Description

Implements several functions that automates the cleaning and spell-checking of text data. Also converges, finalizes, removes plurals and continuous strings, and puts text data in binary format for semantic network analysis. Uses the *SemNetDictionaries* package to make the cleaning process more accurate, efficient, and reproducible.

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

See Also

Useful links:

- https://github.com/AlexChristensen/SemNetCleaner
- Report bugs at https://github.com/AlexChristensen/SemNetCleaner/issues
bad.response

 bad.response Bad Responses to NA

Description

A wrapper function to determine whether responses are good or bad. Bad responses are replaced with missing (NA). Good responses are returned.

Usage

bad.response(word, ...)

Arguments

word Character. A word to be tested for whether it is bad
...
Vector. Additional responses to be considered bad

Value

If response is bad, then returns NA. If response is valid, then returns the response

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

Examples

Bad response
bad.response(word = " ")

Good response
bad.response(word = "hello")

Make a good response bad
bad.response(word = "hello","hello")

Add additional bad responses
bad.response(word = "hello", c("hello","world"))
Makes Best Guess for Spelling Correction

Description

A wrapper function for the best guess of a spelling mistake based on the letters, the ordering of those letters, and the potential for letters to be interchanged. The Damerau-Levenshtein distance is used to guide inferences into what word the participant was trying to spell from a dictionary (see SemNetDictionaries).

Usage

```r
best.guess(word, full.dictionary, dictionary = NULL, tolerance = 1)
```

Arguments

- **word**: Character. A word to get best guess spelling options from dictionary.
- **full.dictionary**: Character vector. The dictionary to search for best guesses in. See SemNetDictionaries.
- **dictionary**: Character. A dictionary from SemNetDictionaries for monikers (enhances guessing).
- **tolerance**: Numeric. The distance tolerance set for automatic spell-correction purposes. This function uses the function `stringdist` to compute the Damerau-Levenshtein distance, which is used to determine potential best guesses. Unique words (i.e., \(n = 1 \)) that are within the (distance) tolerance are automatically output as best guess responses. This default is based on Damerau’s (1964) proclamation that more than 80% of all human misspellings can be expressed by a single error (e.g., insertion, deletion, substitution, and transposition). If there is more than one word that is within or below the distance tolerance, then these will be provided as potential options. The recommended and default distance tolerance is \(\text{tolerance} = 1 \), which only spell corrects a word if there is only one word with a DL distance of 1.

Value

The best guess(es) of the word

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

References

Examples

Misspelled "bombay"
best.guess("bomba", full.dictionary = SemNetDictionaries::animals.dictionary)

bin2resp
Binary Responses to Character Responses

Description

Converts the binary response matrix into characters for each participant

Usage

`bin2resp(rmat, to.data.frame = FALSE)`

Arguments

- `rmat`: Binary matrix. A binarized response matrix of verbal fluency or linguistic data
- `to.data.frame`: Boolean. Should output be a data frame where participants are columns? Defaults to FALSE. Set to TRUE to convert output to data frame

Value

A list containing objects for each participant and their responses

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

Examples

Toy example
raw <- open.animals[c(1:10),-c(1:3)]

if(interactive())
{
 # Clean and preprocess data
 clean <- textcleaner(open.animals[-c(1:2)], partBY = "row", dictionary = "animals")

 # Change binary response matrix to word response matrix
 charmat <- bin2resp(clean$responses$binary)
}
convert2snafu

Pathfinder Network

Description
Estimates a pathfinder network using the MST-Pathfinder Network method from Quirin et al. (2008; see also Schvaneveldt, 1990)

Usage
`convert2snafu(..., category)`

Arguments
- `...` Matrix or data frame. A clean response matrices
- `category` Character. Category of verbal fluency data

Details
The format of the file has 7 columns:
- `id` Defaults to the row names of the inputted data
- `listnum` The list number for the fluency category. Defaults to 0. Future implementations will allow more lists
- `category` The verbal fluency category that is input into the `category` argument
- `item` The verbal fluency responses for every participant
- `RT` Response time. Currently not implemented. Defaults to 0
- `RTstart` Start of response time. Currently not implemented. Defaults to 0
- `group` Names of groups. Defaults to the names of the objects input into the function (...)

Value
A `.csv` file formatted for SNAFU

Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>

References
Examples

```r
# Convert data to SNAFU
if(interactive())
  {convert2snafu(open.clean, category = "animals")}
```

Description

A function that corrects changes that were made automatically by `textcleaner`.

Usage

```r
correct.changes(textcleaner.obj)
```

Arguments

- `textcleaner.obj`
 Object from `textcleaner`

Value

This function returns the corrected lists from `textcleaners`:

- `binary`
 A matrix of responses where each row represents a participant and each column represents a unique response. A response that a participant has provided is a '1' and a response that a participant has not provided is a '0'.

- `responses`
 A list containing two objects:
 - `clean` A response matrix that has been spell-checked and de-pluralized with duplicates removed. This can be used as a final dataset for analyses (e.g., fluency of responses).
 - `original` The original response matrix that has had white spaces before and after words response. Also converts all upper-case letters to lower case.

- `spellcheck`
 A list containing three objects:
 - `full` All responses regardless of spell-checking changes
 - `auto` Only the incorrect responses that were changed during spell-check
 - `changes` Only the changes made within the function `correct.changes`

- `removed`
 A list containing two objects:
 - `rows` Identifies removed participants by their row (or column) location in the original data file
 - `ids` Identifies removed participants by their ID (see argument `data`)

- `partChanges`
 A list where each participant is a list index with each response that was been changed. Participants are identified by their ID (see argument `data`). This can be used to replicate the cleaning process and to keep track of changes more generally. Participants with NA did not have any changes from their original data and participants with missing data are removed (see `removed$ids`).
Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>

Examples

Toy example
raw <- open.animals[c(1:10),-c(1:3)]

if(interactive())
{
 #Full test
 clean <- textcleaner(open.animals[,c(1,2)], partBY = "row", dictionary = "animals")
}

letter.freq
Letter Frequencies Based on 40,000 Words

Description

Usage
data(letter.freq)

Format
letter.freq (26-element numeric vector)

Examples
data("letter.freq")

open.animals
Openness and Verbal Fluency

Description
Raw Animals verbal fluency data \(n = 516 \) from Christensen et al. (2018).

Usage
data(open.animals)
open.clean

Format
	on.open.animals (matrix 516 x 38)

Details

First column is a grouping variable ("Group") with 1 corresponding to low openness to experience and 2 to high openness to experience.
Second column is the latent variable of openness to experience with Intellect items removed (see Christensen et al., 2018 for more details).
Third column is the ID variable for each participant.
Columns 4-38 are raw fluency data.

References

Examples

data("open.animals")

data("open.clean")

open.clean

Cleaned Response Matrices (Openness and Verbal Fluency)

Description

Cleaned response matrices for the Animals verbal fluency data (n = 516) from Christensen et al. (2018).

Usage

data(open.clean)

Format

open.clean (matrix, 516 x 35)

References

Examples

data("open.clean")
open.preprocess Preprocessed textcleaner Object (Openness and Verbal Fluency)

Description
Preprocessed textcleaner object for the Animals verbal fluency data \((n = 516)\) from Christensen and Kenett (2020).

Usage
data(open.preprocess)

Format
open.preprocess (list, length = 4)

References

Examples
data("open.preprocess")

pluralize Converts Words to their Plural Form

Description
A function to change words to their plural form. The rules for converting words to their plural forms are based on the grammar rules found here: https://www.grammarly.com/blog/plural-nouns/. This function handles most special cases and some irregular cases (see examples) but caution is necessary. If no plural form is identified, then the original word is returned.

Usage
pluralize(word)

Arguments
word A word

Value
Returns the word in singular form, unless a plural form could not be found (then the original word is returned)
Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

Examples

Handles any prototypical cases
"dogs"
pluralize("dog")

"foxes"
pluralize("fox")

"wolves"
pluralize("wolf")

"octopi"
pluralize("octopus")

"taxa"
pluralize("taxon")

And most special cases:
"wives"
pluralize("wife")

"roofs"
pluralize("roof")

"photos"
pluralize("photo")

And some irregular cases:
"children"
pluralize("child")

"teeth"
pluralize("tooth")

"mice"
pluralize("mouse")

qwerty.dist QWERTY Distance for Same Length Words

Description

Computes QWERTY Distance for words that have the same number of characters. Distance is computed based on the number of keys a character is away from another character on a QWERTY keyboard.
Usage
qwerty.dist(wordA, wordB)

Arguments
wordA Character vector. Word to be compared
wordB Character vector. Word to be compared

Value
Numeric value for distance between wordA and wordB

Author(s)
Alexander Christensen <alexpaulchristensen@gmail.com>

Examples
#Identical values for Damerau-Levenshtein
stringdist::stringdist("big", "pig", method="dl")

stringdist::stringdist("big", "bug", method="dl")

#Different distances for QWERTY
qwerty.dist("big", "pig")

qwerty.dist("big", "bug") # Probably meant to type "bug"

read.data

Read in Common Data File Extensions

Description
A single function to read in common data file extensions. Note that this function is specialized for
reading in text data in the format necessary for functions in SemNetCleaner
File extensions supported:
- .Rdata
- .rds
- .csv
- .xlsx
- .xls
- .sav
- .txt
- .mat
- .dat
Usage

```r
read.data(file = file.choose(), header = TRUE, sep = ",", ...)```

Arguments

- **file**: Character. A path to the file to load. Defaults to interactive file selection using `file.choose`.
- **header**: Boolean. A logical value indicating whether the file contains the names of the variables as its first line. If missing, the value is determined from the file format: `header` is set to `TRUE` if and only if the first row contains one fewer field than the number of columns.
- **sep**: Character. The field separator character. Values on each line of the file are separated by this character. If `sep = ""` (the default for `read.table`) the separator is a 'white space', that is one or more spaces, tabs, newlines or carriage returns.
- **...**: Additional arguments. Allows for additional arguments to be passed onto the respective read functions. See documentation in the list below:
  - `.Rdata` `load`
  - `.rds` `readRDS`
  - `.csv` `read.table`
  - `.xlsx` `read_excel`
  - `.xls` `read_excel`
  - `.sav` `read.spss`
  - `.txt` `read.table`
  - `.mat` `readMat`
  - `.dat` `read.table`

Value

A data frame containing a representation of the data in the file. If file extension is ".Rdata", then data will be read to the global environment.

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

References

# R Core Team


# readxl


# R.matlab

Examples

# Use this example for your data
if(interactive())
{read.data()}

# Example for CRAN tests
## Create test data
test1 <- c(1:5, "6,7", "8,9,10")

## Path to temporary file
tf <- tempfile()

## Create test file
writeLines(test1, tf)

## Read in data
read.data(tf)

# See documentation of respective R functions for specific examples

---

resp2bin

Responses to binary matrix

Description

Converts the response matrix to binary response matrix

Usage

resp2bin(resp)

Arguments

resp Response matrix. A response matrix of verbal fluency or linguistic data

Value

A list containing objects for each participant and their responses

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>
singularize

Examples

# Toy example
raw <- open.animals[c(1:10),-c(1:3)]

if(interactive())
{
  # Clean and prepocess data
  clean <- textcleaner(open.animals[,-c(1:2)], partBY = "row", dictionary = "animals")

  # Change response matrix to binary response matrix
  binmat <- resp2bin(clean$responses$corrected)
}

---

singularize Converts Words to their Singular Form

Description

A function to change words to their singular form. The rules for converting words to their singular forms are based on the inverse of the grammar rules found here: https://www.grammarly.com/blog/plural-nouns/. This function handles most special cases and some irregular cases (see examples) but caution is necessary. If no singular form is identified, then the original word is returned.

Usage

singularize(word, dictionary = TRUE)

Arguments

word Character. A word

dictionary Boolean. Should dictionary be used to verify word exists? Default to TRUE

Value

Returns the word in singular form, unless a singular form could not be found (then the original word is returned)

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>
Examples

    # Handles any prototypical cases
    # "dog"
    singularize("dogs")

    # "fox"
    singularize("foxes")

    # "wolf"
    singularize("wolves")

    # "octopus"
    singularize("octopi")

    # "taxon"
    singularize("taxa")

    # And most special cases:
    # "wife"
    singularize("wives")

    # "fez"
    singularize("fezzes")

    # "roof"
    singularize("roofs")

    # "photo"
    singularize("photos")

    # And some irregular cases:
    # "child"
    singularize("children")

    # "tooth"
    singularize("teeth")

    # "mouse"
    singularize("mice")

---

textcleaner | Text Cleaner

Description

An automated cleaning function for spell-checking, de-pluralizing, removing duplicates, and binarizing text data
textcleaner

Usage

textcleaner(
    data = NULL,
    miss = 99,
    partBY = c("row", "col"),
    dictionary = NULL,
    spelling = c("UK", "US"),
    add.path = NULL,
    keepStrings = FALSE,
    allowPunctuations = c("-", "all"),
    allowNumbers = FALSE,
    lowercase = TRUE,
    continue = NULL
)

Arguments

data Matrix or data frame. A dataset of text data. Participant IDs will be automatically identified if they are included. If no IDs are provided, then their order in the corresponding row (or column is used). A message will notify the user how IDs were assigned

miss Numeric or character. Value for missing data. Defaults to 99

partBY Character. Are participants by row or column? Set to "row" for by row. Set to "col" for by column

dictionary Character vector. Can be a vector of a corpus or any text for comparison. Dictionary to be used for more efficient text cleaning. Defaults to NULL, which will use general.dictionary
Use dictionaries() or find.dictionaries() for more options (See SemNetDictionaries for more details)

spelling Character vector. English spelling to be used.
- "UK" For British spelling (e.g., colour, grey, programme, theatre)
- "US" For American spelling (e.g., color, gray, program, theater)

add.path Character. Path to additional dictionaries to be found. DOES NOT search recursively (through all folders in path) to avoid time intensive search. Set to "choose" to open an interactive directory explorer

keepStrings Boolean. Should strings be retained or separated? Defaults to FALSE. Set to TRUE to retain strings as strings

allowPunctuations Character vector. Allows punctuation characters to be included in responses. Defaults to "-". Set to "all" to keep all punctuation characters

allowNumbers Boolean. Defaults to FALSE. Set to TRUE to keep numbers in text

lowercase Boolean. Should words be converted to lowercase? Defaults to TRUE. Set to FALSE to keep words as they are

continue List. A result previously unfinished that still needs to be completed. Allows you to continue to manually spell-check their data after you’ve closed or errored out. Defaults to NULL
textcleaner

Value

This function returns a list containing the following objects:

- **binary**
  A matrix of responses where each row represents a participant and each column represents a unique response. A response that a participant has provided is a '1' and a response that a participant has not provided is a '0'.

- **responses**
  A list containing two objects:
  - **clean** A response matrix that has been spell-checked and de-pluralized with duplicates removed. This can be used as a final dataset for analyses (e.g., fluency of responses)
  - **original** The original response matrix that has had white spaces before and after words response. Also converts all upper-case letters to lower case.

- **spellcheck**
  A list containing three objects:
  - **full** All responses regardless of spell-checking changes
  - **auto** Only the incorrect responses that were changed during spell-check

- **removed**
  A list containing two objects:
  - **rows** Identifies removed participants by their row (or column) location in the original data file
  - **ids** Identifies removed participants by their ID (see argument data)

- **partChanges**
  A list where each participant is a list index with each response that was been changed. Participants are identified by their ID (see argument data). This can be used to replicate the cleaning process and to keep track of changes more generally. Participants with NA did not have any changes from their original data and participants with missing data are removed (see removed$ids).

Author(s)

Alexander Christensen <alexpaulchristensen@gmail.com>

References


Examples

```r
Toy example
raw <- open.animals[c(1:10),-c(1:3)]

if(interactive())
{
 #Full test
 clean <- textcleaner(open.animals[-c(1,2)], partBY = "row", dictionary = "animals")
}
```
Index

* datasets
  letter.freq, 8
  open.animals, 8
  open.clean, 9
  open.preprocess, 10

bad.response, 3
best.guess, 4
bin2resp, 5

convert2snafu, 6
correct.changes, 7, 7

file.choose, 13
general.dictionary, 17

letter.freq, 8
load, 13

open.animals, 8
open.clean, 9
open.preprocess, 10

pluralize, 10
qwerty.dist, 11

read.data, 12
read.spss, 13
read.table, 13
read_excel, 13
readMat, 13
readRDS, 13
resp2bin, 14

SemNetCleaner (SemNetCleaner-package), 2
SemNetCleaner-package, 2
SemNetDictionaries, 2, 4, 17

singularize, 15
stringdist, 4

textcleaner, 7, 10, 16