Package ‘SemNeT’

June 9, 2020

Title Methods and Measures for Semantic Network Analysis
Version 1.3.0
Date 2020-06-08
Maintainer Alexander P. Christensen <alexpaulchristensen@gmail.com>
Description Implements several functions for the analysis of semantic networks including different network estimation algorithms, partial node bootstrapping (Kenett, Anaki, & Faust, 2014 <doi:10.3389/fnhum.2014.00407>), random walk simulation (Kenett & Austerweil, 2016 <http://alab.psych.wisc.edu/papers/files/Kenett16CreativityRW.pdf>), and a function to compute global network measures. Significance tests and plotting features are also implemented.
Depends R (>= 3.6.0)
License GPL (>= 3.0)
Encoding UTF-8
LazyData true
Imports pbapply, NetworkToolbox, dplyr, plyr, RColorBrewer, purrr, magrittr, ggplot2, grid, igraph, qgraph, scales
URL https://github.com/AlexChristensen/SemNeT
BugReports https://github.com/AlexChristensen/SemNeT/issues
NeedsCompilation no
Suggests knitr, rmarkdown, htmlTable, gridExtra, shiny, shinyalert, R.matlab, foreign, readxl, data.table
VignetteBuilder knitr
RoxygenNote 7.1.0
Author Alexander P. Christensen [aut, cre]
 (<https://orcid.org/0000-0002-9798-7037>),
 Yoed N. Kenett [aut, ctb] (<https://orcid.org/0000-0003-3872-7689>)
Repository CRAN
Date/Publication 2020-06-09 14:10:03 UTC
Description

Implements several functions for the analysis of semantic networks including partial node bootstrapping (Kenett, Anaki, & Faust, 2014), random walk simulation (Kenett & Austerweil, 2016), and a function to compute global network measures. Significance tests and plotting features are also implemented.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com> & Yoed N. Kenett <yoedkenett@gmail.com>
animals.freq

References

See Also

Useful links:

- https://github.com/AlexChristensen/SemNeT
- Report bugs at https://github.com/AlexChristensen/SemNeT/issues

animals.freq Frequency of Animal Responses

Description

Frequency of animal responses from Christensen & Kenett (2019). These frequencies are used to generate data in the sim.fluency function.

Usage

data(animals.freq)

Format

animals.freq (vector, length = 367)

Examples

data("animals.freq")
bootSemNeT

Bootstrapped Semantic Network Analysis

Description
Bootstrap techniques to generate semantic networks and compute global network characteristics

Usage
bootSemNeT(
 ...,
 method = c("CN", "NRW", "PF", "TMFG"),
 type = c("case", "node"),
 prop = 0.5,
 sim,
 weighted = FALSE,
 iter = 1000,
 cores
)

Arguments

... Matrices or data frames. Cleaned response matrices (e.g., responses$clean from textcleaner) or binary response matrices (e.g., binary output from textcleaner)

method Character. Network estimation method to use. Current options include:
 • TMFG Triangulated Maximally Filtered Graph
 • CN Community Network
 • NRW Naive Random Walk
 • PF Pathfinder

type Character. Type of bootstrap to perform
 • node Generates partial networks based on dropping a certain proportion of nodes (see argument prop)
 • case Samples with replacement the same number of participants as in the original dataset

prop Numeric. Only for type = "node". Proportion of nodes to remain in the network. Defaults to .50

sim Character. Similarity measure to use. Defaults to "cosine". See similarity for other options

weighted Boolean. Should weighted ASPL and CC be used? Defaults to FALSE. Set to TRUE for weighted ASPL and CC

iter Numeric. Number of iterations in bootstrap. Defaults to 1000

cores Numeric. Number of computer processing cores to use for bootstrapping samples. Defaults to n / 2 total number of cores. Set to any number between 1 and maximum amount of cores on your computer (see parallel::detectCores())
Value

Returns a list containing:

- `dataMeas`: A matrix for the network input in the `data` argument, where columns are the semantic network measures from `semnetmeas` and rows are their values from each bootstrapped sample (results in a matrix with the dimensions `iter` by 3).

- `dataSumm`: Summary statistics across the bootstrapped samples for the network input in the `data` argument.

- `prop`: Outputs the proportion used from the `prop` argument.

- `iter`: Outputs the number of bootstrapped samples used from the `iter` argument.

If a paired network is input, then also returns:

- `pairedMeas`: A matrix for the network input in the `paired` argument, where columns are the semantic network measures from `semnetmeas` and rows are their values from each bootstrapped sample (results in a matrix with the dimensions `iter` by 3).

- `pairedSumm`: Summary statistics across the bootstrapped samples for the network input in the `paired` argument.

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

Examples

```r
# Simulate Dataset
one <- sim.fluency(20)

# Run bootstrap node-drop (partial) networks
one.result <- bootSemNeT(one, prop = .50, iter = 1000,
sim = "cosine", cores = 2, method = "TMFG", type = "node")

# Bootstrap case-wise networks
## Get openness data
low <- open.binary[which(open.group == "Low"),]
high <- open.binary[which(open.group == "High"),]

## Run
open <- bootSemNeT(low, high, iter = 1000, cores = 2, method = "NRW", type = "case")
```
Community Network Estimation

Description
Estimates a semantic network using the Community Network method described in Goni et al. (2011)

Usage
CN(data, window = 2, alpha = 0.05)

Arguments
- **data**: Matrix or data frame. A preprocessed verbal fluency matrix where rows are participants and columns are verbal fluency responses
- **window**: Numeric. Size of window to look for co-occurrences in. Defaults to 2
- **alpha**: Numeric. Significance value. Defaults to .05

Value
Returns a undirected semantic network

Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>

References

Examples
```r
# Get data
data <- open.clean

# Organize group data
## Get group data
group <- open.group

## Low and high openness to experience groups
low <- data[which(group == "Low"),]
high <- data[which(group == "High"),]

## Not run:
```
compare_nets

Plots Networks for Comparison

Description

Uses qgraph to plot networks. Accepts any number of networks and will organize the plots in the number of side-by-side columns using the heuristic of taking the square root of the number of input and rounding down to the nearest integer (i.e., floor(sqrt(length(input)))).

Examples

- 3 networks: 1 x 3
- 6 networks: 2 x 3
- 9 networks: 3 x 3

Usage

```r
compare_nets(
  ...,  
  title,  
  config,  
  placement = c("match", "default"),  
  weighted = FALSE,  
  qgraph.args = list()
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>Matrices or data frames of network adjacency matrices</td>
</tr>
<tr>
<td>title</td>
<td>List. Characters denoting titles of plots</td>
</tr>
<tr>
<td>config</td>
<td>Character. Defaults to "spring" See qgraph for more options</td>
</tr>
<tr>
<td>placement</td>
<td>Character. How should nodes be placed when comparing groups? Defaults to "default"</td>
</tr>
<tr>
<td>weighted</td>
<td>Boolean. Should networks be plotted with weights? Defaults to FALSE. Set to TRUE to plot networks with weights corresponding to association strength. Often, unweighted networks are more aesthetically representational of the networks</td>
</tr>
<tr>
<td>qgraph.args</td>
<td>List. An argument list to be passed onto qgraph. See qgraph for possible arguments</td>
</tr>
</tbody>
</table>
Value

Plots networks using `qgraph`

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

References

Examples

```r
# Simulate Datasets
one <- sim.fluency(10)
two <- sim.fluency(10)

# Compute similarity matrix
cos1 <- similarity(one, method = "cosine")
cos2 <- similarity(two, method = "cosine")

# Compute networks using NetworkToolbox
net1 <- NetworkToolbox::TMFG(cos1)$A
net2 <- NetworkToolbox::TMFG(cos2)$A

# Compare networks
compare_nets(net1, net2, title = list("One", "Two"), config = "spring")

# Change edge colors
compare_nets(net1, net2, title = list("One", "Two"),
config = "spring", qgraph.args = list(edge.color = "blue"))
```

convert2cytoscape
Convert Adjacency Matrix to Cytoscape Format

Description

Converts an adjacency matrix to Cytoscape’s sparse matrix format

Usage

`convert2cytoscape(A)`
Arguments

A Matrix or data frame. A cleaned, finalized response matrix ready to be visualized

Value

A sparse matrix formatted for Cytoscape

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

References

Examples

Simulate Datasets
one <- sim.fluency(10)
two <- sim.fluency(10)

Compute similarity matrix
cos1 <- similarity(one, method = "cosine")
cos2 <- similarity(two, method = "cosine")

Compute networks using NetworkToolbox
net1 <- NetworkToolbox::TMFG(cos1)$A
net2 <- NetworkToolbox::TMFG(cos2)$A

Convert to Cytoscape format
cyto1 <- convert2cytoscape(net1)
cyto2 <- convert2cytoscape(net2)

Write to .csv
write.csv(cyto1, file.path(tempdir(), "cyto1.csv"), row.names = FALSE)
write.csv(cyto2, file.path(tempdir(), "cyto2.csv"), row.names = FALSE)

equate

Equate Groups

Description

A function to "equate" multiple response matrices to one another. N number of groups are matched based on their responses so that every group has the same responses in their data
finalize

Finalize Response Matrix

Description
Finalizes the response matrix by keeping responses that are given by a certain number of people

Usage
finalize(rmat, minCase = 2)
Arguments

Arguments:

- **rmat** Binary matrix. A `textcleaner` filtered response matrix
- **minCase** Numeric. Minimum number of cases to produce a response

Value

Value:

A binary response matrix with responses given by at least `minCase` people

Author(s)

Author(s):

Alexander Christensen <alexpaulchristensen@gmail.com>

Examples

Examples:

```r
# Obtain binary data
bin <- open.binary

# Finalize mat1
mat1 <- finalize(bin)
```

net.high
 High Openness to Experience Network

Description

Description:

High openness to experience network from Christensen & Kenett (2019)

Usage

Usage:

```r
data(net.high)
```

Format

Format:

`net.high` (matrix, 160 x 160)

References

References:

Examples

Examples:

```r
data("net.high")
```
net.low

Low Openness to Experience Network

Description

Low openness to experience network from Christensen & Kenett (2019)

Usage

data(net.low)

Format

net.low (matrix, 160 x 160)

References

Examples

data("net.low")

NRW

Naive Random Walk Network Estimation

Description

Estimates a semantic network using the Naive Random Walk method described in Lerner, Ogrocki, and Thomas (2009)

Usage

NRW(data, threshold = 3)

Arguments

data
Matrix or data frame. A preprocessed verbal fluency matrix where rows are participants and columns are verbal fluency responses

threshold
Numeric. Minimum number of total co-occurrences to be included in the network

Value

Returns a undirected semantic network
Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

References

Examples

```r
# Get data
data <- open.binary

# Organize group data
## Get group data
group <- open.group

## Low and high openness to experience groups
low <- data[which(group == "Low"),]
high <- data[which(group == "High"),]

# Compute networks
low.net <- NRW(low)
high.net <- NRW(high)
```

one.result

Simulated Result for Dataset One

Description

A result of bootSemNeT from a simulated dataset

Usage

data(one.result)

Format

one.result (list, length = 4)

Examples

data("one.result")
open.binary

Binary response Matrices (Openness and Verbal Fluency)

Description

Binary response matrices for the Animals verbal fluency data ($n = 516$) from Christensen et al. (2018).

Usage

data(open.binary)

Format

open.binary (matrix, 516 x 367)

References

Examples

data("open.binary")

open.clean

Cleaned response Matrices (Openness and Verbal Fluency)

Description

Cleaned response matrices for the Animals verbal fluency data ($n = 516$) from Christensen et al. (2018).

Usage

data(open.clean)

Format

open.clean (matrix, 516 x 35)

References

open.group

Examples

```r
data("open.clean")
```

open.group
Groups for Openness and Verbal Fluency

Description

Groups for the Animals verbal fluency data \((n = 516)\) from Christensen et al. (2018; see also \texttt{open.clean}).

Usage

```r
data(open.group)
```

Format

open.group (vector, length = 516)

References

Examples

```r
data("open.group")
```

PF
Pathfinder Network

Description

Estimates a pathfinder network using the MST-Pathfinder Network method from Quirin et al. (2008; see also Schvaneveldt, 1990)

Usage

```r
PF(data, progBar = TRUE)
```

Arguments

- `data`
 Matrix or data frame. A binary response matrix

- `progBar`
 Boolean. Should a progress bar be displayed? Defaults to \texttt{TRUE}
Value
An adjacency matrix

Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>

References

Examples
Obtain data
data <- open.binary

Not run:
Estimate network
pf.net <- PF(data)

End(Not run)

plot.bootSemNeT
Plot for bootSemNeT

Description
Plots output from bootSemNeT

Usage
S3 method for class 'bootSemNeT'
plot(..., groups = NULL, measures = c("ASPL", "CC", "Q"))

Arguments
... Object(s) from bootSemNeT
groups Character. Labels for groups in the order they were entered in bootSemNeT
measures Character. Measures to be plotted

Value
Returns plots for the specified measures
plot.compareShiny

Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>

Examples

Simulate Dataset
one <- sim.fluency(20)

Run partial bootstrap networks
one.result <- bootSemNet(one, prop = .50, iter = 1000,
 sim = "cosine", cores = 2, type = "node", method = "TMFG")

Plot
plot(one.result, groups = c("One"))

plot.compareShiny

Plots Networks for Comparison from Shiny

Description
Uses qgraph to plot networks. Accepts any number of networks and will organize the plots in the number of side-by-side columns using the heuristic of taking the square root of the number of input and rounding down to the nearest integer (i.e., floor(sqrt(length(input)))). Performs the same operations as compare_nets

Examples

• 3 networks: 1 x 3
• 6 networks: 2 x 3
• 9 networks: 3 x 3

Usage

S3 method for class 'compareShiny'
plot(x, ...)

Arguments

x Shiny result resultShiny$comparePlot
... Additional arguments

Value
Plots networks using qgraph

Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>
References

Examples

```r
# Simulate Datasets
one <- sim.fluency(10)
two <- sim.fluency(10)

# Compute similarity matrix
cos1 <- similarity(one, method = "cosine")
cos2 <- similarity(two, method = "cosine")

# Compute networks using NetworkToolbox
net1 <- NetworkToolbox::TMFG(cos1)$A
net2 <- NetworkToolbox::TMFG(cos2)$A

# Compare networks
compare_nets(net1, net2, title = list("One", "Two"), config = "spring")

# Change edge colors
compare_nets(net1, net2, title = list("One", "Two"),
config = "spring", qgraph.args = list(edge.color = "blue"))
```

randnet.test

Test Against Random Networks

Description

Performs significance tests for global measures of semantic networks against the global measures of equivalent size (and density) random networks

Usage

`randnet.test(..., iter, cores)`

Arguments

- `...` Matrices or data frames. Semantic networks to be compared against random networks
- `iter` Numeric. Number of iterations in bootstrap. Defaults to 1000
randwalk

cores

Number of computer processing cores to use for bootstrapping samples. Defaults to \(n - 1 \) total number of cores. Set to any number between 1 and maximum amount of cores on your computer.

Value

Returns a matrix containing p-values for the network measures of the input networks against the distribution of equivalent random networks. The last two columns contain the mean ("M.rand") and standard deviation ("SD.rand") of the network measures for the random network distribution.

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

References

Examples

```r
# Simulate Datasets
one <- sim.fluency(10)

# Compute similarity matrix
cos <- similarity(one, method = "cosine")

# Compute networks using NetworkToolbox
net <- NetworkToolbox::TMFG(cos)$A

# Perform random networks test
randnet.test(net, iter = 10000, cores = 2)
```

Description

Simulates random walks over two networks to examine the characteristics of spontaneous spreading activation (see Kenett & Austerweil, 2016).

Usage

```r
randwalk(A, B, reps = 20, steps = 10, iter = 10000, short.res = TRUE, cores)
```
Arguments

A Matrix or data frame. Adjacency matrix of a semantic network
B Matrix or data frame. A comparison adjacency matrix of a semantic network
reps Numeric. Number of repetitions of increments in 10 steps. Defaults to 20
steps Numeric. Number of random steps to begin with. Defaults to 10
iter Numeric. Number of iterations for each random walk. Defaults to 10000
short.res Boolean. Should shorten results (p-values only) be produced? Defaults to TRUE
cores Numeric. Number of computer processing cores to use for bootstrapping samples. Defaults to n - 1 total number of cores. Set to any number between 1 and maximum amount of cores on your computer

Value

A result matrix containing the means and standard deviations for several measures as well as p-values for a Mann-Whitney U test

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com> and Yoed Kenett <yoedkenett@gmail.com>

References

Examples

Simulate Datasets
one <- sim.fluency(10)
two <- sim.fluency(10)

Compute similarity matrix
cos1 <- similarity(one, method = "cosine")
cos2 <- similarity(two, method = "cosine")

Compute networks using NetworkToolbox
net1 <- NetworkToolbox::TMFG(cos1)$A
net2 <- NetworkToolbox::TMFG(cos2)$A

Run random walk analysis
rw.results <- randwalk(net1, net2, iter = 10000, cores = 2)
semnetmeas

Semantic Network Measures

Description

Computes the average shortest path length (ASPL), clustering coefficient (CC), and modularity (Q) of the network.

Usage

```
semnetmeas(A, meas = c("ASPL", "CC", "Q"), weighted = FALSE)
```

Arguments

- `A`
 Matrix or data frame. An adjacency matrix of a network

- `meas`
 Character. Global network measures to compute. By default, computes ASPL, CC, and Q. Individual measures can be selected

- `weighted`
 Boolean. Should weighted measures be computed? Defaults to FALSE. Set to TRUE for weighted measures

Value

Returns a values for ASPL, CC, and Q

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

Examples

```r
# Simulate Datasets
one <- sim.fluency(10)

# Compute similarity matrix
cos <- similarity(one, method = "cosine")

# Compute networks using NetworkToolbox
net <- NetworkToolbox::TMFG(cos)$A

# Compute global network measures
globmeas <- semnetmeas(net)
```
SemNeTShiny

Shiny App for SemNeT

Description

An interactive Shiny application for running `SemNeT` analysis.

Usage

```r
SemNeTShiny()
```

Value

A list called `resultShiny` containing:

- **data**
 The data imported into `SemNeTShiny`

- **group**
 The grouping variable imported into `SemNeTShiny`

- **network**
 The networks generated during `SemNeTShiny` session. The networks are labelled using the provided grouping variable

- **measures**
 Network measures ASPL (Average Shortest Path Lengths), CC (Clustering Coefficient), and Q (Modularity) for the networks generated during `SemNeTShiny` (see `semnetmeas`)

- **comparePlot**
 A visualization of the networks generated during `SemNeTShiny`

 (see `compare_nets`)

- **randomTest**
 Statistical results from the Random Network Test in `SemNeTShiny` (see `randnet.test`)

- **bootstrap**
 Results from the Bootstrap Network Analysis in `SemNeTShiny` (see `bootSemNeT`)

- **bootstrapTest**
 Statistical results from the Bootstrap Network Analysis (see `test.bootSemNeT`)

- **bootstrapPlot**
 Plots of the statistical results from the Bootstrap Network Analysis (see `plot.bootSemNeT`)

Examples

```r
if(interactive())
{
SemNeTShiny()
}
```
sim.fluency

Simulates a verbal fluency binary response matrix

Description

Simulates verbal fluency data based on the number of nodes in the desired network. The summed total of each response is simulated from a poisson distribution (see `rpois`), using frequencies from the `animals.freq` data. Using these sums, participants responses are simulated with a probability of giving a response as the total of the summed response over the number of participants.

Usage

```r
sim.fluency(nodes, cases, random = FALSE)
```

Arguments

- `nodes` Numeric. Number of nodes to simulate in data. Defaults to 100
- `cases` Numeric. Number of participants to simulate in data. Defaults to 500
- `random` Boolean. Should the frequencies be randomly sampled from? Defaults to FALSE.

Value

A binary matrix with \(p \) (participants) by \(n \) (nodes)

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

Examples

```r
# Simulate data for 50 nodes and 200 participants
sim.fluency(nodes = 50, cases = 200)
```

similarity

Measures of Similarity

Description

Computes several measures of similarity (see Choi, Cha, & Tappert, 2010 for additional measures)

Usage

```r
similarity(
  data,
  method = c("angular", "cor", "cosine", "euclid", "faith", "jaccard", "phi", "rr")
)
```
Arguments

data Matrix or data frame. A binarized dataset of verbal fluency or linguistic data
method Character. Type of similarity measure to compute.

Below are the definitions for each bin:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
<td>a+b</td>
</tr>
<tr>
<td>0</td>
<td>c</td>
<td>d</td>
<td>c+d</td>
</tr>
<tr>
<td></td>
<td>a+c</td>
<td>b+d</td>
<td>a+b+c+d</td>
</tr>
</tbody>
</table>

(R1) (R2) (N)

(C1) (C2) (N)

Options include:

- "angular" = 1 − (2 * \(\frac{\cos(\text{cosinesimilarity})}{\pi} \))
- "cosine" = \(\frac{a}{\sqrt{(a + b)(a + c)}} \)
- "faith" = \(a + 0.5d/a + b + c + d \)
- "jaccard" = \(a/a + b + c \)
- "phi" and "cor" = \(ad - bc/\sqrt{R1xR2xC1xC2} \)
- "rr" = \(a/a + b + c + d \)

Value

A symmetric similarity matrix

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

References

Examples

```r
# Simulate Datasets
one <- sim.fluency(10)

# Compute similarity matrix
cos <- similarity(one, method = "cosine")
```
test.bootSemNeT

Statistical tests for bootSemNeT

Description

Computes statistical tests for partial bootstrapped networks from bootSemNeT. Automatically computes t-tests (t.test) or ANOVA (aov) including Tukey’s HSD for pairwise comparisons (TukeyHSD)

Usage

test.bootSemNeT(..., formula = NULL, groups = NULL)

Arguments

... Object(s) from bootSemNeT
formula Character. A formula for specifying an ANOVA structure. The formula should have the predictor variable as "y" and include the names the variables are grouped by (e.g., formula = "y ~ group_var1 * group_var2"). See Two-way ANOVA example in examples
groups Data frame. A data frame specifying the groups to be input into the formula. The column names should be the variable names of interest. The groups should be in the same order as the groups input into bootSemNeT

Value

Returns a list containing the objects:

ASPL Test statistics for each proportion of nodes remaining for ASPL
CC Test statistics for each proportion of nodes remaining for CC
Q Test statistics for each proportion of nodes remaining for Q

If two groups:
A matrix in each object has the following columns:

t-statistic Statistic from the t.test
df Degrees of freedom
p-value p-value with values equal to 0 being p < .001
d Cohen’s d
CI95.lower Lower bound of the 95 percent confidence interval
CI95.upper Upper bound of the 95 percent confidence interval
Direction Direction of the effect. The argument groups will specify specifically which group is higher or lower on the measure. If no groups are input, then “d” and “p” are used to represent data and paired samples from bootSemNeT, respectively
Row names refer to the proportion of nodes remaining in bootstrapped networks

If three or more groups:

A list containing two objects:

- **ANOVA**: A matrix containing the F-statistic, group degrees of freedom, residual degrees of freedom, p-value, and partial eta squared η^2.p.eta.sq
- **HSD**: A matrix containing the differences between each group (diff), lower (lwr) and upper (upr) bounds of the 95% confidence interval, and the adjusted p-value (p.adj)

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

Examples

```r
# Simulate Dataset
one <- sim.fluency(20)
two <- sim.fluency(20)

# Run partial bootstrap networks
two.result <- bootSemNeT(one, two, prop = .50, iter = 1000,
sim = "cosine", cores = 2, type = "node", method = "TMFG")

test.bootSemNeT(two.result)

# Two-way ANOVA example
## Simulated data
hihi <- sim.fluency(50, 500)
hilo <- sim.fluency(50, 500)
lohi <- sim.fluency(50, 500)
lolo <- sim.fluency(50, 500)

## Create groups
groups <- matrix(
  c("high", "high",
   "high", "low",
   "low", "high",
   "low", "low"),
  ncol = 2, byrow = TRUE)

colnames(groups) <- c("gf", "caq")

## Run partial bootstrap networks
boot.fifty <- bootSemNeT(hihi, hilo, lohi, lolo, prop = .50,
type = "node", method = "TMFG", cores = 2)
boot.sixty <- bootSemNeT(hihi, hilo, lohi, lolo, prop = .60,
type = "node", method = "TMFG", cores = 2)
```
Compute tests

test.bootSemNeT(boot.fifty, boot.sixty, formula = "y ~ gf*caq", groups = groups)

two.result

Simulated Result for Dataset One and Two

Description

A result of `bootSemNeT` from two simulated datasets

Usage

data(two.result)

Format

two.result (list, length = 6)

Examples

data("two.result")

vignette.plots

Plots for Vignette

Description

Plots for vignette taken from Christensen & Kenett (2019)

Usage

data(vignette.plots)

Format

vignette.plots (list, length = 3)

References

Examples

data("vignette.plots")
Index

*Topic datasets
 animals.freq, 3
 net.high, 11
 net.low, 12
 one.result, 13
 open.binary, 14
 open.clean, 14
 open.group, 15
 two.result, 27
 vignette.plots, 27

animals.freq, 3, 23
aov, 25

bootSemNet, 4, 13, 16, 22, 25, 27

CN, 4, 6
compare_nets, 7, 17, 22
convert2cytoscape, 8

equate, 9

finalize, 10

net.high, 11
net.low, 12
NRW, 4, 12

one.result, 13
open.binary, 14
open.clean, 14, 15
open.group, 15

PF, 4, 15
plot.bootSemNet, 16, 22
plot.compareShiny, 17

qgraph, 7, 8, 17

randnet.test, 18, 22
randwalk, 19

rpois, 23

SemNet, 22
SemNet(SemNet-package), 2
SemNet-package, 2
semnetmeas, 5, 21, 22
SemNetShiny, 22, 22
sim.fluency, 3, 23
similarity, 4, 23
t.test, 25
test.bootSemNet, 22, 25
textcleaner, 4, 11
TMFG, 4
TukeyHSD, 25
two.result, 27
vignette.plots, 27