with attributes.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>

References

See Also

`boost, fastboost, plot.selectboost`

Other Selectboost functions: `boost, fastboost, plot_selectboost_cascade, selectboost_cascade`

Examples

```r
set.seed(314)
xran=matrix(rnorm(75),15,5)
ybin=sample(0:1,15,replace=TRUE)
yran=rnorm(15)
set.seed(314)
#For quick test purpose, not meaningful, should be run with greater value of B
#and disabling parallel computing as well
res.autoboost <- autoboost(xran,yran,B=3,use.parallel=FALSE)

autoboost(xran,yran)
#Customize resampling levels
autoboost(xran,yran,steps.seq=c(.99,.95,.9))

#Binary logistic regression
autoboost(xran,ybin,func=lasso_cv_glmnet_bin_min)
```

autoboost.res.x
Description
Result of autoboost analysis of diabetes data from *lars* package with lasso and first order model

Usage
autoboost.res.x

Format
A numerical matrix frame with 13 rows and 10 variables with attributes.

autoboost.res.x.adapt
Description
Result of autoboost analysis of diabetes data from *lars* package with adaptative lasso and first order model

Usage
autoboost.res.x.adapt

Format
A numerical matrix frame with 13 rows and 10 variables with attributes.

autoboost.res.x2
Description
Result of autoboost analysis of diabetes data from *lars* package with lasso and second order model

Usage
autoboost.res.x2

Format
A numerical matrix frame with 13 rows and 64 variables with attributes.
Autoboost adaptative lasso diabetes second order.

Description
Result of autoboost analysis of diabetes data from lars package with adaptative lasso and second order model

Usage
autoboost.res.x2.adapt

Format
A numerical matrix frame with 13 rows and 64 variables with attributes.

boost

Boost step by step functions

Description
Step by step functions to apply the selectboost algorithm.

Usage
boost.normalize(X, eps = 1e-08)

boost.compcorrs(
 Xnorm,
 corrfunc = "cor",
 verbose = FALSE,
 testvarindic = rep(TRUE, ncol(Xnorm))
)

boost.correlation_sign(Correlation_matrice, verbose = FALSE)

boost.findgroups(Correlation_matrice, group, corr = 1, verbose = FALSE)

boost.Xpass(nrowX, ncolX)

boost.adjust(
 x,
 groups,
 Correlation_sign,
\begin{verbatim}
Xpass = boost.Xpass(nrowX, ncolX),
verbose = FALSE,
use.parallel = FALSE,
ncores = 4
)

boost.random(
 X,
 Xpass,
 vmf.params,
 verbose = FALSE,
 B = 100,
 use.parallel = FALSE,
 ncores = 4
)

boost.apply(
 X,
 cols.simul,
 Y,
 func,
 verbose = FALSE,
 use.parallel = FALSE,
 ncores = 4,
 ...
)

boost.select(Boost.coeffs, eps = 10^(-4), version = "lars", verbose = FALSE)
\end{verbatim}

Arguments

- **\(X\)**: Numerical matrix. Matrix of the variables.
- **\(\text{eps}\)**: Numerical value. Response vector.
- **\(X\text{norm}\)**: Numerical matrix. Needs to be centered and l2 normalized.
- **\(\text{corrfunc}\)**: Character value or function. The function to compute associations between the variables.
- **\(\text{verbose}\)**: Boolean. Defaults to FALSE.
- **\(\text{testvarindic}\)**: Boolean vector. Compute associations for a subset of variables. By default, the scope of the computation is the whole dataset, i.e. `rep(TRUE, ncol(Xnorm))`.
- **Correlation_matrice**
 - **\(\text{group}\)**: Character value or function. The grouping function.
 - **\(\text{corr}\)**: Numerical value. Thresholding value. Defaults to 1.
 - **\(nrowX\)**: Numerical value
 - **\(ncolX\)**: Numerical value.
 - **\(\text{groups}\)**: List. List of groups or communities (compact form).
Correlation_sign
 Numerical -1/1 matrix.
Xpass Numerical value. Transformation matrix. Defaults to boost.Xpass(nrowX,ncolX),
 with nrowX=nrow(X) and ncolX=ncol(X).
use.parallel Boolean. Defaults to FALSE.
ncores Numerical value. Number of cores to use. Defaults to 4.
vmf.params List. List of the parameters of the fitted von-Mises distributions.
B Integer value. Number of resampling.
cols.simul Numerical value. Transformation matrix.
Y Numerical vector or factor. Response.
func Function. Variable selection function.
... Additional parameters passed to the func function.
Boost.coeffs Numerical matrix. l2 normed matrix of predictors.
version Character value. "lars" (no intercept value) or "glmnet" (first coefficient is the
 intercept value).

Details

boost.normalize returns a numeric matrix whose column are centered and l2 normalized.
boost.compcorrs returns a correlation like matrix computed using the corrfunc function.
boost.Xpass returns the transformation matrix.
boost.findgroups returns a list of groups or communities found using the group function.
boost.Xpass returns the transformation matrix.
boost.adjust returns the list of the parameters of the fitted von-Mises distributions.
boost.random returns an array with the resampled datasets.
boost.apply returns a matrix with the coefficients estimated using the resampled datasets.
boost.select returns a vector with the proportion of times each variable was selected.

Value

Various types depending on the function.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>

References

See Also

fastboost, autoboot

Other Selectboost functions: autoboot(), fastboost(), plot_selectboost_cascade, selectboost_cascade

Examples

set.seed(314)
xran=matrix(rnorm(200),20,10)
yran=rnorm(20)
xran_norm <- boost.normalize(xran)

xran_corr<- boost.compcorrs(xran_norm)

xran_corr_sign <- boost.correlation_sign(xran_corr)

xran_groups <- boost.findgroups(xran_corr, group=group_func_1, .3)
xran_groups_2 <- boost.findgroups(xran_corr, group=group_func_2, .3)

xran_Xpass <- boost.Xpass(nrow(xran_norm),ncol(xran_norm))

xran_adjust <- boost.adjust(xran_norm, xran_groups$groups, xran_corr_sign)

#Not meaningful, should be run with B>=100
xran_random <- boost.random(xran_norm, xran_Xpass, xran_adjust$vmf.params, B=5)

xran_random <- boost.random(xran_norm, xran_Xpass, xran_adjust$vmf.params, B=100)

xran_apply <- boost.apply(xran_norm, xran_random, yran, lasso_msgps_AICc)

xran_select <- boost.select(xran_apply)

Cascade_confidence
Confidence indices

Description

Result for confidence indices derivation using the Cascade package

Usage

net_confidence

net_confidence_.5

net_confidence_thr
Format

A network.confidence object with four slots:

- **network.confidence** The confidence matrix
- **name** Names of the variables (genes)
- **F** F array, see Cascade for more details
- **time_pt** Repeated measurements
- **cv.subjects** Logical. Was crossvalidation carried out subjectwise?

Cascade_example *Simulated Cascade network and inference*

Description

Result for the reverse engineering of a simulated Cascade network

Usage

- **M**
 - Simulated microarray
- **Net**
 - Simulated network
- **Net_inf_C**
 - Inferred network

Format

Three objects:

- **M** Simulated microarray
- **Net** Simulated network
- **Net_inf_C** Inferred network

fastboost *Fastboost*

Description

All in one use of selectboost that avoids redundant fitting of distributions and saves some memory.
Usage

```r
fastboost(
  X,
  Y,
  ncores = 4,
  group = group_func_1,
  func = lasso_msgps_AICc,
  corrfunc = "cor",
  use.parallel = FALSE,
  B = 100,
  step.num = 0.1,
  step.limit = "none",
  verbose = FALSE,
  step.scale = "quantile",
  normalize = TRUE,
  steps.seq = NULL,
  debug = FALSE,
  version = "lars",
  c0lim = TRUE,
  ...
)
```

Arguments

- **X**: Numerical matrix. Matrix of the variables.
- **Y**: Numerical vector or factor. Response vector.
- **group**: Function. The grouping function. Defaults to `group_func_1`.
- **func**: Function. The variable selection function. Defaults to `lasso_msgps_AICc`.
- **corrfunc**: Character value or function. Used to compute associations between the variables. Defaults to "cor".
- **use.parallel**: Boolean. To use parallel computing (doMC) download the extended package from Github. Set to `FALSE`.
- **B**: Numerical value. Number of resampled fits of the model. Defaults to 100.
- **step.num**: Numerical value. Step value for the c0 sequence. Defaults to 0.1.
- **step.limit**: Defaults to "none".
- **verbose**: Boolean. Defaults to `FALSE`.
- **step.scale**: Character value. How to compute the c0 sequence if not user-provided: either "quantile" or "linear", "zoom_1", "zoom_q" and "mixed". Defaults to "quantile".
- **normalize**: Boolean. Shall the X matrix be centered and scaled? Defaults to `TRUE`.
- **steps.seq**: Numeric vector. User provided sequence of c0 values to use. Defaults to `NULL`.
- **debug**: Boolean value. If more results are required. Defaults to `FALSE`.
- **version**: Character value. Passed to the `boost.select` function. Defaults to `lars`.
- **c0lim**: Boolean. Shall the c0=0 and c0=1 values be used? Defaults to `TRUE`.
- **...**: Arguments passed to the variable selection function used in `boost.apply`.

Details

`fastboost` returns a numeric matrix. For each of the variable (column) and each of the \(c0 \) (row), the entry is proportion of times that the variable was selected among the \(B \) resampled fits of the model. Fitting to the same group of variables is only performed once (even if it occurred for another value of \(c0 \)), which greatly speeds up the algorithm. In order to limit memory usage, `fastboost` uses a compact way to save the group memberships, which is especially useful with community grouping function and fairly big datasets.

Value

A numeric matrix with attributes.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>

References

See Also

`boost`, `autoboost`, `plot.selectboost`

Other Selectboost functions: `autoboost()`, `boost`, `plot_selectboost_cascade`, `selectboost_cascade`

Examples

```r
set.seed(314)
xran=matrix(rnorm(75),15,5)
ybin=sample(0:1,15,replace=TRUE)
yran=rnorm(15)
set.seed(314)
#For quick test purpose, not meaningful, should be run with greater value of B
#and disabling parallel computing as well
res.fastboost <- fastboost(xran,yran,B=3,use.parallel=FALSE)

fastboost(xran,yran)
#Customize resampling levels
fastboost(xran,yran,steps.seq=c(.99,.95,.9),c0lim=FALSE)
fastboost(xran,yran,step.scale="mixed",c0lim=TRUE)
fastboost(xran,yran,step.scale="zoom_l",c0lim=FALSE)
fastboost(xran,yran,step.scale="zoom_l",step.num = c(1,.9,.01),c0lim=FALSE)
fastboost(xran,yran,step.scale="zoom_q",c0lim=FALSE)
fastboost(xran,yran,step.scale="linear",c0lim=TRUE)
fastboost(xran,yran,step.scale="quantile",c0lim=TRUE)

#Binary logistic regression
```
fastboost(xran,ybin,func=lasso_cv_glmnet_bin_min)

fastboost.res.x
Fastboost lasso diabetes first order.

Description
Result of fastboost analysis of diabetes data from *lars* package with lasso and first order model

Usage
fastboost.res.x

Format
A numerical matrix frame with 13 rows and 10 variables with attributes.

fastboost.res.x.adapt
Fastboost adaptative lasso diabetes first order.

Description
Result of fastboost analysis of diabetes data from *lars* package with adaptative lasso and first order model

Usage
fastboost.res.x.adapt

Format
A numerical matrix frame with 13 rows and 10 variables with attributes.

fastboost.res.x2
Fastboost lasso diabetes second order.

Description
Result of fastboost analysis of diabetes data from *lars* package with lasso and second order model

Usage
fastboost.res.x2

Format
A numerical matrix frame with 13 rows and 64 variables with attributes.
fastboost.res.x2.adapt

Fastboost adaptative lasso diabetes second order.

Description

Result of fastboost analysis of diabetes data from *lars* package with adaptative lasso and second order model.

Usage

```r
fastboost.res.x2.adapt
```

Format

A numerical matrix frame with 13 rows and 64 variables with attributes.

force.non.inc

Non increasing post processing step for selectboost analysis

Description

Post processes a selectboost analysis.

Usage

```r
force.non.inc(object)
```

Arguments

- `object`: Numerical matrix. Result of selectboost (autoboost, fastboost, ...).

Details

`force.non.inc` returns a vector after ensuring that the proportion of times each variable was selected is non increasing with respect to the 1-c0 value.

Value

A matrix with the results.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>
References

See Also

fastboost, autoboost

Other Selectboost analyse functions: plot.selectboost(), summary.selectboost()

Examples

data(autoboost.res.x)
res.fastboost.force.non.inc <- force.non.inc(autoboost.res.x)

--
group_func_1 Generate groups by thresholding.
--

Description

group_func_1 creates groups of variables based on thresholding the input matrix.

Usage

group_func_1(absXcor, c0)

Arguments

absXcor A numeric matrix. The absolute value of a correlation or distance matrix.
c0 A numeric scalar. The thresholding

Details

This is a function used to create a list of groups using an input matrix and a thresholding value c0. A group is made, for every column in the input matrix.

Value

A list with one entry: the list of groups. Attributes:

• "type": "normal"
• "length.groups" the length of each groups.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>
References

See Also

group_func_2 and boost.findgroups

Examples

set.seed(314)
group_func_1(cor(matrix(rnorm(50),10,5)),.4)

group_func_2 Generate groups using community analysis.

Description

group_func_2 creates groups of variables based on community analysis.

Usage

group_func_2(absXcor, c0)

Arguments

absXcor A numeric matrix. The absolute value of a correlation or distance matrix.
c0 A numeric scalar. The thresholding

Details

This is a function used to create a list of groups using an input matrix and a thresholding value c0. A group is made, for every column in the input matrix. It uses the infomap.community function of the igraph package.

Value

A list with one entry: the list of groups. Attributes:

• "type": "normal"
• "length.groups" the length of each groups.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>
References

See Also

group_func_2, boost.findgroups, infomap.community and igraph.

Examples

```r
set.seed(314)
group_func_2(cor(matrix(rnorm(100),10,10)),.5)
```

miscplot

Miscellaneous plot functions

Description

Define some additional plot functions to be used in the demos of the package.

Usage

```r
## S3 method for class 'matrix'
plot(x, ...)
```

Arguments

- `x` A numeric matrix. A matrix to be plotted.
- `...` Additional arguments passed to the plot function.

Details

matrixplot plots a numeric matrix x.

Value

matrixplot returns 1.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr> with contributions from Nicolas Jung.

References

Examples

```r
set.seed(3141)
randmat=matrix(rnorm(360),60,60)
plot(randmat)
```

network.confidence-class

`Network confidence class.`

Description

Some details about this class and my plans for it in the body.

Details

- `network.confidence` Matrix of confidence indices.
- `name` Vector.
- `array` F array
- `time_pt` Vector
- `cv.subjects` Logical. Was crossvalidation carried out subjectwise?

plot.selectboost

`Plot selectboost object`

Description

Plot a selectboost object.

Usage

```r
## S3 method for class 'selectboost'
plot(
  x,
  verbose = FALSE,
  prop.level = 0.95,
  conf.int.level = 0.95,
  conf.threshold = 0.95,
  ...
)
```
plot.selectboost

Arguments

- `x`
 Numerical matrix. Result of selectboost (autoboost, fastboost, ...).

- `verbose`
 Boolean. Defaults to FALSE.

- `prop.level`
 Numeric value. Used to compute the proportion of selection is greater than prop.level. Defaults to .95.

- `conf.int.level`
 Numeric value. Confidence level for confidence intervals on estimated proportions of selection. Defaults to .95.

- `conf.threshold`
 Numeric value. Used to compute the number of steps (c0) for which the proportion of selection remains greater than conf.threshold. Defaults to .95.

- `...`
 Passed to the plotting functions.

Details

plot.selectboost returns an invisible list and creates four graphics. Two plots the proportion of selection with respect to c0 (by step or according to real scale). On the third graph, no bar means a proportion of selection less than prop.level. Confidence intervals are computed at the conf.int.level level. Barplot of the confidence index (1-min(c0, such that proportion|c0>conf.threshold)).

Value

An invisible list.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>

References

See Also

- fastboost, autoboost

Other Selectboost analyse functions: force.non.inc(), summary.selectboost()

Examples

```r
set.seed(314)
xran=matrix(rnorm(75),15,5)
ybin=sample(0:1,15,replace=TRUE)
yran=rnorm(15)
layout(matrix(1:4,2,2))
data(autoboost.res.x)
plot(autoboost.res.x)
```
plot.summary.selectboost

Plot a summary of selectboost results

Description
Plot a summary of selectboost results.

Usage
S3 method for class 'summary.selectboost'
plot(x, ...)

Arguments
x
Numerical matrix. Summary of selectboost object.
...
Passed to the plotting functions.

Details
plot.summary.selectboost returns an invisible list and creates four graphics. Two plots the proportion of selection with respect to c0 (by step or according to real scale). On the third graph, no bar means a proportion of selection less than prop.level. Confidence intervals are computed at the conf.int.level level. Barplot of the confidence index (1-min(c0, such that proportion(c0>conf.threshold)).

Value
An invisible list.

Author(s)
Frederic Bertrand, frederic.bertrand@math.unistra.fr

References

See Also
fastboost, autoboost and summary.selectboost
Other Selectboost analyze functions: auto.analyze(), trajC0()
Examples

```r
data(autoboost.res.x)
plot(summary(autoboost.res.x))

data(autoboost.res.x2)
plot(summary(autoboost.res.x2))
```

Description

Plot result of Selectboost for Cascade inference.

Usage

```r
## S4 method for signature 'network.confidence,ANY'
plot(x, col = gray((1:99)/100, alpha = NULL), ...)
```

Arguments

- `x` A `network.confidence` object to be plotted.
- `col` Colors for the plot.
- `...` Additional arguments passed to the heatmap function.

Details

Extending results from the Cascade package: providing confidence indices for the reverse engineered links.

Value

Nothing.

Author(s)

Frederic Bertrand, frederic.bertrand@math.unistra.fr
References

See Also

boost, fastboost, selectboost, inference
Other Selectboost functions: autoboost(), boost, fastboost(), selectboost_cascade

Examples

data(net_confidences)
plot(net_confidence)
plot(net_confidence_.5)
plot(net_confidence_thr)

Description

Result of fastboost analysis applied to biological network reverse engineering

Usage

test.seq_C
test.seq.PL
test.seq.PL2
test.seq.PL2_W
test.seq.PL2_tW
test.seq.PSel
test.seq.PSel.5
test.seq.PSel.e2
test.seq.PSel.5.e2
test.seq.PSel_W
test.seq_robust

test.seq_Pb

test.seq_Pb_095_075

test.seq_Pb_075_075

test.seq_Pb_W

sensitivity_C

sensitivity_PL

sensitivity_PL2

sensitivity_PL2_W

sensitivity_PL2_tW

sensitivity_PSel

sensitivity_PSel.5

sensitivity_PSel.e2

sensitivity_PSel.5.e2

sensitivity_PSel_W

sensitivity_robust

sensitivity_PB

sensitivity_PB_095_075

sensitivity_PB_075_075

sensitivity_PB_W

predictive_positive_value_C

predictive_positive_value_PL

predictive_positive_value_PL2

predictive_positive_value_PL2_W
predictive_positive_value_PL2_tW
predictive_positive_value_PSel
predictive_positive_value_PSel.5
predictive_positive_value_PSel.e2
predictive_positive_value_PSel.5.e2
predictive_positive_value_PSel_W
predictive_positive_value_robust
predictive_positive_value_PB
predictive_positive_value_PB_095_075
predictive_positive_value_PB_075_075
predictive_positive_value_PB_W
F_score_C
F_score_PL
F_score_PL2
F_score_PL2_W
F_score_PL2_tW
F_score_PSel
F_score_PSel.5
F_score_PSel.e2
F_score_PSel.5.e2
F_score_PSel_W
F_score_robust
F_score_PB
F_score_PB_095_075
F_score_PB_075_075
F_score_PB_W
nv_C
nv_PL
nv_PL2
nv_PL2_W
nv_PL2_tW
nv_PSel
nv_PSel.5
nv_PSel.e2
nv_PSel.5.e2
nv_PSel_W
nv_robust
nv_PB
nv_PB_095_075
nv_PB_075_075
nv_PB_W

Format

A numerical matrix frame with 100 rows and 200 variables or a numerical vector of length 100.

<table>
<thead>
<tr>
<th>SelectBoost</th>
<th>SelectBoost</th>
</tr>
</thead>
</table>

Description

Motivation: With the growth of big data, variable selection has become one of the major challenges in statistics. Although many methods have been proposed in the literature their performance in terms of recall and precision are limited in a context where the number of variables by far exceeds
the number of observations or in a high correlated setting. Results: This package implements a new
general algorithm which improves the precision of any existing variable selection method. This
algorithm is based on highly intensive simulations and takes into account the correlation structure
of the data. Our algorithm can either produce a confidence index for variable selection or it can be
used in an experimental design planning perspective.

References

selectBoost: a general algorithm to enhance the performance of variable selection methods in
correlated datasets, Frédéric Bertrand, Ismaïl Aouadi, Nicolas Jung, Raphael Carapito, Laurent

Examples

```r
set.seed(314)
xran=matrix(rnorm(75),15,5)
ybin=sample(0:1,15,replace=TRUE)
yran=rnorm(15)

#For quick test purpose, not meaningful, should be run with greater value of B
#(disabling parallel computing as well)
res.fastboost <- fastboost(xran,yran,B=3,use.parallel=FALSE)

fastboost(xran,yran)
#Customize resampling levels
fastboost(xran,yran,steps.seq=c(.99,.95,.9),c0lim=FALSE)

#Binary logistic regression
fastboost(xran,ybin,func=lasso_cv_glmnet_bin_min)
```

selectboost_cascade

Description

Selectboost for Cascade inference.

Usage

```r
selectboost(M, ...)
```

S4 method for signature 'micro_array'

```r
selectboost(
  M,
  Fabhat,
  K = 5,
  eps = 10^-5,
)```
cv.subjects = TRUE,
ncores = 4,
use.parallel = FALSE,
verbose = FALSE,
group = group_func_2,
c0value = 0.95)

Arguments

M Microarray class from the Cascade package.
...
... Additionnal arguments. Not used.
Fabhat F matrix inferred using the inference function from the Cascade package.
K Number of crossvalidation folds.
eps Threshold for assigning a zero value to an inferred parameter. Defaults to 10^-5.
cv.subjects Crossvalidation is made subjectwise using leave one out. Discards the K option.
use.parallel Boolean. To use parallel computing (doMC) download the extended package from Github. Set to FALSE.
verbose Boolean. Defaults to FALSE.
group Function. The grouping function. Defaults to group_func_2.
c0value Numeric. c0 value to use for confidence computation. Defaults to TRUE

Details

Extending results from the Cascade package: providing confidence indices for the reverse engineered links.


Value

A network.confidence object.

Author(s)

Frederic Bertrand,<frederic.bertrand@math.unistra.fr>
References


See Also

boost, fastboost, plot.selectboost, inference

Other Selectboost functions: autoboostr, boost, fastboostr, plot_selectboost_cascade

Examples

```r
set.seed(314)
set.seed(314)
data(Cascade_example)
Fab_inf_C <- Net_inf_C@F
By default community grouping of variables
set.seed(1)
net_confidence <- selectboost(M, Fab_inf_C)
net_confidence_.5 <- selectboost(M, Fab_inf_C, c0value = .5)
With group_func_1, variables are grouped by thresholding the correlation matrix
net_confidence_thr <- selectboost(M, Fab_inf_C, group = group_func_1)
```

---

**Example**

### Miscellaneous simulation functions

**Description**

Define several simulation functions to be used in the demos of the package.

**Usage**

```r
simulation_cor(group, cor_group, v = 1)
simulation_X(N, Cor)
simulation_DATA(X, supp, minB, maxB, stn)
compsim(x, ...)
```

## S3 method for class 'simuls'
compsim(x, result.boost, level = 1, ...)
Arguments

- **group**: A numeric vector. Group membership of each of the variables.
- **cor_group**: A numeric vector. Intra-group Pearson correlation.
- **v**: A numeric value. The diagonal value of the generated matrix.
- **N**: A numeric value. The number of observations.
- **Cor**: A numeric matrix. A correlation matrix to be used for random sampling.
- **X**: A numeric matrix. Observations*variables.
- **supp**: A numeric vector. The true predictors.
- **minB**: A numeric value. Minimum absolute value for a beta coefficient.
- **maxB**: A numeric value. Maximum absolute value for a beta coefficient.
- **stn**: A numeric value. A scaling factor for the noise in the response. The higher, the smaller the noise.
- **x**: List. Simulated dataset.
- **...**: For compatibility issues.
- **result.boost**: Row matrix of numerical value. Result of selecboost for a given c0.
- **level**: List. Threshold for proportions of selected variables.

Details

**simulation_cor** returns a numeric symmetric matrix c whose order is the number of variables. An entry $c_{i,j}$ is equal to

- $i = j$, entries on the diagonal are equal to the v value
- $i <> j$, 0 if the variable i and j do not belong to the same group
- $i <> j$, cor_group[k] if the variable i and j belong to the group k

**simulation_X** returns a numeric matrix of replicates (by row) of random samples generated according to the Cor matrix.

**simulation_DATA** returns a list with the X matrix, the response vector Y, the true predictors, the beta coefficients, the scaling factor and the standard deviation.

**compsim.simuls** computes recall (sensitivity), precision (positive predictive value), and several Fscores (non-weighted Fscore, F1/2 and F2 weighted Fscores).

Value

- **simulation_cor** returns a numeric matrix.
- **simulation_X** returns a numeric matrix.
- **simulation_DATA** returns a list.
- **compsim.simuls** returns a numerical vector.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr> with contributions from Nicolas Jung.
References


See Also

`glmnet, cv.glmnet, AICc_BIC_glmnetB, lars, cv.lars, msgps`

Examples

```r
N<-10
group<-c(rep(1:2,5))
cor_group<-c(.8,.4)
supp<-c(1,1,1,0,0,0,0,0,0)
minB<-1
maxB<-2
stn<-5
C<-simulation_cor(group,cor_group)

set.seed(314)
X<-simulation_X(10,C)
G<-abs(cor(X))
hist(G[lower.tri(G)])

set.seed(314)
DATA_exemple<-simulation_DATA(X,supp,1,2,stn)

set.seed(314)
result.boost = fastboost(DATA_exemple$X, DATA_exemple$Y, steps.seq = .7, c0lim = FALSE, use.parallel = FALSE, B=10)
compsim(DATA_exemple, result.boost, level=.7)
```

summary.selectboost

*Summarize a selectboost analysis*

Description

Summarize a selectboost analysis.

Usage

```r
S3 method for class 'selectboost'
summary(
 object,
 crit.func = mean,
 crit.int = "mean",
 custom.values.lim = NULL,
)```
index.lim = NULL,
alpha.conf.level = 0.99,
force.dec = TRUE,
...
)

Arguments

object Numerical matrix. Result of selectboost (autoboost, fastboost, ...).
crit.func Function. Defaults to the mean function.
crit.int Character value. Mean or median based confidence intervals. Defaults to "mean" based confidence intervals.
custom.values.lim Vector of numeric values. Defaults to NULL.
index.lim Vector of numeric values. Defaults to NULL.
alpha.conf.level Numeric value. Defaults to 0.99.
force.dec Boolean. Force trajectories to be non-increasing.
... Additional arguments. Passed to the crit.func function.

Details

summary.selectboost returns a list with the results.

Value

A list with the results.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>

References

See Also

fastboost, autoboost

Other Selectboost analyse functions: force.non.inc(), plot.selectboost()
Example:

```r
data(autoboost.res.x)
summary(autoboost.res.x)
summary(autoboost.res.x, force.dec=FALSE)

data(autoboost.res.x.adapt)
summary(autoboost.res.x.adapt)

data(autoboost.res.x2)
summary(autoboost.res.x2)
summary(autoboost.res.x2, force.dec=FALSE)

data(autoboost.res.x2.adapt)
summary(autoboost.res.x2.adapt)

data(fastboost.res.x)
summary(fastboost.res.x)
summary(fastboost.res.x, force.dec=FALSE)

data(fastboost.res.x.adapt)
summary(fastboost.res.x.adapt)

data(fastboost.res.x2)
summary(fastboost.res.x2)
summary(fastboost.res.x2, force.dec=FALSE)

data(fastboost.res.x2.adapt)
summary(fastboost.res.x2.adapt)
```

traJC0

Plot trajectories

Description

Plot trajectories.

Usage

```r
traJC0(x, ...)
```

S3 method for class 'selectboost'

```r
traJC0(
x,
summary.selectboost.res,
lasso.coef.path,
type.x.axis = "noscale",
type.graph = "boost",
threshold.level = NULL,
...
)
```
Arguments

- **x**: Numerical matrix. Selectboost object.

 Passed to the plotting functions.

- **summary.selectboost.res**: List. Summary of selectboost object.

- **lasso.coef.path**: List. Result of `predict.lars`.

- **type.x.axis**: Character value. "scale" or "noscale" for the X axis.

- **type.graph**: Character value. Type of graphs: "bars", "lasso" and "boost".

- **threshold.level**: Numeric value. Threshold for the graphs.

Details

`trajC0` returns an invisible list and creates four graphics.

Value

An invisible list.

invisible list.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>

References

See Also

`fastboost`, `autoboost` and `summary.selectboost`

Other Selectboost analyze functions: `auto.analyze()`, `plot.summary.selectboost()`

Examples

```r
data(autoboost.res.x)
data(diabetes, package="lars")

### With lasso trajectories
m.x<-lars::lars(diabetes$x,diabetes$y)
plot(m.x)
mm.x<-predict(m.x,type="coef",mode="lambda")
autobooost.res.x.mean = summary(autobooost.res.x)
```
var_select

par(mfrow=c(2,2),mar=c(4,4,1,1))
trajC0(autoboost.res.x,autoboost.res.x.mean,lasso.coef.path=mm.x,type.graph="lasso")
trajC0(autoboost.res.x,autoboost.res.x.mean)
trajC0(autoboost.res.x,autoboost.res.x.mean,type.graph="bars")
trajC0(autoboost.res.x,autoboost.res.x.mean,type.x.axis ="scale")

<table>
<thead>
<tr>
<th>var_select</th>
<th>Variable selection functions</th>
</tr>
</thead>
</table>

Description

Compute coefficient vector after variable selection.

Usage

lasso_cv_glmnet_bin_min(X, Y)
lasso_cv_glmnet_bin_1se(X, Y)
lasso_glmnet_bin_AICc(X, Y)
lasso_glmnet_bin_BIC(X, Y)
lasso_cv_lars_min(X, Y)
lasso_cv_lars_1se(X, Y)
lasso_cv_glmnet_min(X, Y)
lasso_cv_glmnet_min_weighted(X, Y, priors)
lasso_cv_glmnet_1se(X, Y)
lasso_cv_glmnet_1se_weighted(X, Y, priors)
lasso_msgps_Cp(X, Y, penalty = "enet")
lasso_msgps_AICc(X, Y, penalty = "enet")
lasso_msgps_GCV(X, Y, penalty = "enet")
lasso_msgps_BIC(X, Y, penalty = "enet")
tenf_msgps_Cp(X, Y, penalty = "enet", alpha = 0.5)
tenf_msgps_AICc(X, Y, penalty = "enet", alpha = 0.5)
enetf_msgps_GCV(X, Y, penalty = "enet", alpha = 0.5)
enetf_msgps_BIC(X, Y, penalty = "enet", alpha = 0.5)
lasso_cascade(M, Y, K, eps = 10^-5, cv.fun)

Arguments

X A numeric matrix. The predictors matrix.
Y A binary factor. The 0/1 classification response.
priors A numeric vector. Weighting vector for the variable selection. When used with the glmnet estimation function, the weights share the following meanings:
 • 0: the variable is always included in the model
 • 1: neutral weight
 • Inf: variable is always excluded from the model
penalty A character value to select the penalty term in msgps (Model Selection Criteria via Generalized Path Seeking). Defaults to "enet". "genet" is the generalized elastic net and "alasso" is the adaptive lasso, which is a weighted version of the lasso.
alpha A numeric value to set the value of α on "enet" and "genet" penalty in msgps (Model Selection Criteria via Generalized Path Seeking).
M A numeric matrix. The transposed predictors matrix.
K A numeric value. Number of folds to use.
eps A numeric value. Threshold to set to 0 the inferred value of a parameter.
cv.fun A function. Function used to create folds. Used to perform cross-validation subsectwise.

details

lasso_cv_glmnet_bin_min returns the vector of coefficients for a binary logistic model estimated by the lasso using the lambda.min value computed by 10 fold cross validation. It uses the glmnet function of the glmnet package.

lasso_cv_glmnet_bin_1se returns the vector of coefficients for a binary logistic model estimated by the lasso using the lambda.1se (lambda.min+1se) value computed by 10 fold cross validation. It uses the glmnet function of the glmnet package.

lasso_glmnet_bin_AICc returns the vector of coefficients for a binary logistic model estimated by the lasso and selected according to the bias-corrected AIC (AICc) criterion. It uses the glmnet

lasso_glmnet_bin_BIC returns the vector of coefficients for a binary logistic model estimated by the lasso and selected according to the BIC criterion. It uses the glmnet

lasso_cv_lars_min returns the vector of coefficients for a linear model estimated by the lasso using the lambda.min value computed by 5 fold cross validation. It uses the lars function of the lars package.
lasso_cv_lars_1se returns the vector of coefficients for a linear model estimated by the lasso using the lambda.1se (lambda.min+1se) value computed by 5 fold cross validation. It uses the lars function of the lars package.

lasso_cv_glmnet_min returns the vector of coefficients for a linear model estimated by the lasso using the lambda.min value computed by 10 fold cross validation. It uses the glmnet function of the glmnet package.

lasso_cv_glmnet_min_weighted returns the vector of coefficients for a linear model estimated by the weighted lasso using the lambda.min value computed by 10 fold cross validation. It uses the glmnet function of the glmnet package.

lasso_cv_glmnet_1se returns the vector of coefficients for a linear model estimated by the lasso using the lambda.1se (lambda.min+1se) value computed by 10 fold cross validation. It uses the glmnet function of the glmnet package.

lasso_cv_glmnet_1se_weighted returns the vector of coefficients for a linear model estimated by the weighted lasso using the lambda.1se (lambda.min+1se) value computed by 10 fold cross validation. It uses the glmnet function of the glmnet package.

lasso_msgps_Cp returns the vector of coefficients for a linear model estimated by the lasso selectd using Mallows' Cp. It uses the msgps function of the msgps package.

lasso_msgps_AICc returns the vector of coefficients for a linear model estimated by the lasso selected according to the bias-corrected AIC (AICC) criterion. It uses the msgps function of the msgps package.

lasso_msgps_GCV returns the vector of coefficients for a linear model estimated by the lasso selected according to the generalized cross validation criterion. It uses the msgps function of the msgps package.

lasso_msgps_BIC returns the vector of coefficients for a linear model estimated by the lasso selected according to the BIC criterion. It uses the msgps function of the msgps package.

enetf_msgps_Cp returns the vector of coefficients for a linear model estimated by the elastic net selected using Mallows' Cp. It uses the msgps function of the msgps package.

enetf_msgps_AICc returns the vector of coefficients for a linear model estimated by the elastic net selected according to the bias-corrected AIC (AICC) criterion. It uses the msgps function of the msgps package.

enetf_msgps_GCV returns the vector of coefficients for a linear model estimated by the elastic net selected according to the generalized cross validation criterion. It uses the msgps function of the msgps package.

enetf_msgps_BIC returns the vector of coefficients for a linear model estimated by the elastic net selected according to the BIC criterion. It uses the msgps function of the msgps package.

lasso_cascade returns the vector of coefficients for a linear model estimated by the lasso. It uses the lars function of the lars package.

Value

A vector of coefficients.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>
References

See Also

glmnet, cv.glmnet, AICc_BIC_glmnetB, lars, cv.lars.msgps

Other Variable selection functions: var_select_all

Examples

```r
set.seed(314)
xran=matrix(rnorm(150),30,5)
ybin=sample(0:1,30,replace=TRUE)
yran=rnorm(30)
set.seed(314)
lasso_cv_glmnet_bin_min(xran,ybin)

set.seed(314)
lasso_cv_glmnet_bin_1se(xran,ybin)

set.seed(314)
lasso_glmnet_bin_AICc(xran,ybin)

set.seed(314)
lasso_glmnet_bin_BIC(xran,ybin)

set.seed(314)
lasso_cv_lars_min(xran,yran)

set.seed(314)
lasso_cv_lars_1se(xran,yran)

set.seed(314)
lasso_cv_glmnet_min(xran,yran)

set.seed(314)
lasso_cv_glmnet_min_weighted(xran,yran,c(1000,0,0,1,1))

set.seed(314)
lasso_cv_glmnet_1se(xran,yran)

set.seed(314)
lasso_cv_glmnet_1se_weighted(xran,yran,c(1000,0,0,1,1))

set.seed(314)
lasso_msgps_Cp(xran,yran)

set.seed(314)
lasso_msgps_AICc(xran,yran)
```
var_select_all

set.seed(314)
lasso_msgps_GCV(xran,yran)

set.seed(314)
lasso_msgps_BIC(xran,yran)

set.seed(314)
enetf_msgps_Cp(xran,yran)

set.seed(314)
enetf_msgps_AICc(xran,yran)

set.seed(314)
enetf_msgps_GCV(xran,yran)

set.seed(314)
enetf_msgps_BIC(xran,yran)

set.seed(314)
lasso_cascade(t(xran),yran,5,cv.fun=lars::cv.folds)

| var_select_all | Variable selection functions (all) |

Description

Compute coefficient vector after variable selection for the fitting criteria of a given model. May be used for a step by step use of Selectboost.

Usage

- `lasso_msgps_all(X, Y, penalty = "enet")`
- `enet_msgps_all(X, Y, penalty = "enet", alpha = 0.5)`
- `alasso_msgps_all(X, Y, penalty = "alasso")`
- `alasso_enet_msgps_all(X, Y, penalty = "alasso", alpha = 0.5)`
- `lasso_cv_glmnet_all_5f(X, Y)`
- `spls_spls_all(X, Y, K.seq = c(1:5), eta.seq = (1:9)/10, fold.val = 5)`
- `varbvs_linear_all(X, Y, include.threshold.list = (1:19)/20)`
- `lasso_cv_glmnet_bin_all(X, Y)`
lasso_glmnet_bin_all(X, Y)

splsda_spls_all(X, Y, K.seq = c(1:10), eta.seq = (1:9)/10)

sgpls_spls_all(X, Y, K.seq = c(1:10), eta.seq = (1:9)/10)

varbvs_binomial_all(X, Y, include.threshold.list = (1:19)/20)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A numeric matrix. The predictors matrix.</td>
</tr>
<tr>
<td>Y</td>
<td>A binary factor. The 0/1 classification response.</td>
</tr>
<tr>
<td>penalty</td>
<td>A character value to select the penalty term in msgps (Model Selection Criteria via Generalized Path Seeking). Defaults to "enet". "genet" is the generalized elastic net and "alasso" is the adaptive lasso, which is a weighted version of the lasso.</td>
</tr>
<tr>
<td>alpha</td>
<td>A numeric value to set the value of α on "enet" and "genet" penalty in msgps (Model Selection Criteria via Generalized Path Seeking).</td>
</tr>
<tr>
<td>K.seq</td>
<td>A numeric vector. Number of components to test.</td>
</tr>
<tr>
<td>eta.seq</td>
<td>A numeric vector. Eta sequence to test.</td>
</tr>
<tr>
<td>fold.val</td>
<td>A numeric value. Number of folds to use.</td>
</tr>
<tr>
<td>include.threshold.list</td>
<td>A numeric vector. Vector of threshold to use.</td>
</tr>
<tr>
<td>K</td>
<td>A numeric value. Number of folds to use.</td>
</tr>
</tbody>
</table>

Details

lasso_msgps_all returns the matrix of coefficients for an optimal linear model estimated by the LASSO estimator and selected by model selection criteria including Mallows' Cp, bias-corrected AIC (AICc), generalized cross validation (GCV) and BIC. The the msgps function of the msgps package implements Model Selection Criteria via Generalized Path Seeking to compute the degrees of freedom of the LASSO.

enet_msgps_all returns the matrix of coefficients for an optimal linear model estimated by the ELASTIC NET estimator and selected by model selection criteria including Mallows' Cp, bias-corrected AIC (AICc), generalized cross validation (GCV) and BIC. The the msgps function of the msgps package implements Model Selection Criteria via Generalized Path Seeking to compute the degrees of freedom of the ELASTIC NET.

alasso_msgps_all returns the matrix of coefficients for an optimal linear model estimated by the adaptive LASSO estimator and selected by model selection criteria including Mallows' Cp, bias-corrected AIC (AICc), generalized cross validation (GCV) and BIC. The the msgps function of the msgps package implements Model Selection Criteria via Generalized Path Seeking to compute the degrees of freedom of the adaptive LASSO.

alasso_enet_msgps_all returns the matrix of coefficients for an optimal linear model estimated by the adaptive ELASTIC NET estimator and selected by model selection criteria including Mallows' Cp, bias-corrected AIC (AICc), generalized cross validation (GCV) and BIC. The the msgps function of the msgps package implements Model Selection Criteria via Generalized Path Seeking to compute the degrees of freedom of the adaptive ELASTIC NET.
function of the msgps package implements Model Selection Criteria via Generalized Path Seeking to compute the degrees of freedom of the adaptive ELASTIC NET.

lasso_cv_glmnet_all_f5 returns the matrix of coefficients for a linear model estimated by the LASSO using the lambda.min and lambda.1se (lambda.min+1se) values computed by 5 fold cross validation. It uses the glmnet and cv.glmnet functions of the glmnet package.

spls_spls_all returns the matrix of the raw (coef.spls) and correct.spls and bootstrap corrected coefficients for a linear model estimated by the SPLS (sparse partial least squares) and 5 fold cross validation. It uses the spls, cv.spls, ci.spls, coef.spls and correct.spls functions of the spls package.

varbvs_linear_all returns the matrix of the coefficients for a linear model estimated by the varbvs (variational approximation for Bayesian variable selection in linear regression, family = gaussian) and the requested threshold values. It uses the varbvs, coef and variable.names functions of the varbvs package.

lasso_cv_glmnet_bin_all returns the matrix of coefficients for a logistic model estimated by the LASSO using the lambda.min and lambda.1se (lambda.min+1se) values computed by 5 fold cross validation. It uses the glmnet and cv.glmnet functions of the glmnet package.

lasso_glmnet_bin_all returns the matrix of coefficients for a logistic model estimated by the LASSO using the AICc_glmnetB and BIC_glmnetB information criteria. It uses the glmnet function of the glmnet package and the AICc_glmnetB and BIC_glmnetB functions of the SelectBoost package that were adapted from the AICc_glmnetB and BIC_glmnetB functions of the rLogistic (https://github.com/echi/rLogistic) package.

splsda_spls_all returns the matrix of the raw (coef.splsdla) coefficients for logistic regression model estimated by the SGPLS (sparse généralized partial least squares) and 5 fold cross validation. It uses the splsda, cv.splsdla and coef.splsdla functions of the sgpls package.

sgpls_spls_all returns the matrix of the raw (coef.sgpls) coefficients for logistic regression model estimated by the SGPLS (sparse généralized partial least squares) and 5 fold cross validation. It uses the sgpls, cv.sgpls and coef.sgpls functions of the sgpls package.

varbvs_binomial_all returns the matrix of the coefficients for a linear model estimated by the varbvs (variational approximation for Bayesian variable selection in logistic regression, family = binomial) and the requested threshold values. It uses the varbvs, coef and variable.names functions of the varbvs package.

Value

A vector or matrix of coefficients.

Author(s)

Frederic Bertrand, <frederic.bertrand@math.unistra.fr>

References

See Also
glmnet, cv.glmnet, msgps, AICc_BIC(glmnetB, spls_cv.spls, correct.spls, splsda_cv.splsda, sgpls.cv.sgpls, varbvs
Other Variable selection functions: var_select

Examples

set.seed(314)
xran <- matrix(rnorm(100*6),100,6)
beta0 <- c(3,1.5,0,0,2,0)
epsilon <- rnorm(100,sd=3)
yran <- c(xran %*% beta0 + epsilon)
ybin <- ifelse(yran>=0,1,0)
set.seed(314)
lasso_msgps_all(xran,yran)

set.seed(314)
tenet_msgps_all(xran,yran)

set.seed(314)
lasso_msgps_all(xran,yran)

set.seed(314)
lasso_enet_msgps_all(xran,yran)

set.seed(314)
lasso_cv_glmnet_all_5f(xran,yran)

set.seed(314)
spls_spls_all(xran,yran)

set.seed(314)
varbvs_linear_all(xran,yran)

set.seed(314)
lasso_cv_glmnet_bin_all(xran,ybin)

set.seed(314)
lasso_glmnet_bin_all(xran,ybin)

set.seed(314)
splsda_spls_all(xran,ybin, K.seq=1:3)

set.seed(314)
sgpls_spls_all(xran,ybin, K.seq=1:3)

set.seed(314)
varbvs_binomial_all(xran,ybin)
Index

*Topic datasets
 autoboost.res.x, 8
 autoboost.res.x.adapt, 8
 autoboost.res.x2, 8
 autoboost.res.x2.adapt, 9
 Cascade_confidence, 12
 Cascade_example, 13
 fastboost.res.x, 16
 fastboost.res.x.adapt, 16
 fastboost.res.x2, 16
 fastboost.res.x2.adapt, 17
 results_simuls_reverse_engineering_v3, 25

AICc_BIC_glmnetB, 3, 33, 40, 44
AICc_glmnetB (AICc_BIC_glmnetB), 3
alasso_msgps_all (var_select_all), 41
alasso_msgps_all (var_select_all), 41
auto.analyze, 4, 23, 36
autoboost, 5, 5, 12, 15, 18, 22, 23, 25, 31, 34, 36
autoboost.res.x, 8
autoboost.res.x.adapt, 8
autoboost.res.x2, 8
autoboost.res.x2.adapt, 9

BIC_glmnetB (AICc_BIC_glmnetB), 3
boost, 7, 9, 15, 25, 31
boost.findgroups, 19, 20

Cascade_confidence, 12
Cascade_example, 13
compsim (simulation), 31
correct.spls, 44
cv.glmnet, 33, 40, 44
cv.lars, 33, 40
cv.sgpls, 44
cv.spls, 44
cv.splsigma, 44

enet_msgps_all (var_select_all), 41
enetf_msgps_AICc (var_select), 37
enetf_msgps_BIC (var_select), 37
enetf_msgps_Cp (var_select), 37
enetf_msgps_GCV (var_select), 37

F_score_C
 (results_simuls_reverse_engineering_v3), 25
F_score_PB
 (results_simuls_reverse_engineering_v3), 25
F_score_PB_075_075
 (results_simuls_reverse_engineering_v3), 25
F_score_PB_095_075
 (results_simuls_reverse_engineering_v3), 25
F_score_PB_W
 (results_simuls_reverse_engineering_v3), 25
F_score_PL
 (results_simuls_reverse_engineering_v3), 25
F_score_PL2
 (results_simuls_reverse_engineering_v3), 25
F_score_PL2_tW
 (results_simuls_reverse_engineering_v3), 25
F_score_PL2_W
 (results_simuls_reverse_engineering_v3), 25
F_score_PSel
 (results_simuls_reverse_engineering_v3), 25
F_score_PSel_W
 (results_simuls_reverse_engineering_v3), 25
F_score_robust
(results_simuls_reverse_engineering_v3)
net_confidence (Cascade_confidence) 12
net_confidence_.5 (Cascade_confidence) 12
net_confidence_thr (Cascade_confidence) 12
Net_inf_C (Cascade_example) 13
network.confidence-class 21
nv_C (results_simuls_reverse_engineering_v3) 25
nv_PB (results_simuls_reverse_engineering_v3) 25
nv_PB_075_075 (results_simuls_reverse_engineering_v3) 25
nv_PB_095_075 (results_simuls_reverse_engineering_v3) 25
nv_PB_095_075 (results_simuls_reverse_engineering_v3) 25
nv_PB_W (results_simuls_reverse_engineering_v3) 25
nv_PL (results_simuls_reverse_engineering_v3) 25
nv_PL2 (results_simuls_reverse_engineering_v3) 25
nv_PL2_tw (results_simuls_reverse_engineering_v3) 25
nv_PL2_W (results_simuls_reverse_engineering_v3) 25
nv_PSel (results_simuls_reverse_engineering_v3) 25
nv_PSel_W (results_simuls_reverse_engineering_v3) 25
nv_robust (results_simuls_reverse_engineering_v3) 25
plot, network.confidence, ANY-method (plot_selectboost_cascade) 24
plot, network.confidence, network.confidence-method (plot_selectboost_cascade) 24
plot.matrix (miscplot) 20
plot.selectboost, 7, 15, 18, 21, 31, 34
plot.summary.selectboost, 5, 23, 36
plot_selectboost_cascade, 7, 12, 15, 24, 31, 34
predictive_positive_value_C
(results_simuls_reverse_engineering_v3)
sensitivity_C
25
predictive_positive_value_PB
(results_simuls_reverse_engineering_v3)
sensitivity_PB
25
predictive_positive_value_PB_075_075
(results_simuls_reverse_engineering_v3)
sensitivity_PB_075_075
25
predictive_positive_value_PB_095_075
(results_simuls_reverse_engineering_v3)
sensitivity_PB_095_075
25
predictive_positive_value_PB_W
(results_simuls_reverse_engineering_v3)
sensitivity_PB_W
25
predictive_positive_value_PL
(results_simuls_reverse_engineering_v3)
sensitivity_PL
25
predictive_positive_value_PL2
(results_simuls_reverse_engineering_v3)
sensitivity_PL2
25
predictive_positive_value_PL2_tW
(results_simuls_reverse_engineering_v3)
sensitivity_PL2_tW
25
predictive_positive_value_PL2_W
(results_simuls_reverse_engineering_v3)
sensitivity_PL2_W
25
predictive_positive_value_PSel
(results_simuls_reverse_engineering_v3)
sensitivity_PSel
25
predictive_positive_value_PSel_W
(results_simuls_reverse_engineering_v3)
sensitivity_PSel_W
25
predictive_positive_value_robust
(results_simuls_reverse_engineering_v3)
sensitivity_robust
25
rerr (AICc_BIC_glmnetB), 3
results_simuls_reverse_engineering_v3, 25
ridge_logistic (AICc_BIC_glmnetB), 3
SelectBoost, 28
selectboost, 25
selectboost (selectboost_cascade), 29
INDEX

spls_spls_all (var_select_all), 41
splsda, 44
splsda_spls_all (var_select_all), 41
summary.selectboost, 18, 22, 23, 33, 36

test.seq_C
 (results_simuls_reverse_engineering_v3), 25

test.seq_PB
 (results_simuls_reverse_engineering_v3), 25

test.seq_PB_075_075
 (results_simuls_reverse_engineering_v3), 25

test.seq_PB_095_075
 (results_simuls_reverse_engineering_v3), 25

test.seq_PB_W
 (results_simuls_reverse_engineering_v3), 25

test.seq_PL
 (results_simuls_reverse_engineering_v3), 25

test.seq_PL2
 (results_simuls_reverse_engineering_v3), 25

test.seq_PL2_tW
 (results_simuls_reverse_engineering_v3), 25

test.seq_PL2_W
 (results_simuls_reverse_engineering_v3), 25

test.seq_PSel
 (results_simuls_reverse_engineering_v3), 25

trajC0, 5, 23, 35

var_select, 4, 37, 44
var_select_all, 40, 41
varbvs, 44
varbvs_binomial_all (var_select_all), 41
varbvs_linear_all (var_select_all), 41