Package ‘SensMixed’

March 14, 2018

Type Package
Title Analysis of Sensory and Consumer Data in a Mixed Model Framework
Version 2.1-0
Depends R (>= 3.0.0), stats, methods
Imports Hmisc, plyr, doBy, xtable, reshape2, ggplot2, shiny, shinyBS, lme4 (>= 1.1), MASS
Suggests pbkrtest, parallel, estimability
Description Functions that facilitate analysis of Sensory as well as Consumer data within a mixed effects model framework. The so-called mixed assessor models, that correct for the scaling effect are implemented. The generation of the d-tilde plots forms part of the package. The shiny application provides a GUI for the functionalities.
LazyData TRUE
License GPL (>= 2)
NeedsCompilation no
Author Alexandra Kuznetsova [aut], Per Bruun Brockhoff [aut, ths, cre]. Rune Haubo Bojesen Christensen [aut]
Maintainer Per Bruun Brockhoff <perbb@dtu.dk>
Repository CRAN
Date/Publication 2018-03-14 10:35:48 UTC

R topics documented:

conjoint ... 2
convertToFactors .. 4
ham ... 5
plot ... 6
plot.conjoint ... 7
plotLSMEANS ... 8
Conjoint analysis within a mixed effects model framework.

Description

Performs conjoint analysis within a mixed effects model framework. This function is then used in the conjoint analysis of the ConsumerCheck software tool.

Usage

```r
conjoint(structure = 1, data, response, fixed, random, facs,
      corr = FALSE, alpha.random = 0.1, alpha.fixed = 0.05)
```

Arguments

- **structure**: numerical, takes values in c(1,2,3). Specifies the complexity of the conjoint model.
 - **structure = 1**: mixed effects model includes fixed main effects. Random effects consist of random consumer effect and interaction between consumer and the main effects.
 - **structure = 2**: mixed effects model includes main effects and all 2-factor interactions. Random effects consist of consumer effect and interaction between consumer and all fixed effects (both main and interaction ones).
 - **structure = 3**: This is a full factorial model with all possible fixed and random effects (i.e. including all main effects and all higher-way interactions). The automated reduction in random part is followed by an automated reduction in fixed part.

- **data**: a data frame.

- **response**: a vector. Names of the variables that correspond to the liking scores.

- **fixed**: a list. first element is a vector with a name Product includes names of the design variables. second element with a name Consumer includes names of the consumer characteristics variables

- **random**: a string with the name for a consumer variable

- **facs**: a vector with the names of the variables that need to be considered as factors

- **corr**: a logical value. TRUE if the correlations between random effects are included in the model. FALSE if correlations between random effects are set to 0.

- **alpha.random**: significance level for elimination of the random part (for LRT test)

- **alpha.fixed**: significance level for elimination of the fixed part (for F test)
Details

Conjoint analysis (Green and Rao 1971; Green and Srinivasan 1978) is a method for analysing the effects of design factors and consumer characteristics on consumer likings. A common approach is to analyse it in a mixed effects model framework, where random effects consist of consumer effect and interactions between consumer effects and design factors, and fixed effects consist of design factors and consumer characteristics and possibly interactions between them.

Value

- **rand.table**: data frame with value of Chi square statistics, p-values for the likelihood ratio test for random effects. The order of elimination of non-significant random effects for structure = 3
- **anova.table**: data frame with tests for whether the model fixed terms are significant (Analysis of Variance)
- **lsmeans.table**: Least Squares Means data frame with p-values and Confidence intervals
- **diffs.lsmeans.table**: Differences of Least Squares Means data frame with p-values and Confidence intervals. The multiplicity correction for multiple comparisons tests uses Bonferroni method
- **residuals**: These are the residuals of the final model (for structure = 3, the reduced one)
- **residualsFixed**: These are the residuals that are extracted from a fixed effects model with a saturated fixed structure (main effects and all higher-way interactions form fixed part) and one fixed Consumer effect.

Note

The tests for the random effects use likelihood ratio tests while the tests for the fixed effects use the F-test with Satterthwaite’s approximation to degrees of freedom. The automated reduction in the fixed part uses the principle of marginality, i.e. the highest order interactions are tested first: if they are significant, the lower order effects are not eliminated even if being non-significant.

Author(s)

Alexandra Kuznetsova, Per Bruun Brockhoff

References

See Also

sensmixed, SensMixedUI
convertToFactors

Examples
```r
# check with the ham
response <- c("Liking")
fixed <- list(Product=c("Product", "Information"), Consumer="Gender")
random <- c("Consumer")
facs <- c("Consumer", "Product", "Information", "Gender")

res.ham <- conjoint(structure=3, ham, response, fixed, random, facs)
res.ham
res.ham$Liking
```

convertToFactors converts variables of the data frame to factors

Description

the user specifies which variables he/she would like to consider as factors, the functions converts them to factors

Usage

```r
convertToFactors(data, facs)
```

Arguments

- `data` data frame
- `facs` vector with names of variables that the user would like to convert to factors

Value

returns the same data frame as in the input but with the specified variables converted to factors

Author(s)

Alexandra Kuznetsova

Examples

```r
library(SensMixed)
str(ham)

ham <- convertToFactors(ham, c("Gender"))
str(ham)
```
Conjoint study of dry cured ham

Description

One of the purposes of the study was to investigate the effect of information given to the consumers measured in hedonic liking for the hams. Two of the hams were Spanish and two were Norwegian, each origin representing different salt levels and different aging time. The information about origin was given in such way that both true and false information was given, essentially a 4*2 design with 4 samples and 2 information levels. A total of 81 Consumers participated in the study.

Usage

ham

Format

Consumer factor with 81 levels: numbering identifying consumers
Product factor with four levels
Informed liking numeric: hedonic liking for the products
Information factor with two levels
Gender factor with two levels (gender)
Age numeric: age of Consumer

References

"Alternative methods for combining design variables and consumer preference with information about attitudes and demographics in conjoint analysis". T. Naes, V. Lengard, S. Bolling Johansen, M. Hersleth

Examples

```r
## check with the ham
response <- c("Liking")
fixed <- list(Product=c("Product", "Information"), Consumer="Gender")
random <- c("Consumer")
facs <- c("Consumer", "Product", "Information", "Gender")

res.ham <- conjoint(structure=1, ham, response, fixed, random, facs)
```
plot

function creates plots for the sensmixed object

Description

function creates barplots for the square roots of F statistics and square roots of chi square values for all attributes

Usage

S3 method for class 'sensmixed'
plot(x, mult = FALSE, dprime = FALSE, sep = FALSE,
 cex = 2, interact.symbol = ":",
 isRand = TRUE, isScaling = TRUE, stacked = TRUE, ...)

Arguments

x object of class sensmixed
mult logical. Should multiple plots be plotted, that is barplots for each effect in a separate plot
dprime logical. Should multiattribute plot for product effects use average squared dprimes instead of square root of F statistics
sep logical. If TRUE then separate plot is plotted for each effect (mult argument should be then also TRUE)
cex The magnification to be used
interact.symbol The symbol to be used for the interaction effects
isRand logical. Whether to plot tests of the random effects
isScaling logical. Whether to plot the scaling factor if present
stacked logical. Whether bars should be stacked
... other potential arguments.

Value

NULL is returned

Author(s)

Alexandra Kuznetsova
Examples

res <- sensmixed(c("Coloursaturation", "Colourbalance", "Noise"),
 prod.effects=c("TVset", "Picture"),
 assessor="Assessor", data=TVbo, MAM=TRUE,
 control=list(reduce.random=FALSE))
plot(res, isRand = TRUE)
plot(res, isRand = FALSE)
plot(res, stacked = FALSE, mult = TRUE)
plot(res, isRand = FALSE, stacked = FALSE, interact.symbol = " x ")

plot.conjoint

plots the post-hoc for the conjoint object

Description

plots the least squares means and differences of least squares means together with the confidence intervals for the fixed effects

Usage

S3 method for class 'conjoint'
plot(x, main = NULL, cex = 1.4,
 which.plot = c("LSMEANS", "DIFF of LSMEANS"),
 test.effs = NULL, ...)

Arguments

x object of class conjoint
main string. Title for the plots
cex A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default
which.plot type of plot to be drawn
test.effs name of the effext for which to draw the plots
... other potential arguments.

Value

returns NULL

Author(s)

Alexandra Kuznetsova
Examples

```r
# convert some variables to factors in Tham
response <- c("Liking")
fixed <- list(Product = c("Product", "Information"), Consumer = "Gender")
random <- c("Consumer")
facs <- c("Consumer", "Product", "Information", "Gender")

res.ham <- conjoint(structure = 3, ham, response, fixed, random, facs)
```

plotLSMEANS

`plots bars for the LSMEANS or differences of LSMEANS`

Description
plots bars for the LSMEANS or differences of LSMEANS for product factors and confidence intervals

Usage

```r
plotLSMEANS(table, response, 
which.plot = c("LSMEANS", "DIFF of LSMEANS"),
main = NULL, cex = 1.4, effs = NULL, mult = TRUE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>table</td>
<td>data table containing LSMEANS/ DIFFLSMEANS table from the step function</td>
</tr>
<tr>
<td></td>
<td>of the lmerTest package</td>
</tr>
<tr>
<td>response</td>
<td>vector with the name of the attribute, for which the LSMEANS / DIFFLSMEANS</td>
</tr>
<tr>
<td></td>
<td>are calculated</td>
</tr>
<tr>
<td>which.plot</td>
<td>name, indicating the type of plot to generate.</td>
</tr>
<tr>
<td>main</td>
<td>name of the title for the plot</td>
</tr>
<tr>
<td>cex</td>
<td>cex for representing the plot (UNUSED?..)</td>
</tr>
<tr>
<td>effs</td>
<td>vector with the names for the effects, for which to plot the LSMEANS / DIFF-</td>
</tr>
<tr>
<td></td>
<td>LSMEANS</td>
</tr>
<tr>
<td>mult</td>
<td>logical. TRUE means plot LSMEANS for all effects in one layout</td>
</tr>
<tr>
<td>...</td>
<td>other potential arguments.</td>
</tr>
</tbody>
</table>

Value

barplots created via ggplot2 package

Author(s)

Alexandra Kuznetsova, Per Bruun Brockhoff, Rune Haubo Bojesen Christensen
saveToDoc

Description

save the results in tables into a doc file for sensmixed or conjoint objects

Usage

```r
saveToDoc(x, file = NA, bold = FALSE, append = TRUE, type = "html", typeEffs = 1)
```

Arguments

- `x`: object of class sensmixed or conjoint.
- `file`: a character string naming the file to write to, or NULL to stop sinking.
- `bold`: logical. Should the significance be in bold text instead of the stars. The default is FALSE.
- `append`: logical. If TRUE, output will be appended to file; otherwise, it will overwrite the contents of file.
- `type`: type of output as in xtable. Either "html" or "latex".
- `typeEffs`: one of the numbers in c(1,2,3,4). 1: save results for the random effects in a table 2: save results for the fixed effects in a table 3: save results for the scaling effects in a table 4: save results for all effects in a table

Author(s)

Alexandra Kuznetsova

Examples

```r
## Not run:
res <- sensmixed(c("Coloursaturation", "Colourbalance"),
                 prod_effects=c("TVset"),
                 assessor="Assessor", data=TVbo)

saveToDoc(res, file = "C:/Desktop/output.doc")

## End(Not run)
```
sensmixed

Analysis of sensory data within a mixed effects model framework

Description

Constructs mixed effects models for each of the selected by a user attributes. By default the largest possible models (that contain all possible interactions in fixed and random parts) are fitted. The complexity of the fitted models can be changed. Non-significant random effects are eliminated (by default). The likelihood ratio test (LRT) is used for testing the random terms, F-type hypothesis test is used for testing the terms. The type of the model and the type of the analysis can be changed with the control argument (see sensmixedControl())

Usage

sensmixed(attributes, prod_effects, assessor, replication = NULL, data, product_structure = 3, error_structure = "ASS-REP", MAM = TRUE, control = sensmixedControl())

Arguments

- attributes: a vector with names of sensory attributes
- prod_effects: a vector with the names of the variables related to the product
- replication: a character with the name of the replication column in the data, if present
- assessor: a character with the name of the column in the data that represents assessors
- data: a data frame (data from sensory studies)
- product_structure: numeric, takes values in c(1, 2, 3). Specifies the complexity of the fixed part (product effects) of the mixed effects models for all attributes.
 - product_structure = 1: only main effects
 - product_structure = 2: main effects and 2-way interactions
 - product_structure = 3: all main effects and all possible interaction
- error_structure: character, takes values in c("ONLY-ASS", "ASS-REP"). Specifies the complexity of the random part of the mixed effects models for all attributes.
 - error_structure = "ONLY-ASS": assessor effect and all possible interactions between assessor and product effects
 - error_structure = "ASS-REP": assessor and replicate effect and interaction between them and interaction between them and product effects
- MAM: logical. if TRUE then mixed assessor models (MAM) are fitted for the selected attributes (see Brockhoff, P. B., Schlich, P., & Skovgaard, I. (2015))
- control: a list (of class sensmixedControl()) containing control parameters. See the sensmixedControl() documentation for details.
sensmixed matrix with Chi square values from LRT test and F values form F-type test for the selected attributes
pvalue matrix with p-values for all effects for the selected attributes

Author(s)
Alexandra Kuznetsova, Per Bruun Brockhoff, Rune Haubo Bojesen Christensen

References

See Also
sensmixedControl, conjoint, SensMixedUI

Examples

import SensMixed package
library(SensMixed)

convert some variables to factors in TVbo
TVbo <- convertToFactors(TVbo, c("Assessor", "Repeat", "Picture"))

run automated selection process
res <- sensmixed(c("Coloursaturation", "Colourbalance"),
prod_effects = c("TVset", "Picture"),
assessor="Assessor", data=TVbo, MAM=TRUE)

res

run MAManalysis function
res_MAM <- sensmixed(c("Coloursaturation", "Colourbalance"),
prod_effects=c("TVset"), replication="Repeat",
assessor="Assessor", data=TVbo, control = list(MAM_balanced=TRUE))

print is not yet implemented
get anova part
res_MAM[[3]][,1]

compare with the general implementation
res <- sensmixed(c("Coloursaturation", "Colourbalance"),
 prod_effects=c("TVset"),
 assessor="Assessor", data=TVbo, MAM=TRUE,
 control = list(reduce.random=FALSE))
res$fixed

Not run:
res <- sensmixed(names(TVbo)[5:(ncol(TVbo) - 1)],
 prod_effects=c("TVset", "Picture"),
 assessor="Assessor",
 data=TVbo)

plot F and Chi square values
plot(res)

End(Not run)

sensmixedControl

Control of sensmixed function

Description

Construct control structures for sensmixed function. All arguments have defaults, and can be grouped into

- mixed assessor model (MAM) parameters (are only used if MAM = TRUE in the sensmixed function)
- model analysis specifications

Usage

```r
sensmixedControl(MAM_mult_scaling = FALSE, MAM_oneway_rand = FALSE,
                 MAM_balanced = FALSE, MAM_adjusted = FALSE,
                 MAM_alpha_conditional = 1,
                 calc_post_hoc = FALSE, parallel = FALSE,
                 reduce.random=TRUE, alpha.random = 0.1,
                 alpha.fixed = 0.05, interact.symbol = ":",
                 keep.effs = NULL)
```

Arguments

- **MAM_mult_scaling**
 - logical. Whether multiple scaling should be used. This option is not fully investigated (recommended is FALSE)
- **MAM_oneway_rand**
 - logical. Whether there should be just one prod_effect (in a multi-factorial product structure setting this means the highest order interaction) as part of the random part in MAM
Description

launches a shiny application that provides the graphical user interface (GUI) for the functions contained in the SensMixed package. Application also includes such crucial functionalities as importing the data in different formats, presenting results in tables and plots as well as saving them.
Usage

SensMixedUI()

Author(s)
Alexandra Kuznetsova, Per Bruun Brockhoff, Rune Haubo Bojesen Christensen

See Also
sensmixed, conjoint

Examples

Not run:
library(SensMixed)
SensMixedUI()

End(Not run)

TVbo

TV dataset

Description

The TVbo dataset comes from Bang and Olufsen company. The main purpose was to test products, specified by two attributes Picture and TVset. 15 different response variables (characteristics of the product) were assessed by trained panel list.

Usage

TVbo

Format

Assessor factor: numbering identifying assessors
TVset factor: attribute of the product
Picture factor: attribute of the product
15 Characteristics of the product numeric variables: Coloursaturation, Colourbalance, Noise, Depth, Sharpness, Lightlevel, Contrast, Sharpnessofmovement, Flickeringstationary, Flickeringmovement, Distortion, Dimglasseffect, Cutting, Flossyedges, Elasticseffect

Source
Bang and Olufsen company
Examples

```r
## import SensMixed package
library(SensMixed)

## convert some variables to factors in TVbo
TVbo <- convertToFactors(TVbo, c("Assessor", "Repeat", "Picture"))

## run automated selection process
res <- sensmixed(c("Coloursaturation", "Colourbalance"),
                 prod_effects = c("TVset", "Picture"),
                 assessor="Assessor", data=TVbo, MAM=FALSE)
res
```
Index

*Topic `\textasciitilde kwd1`
 plotNconjoint, 7

*Topic `\textasciitilde kwd2`
 plotNconjoint, 7

*Topic `datasets`
 ham, 5
 TVbo, 14

conjoint, 2, 11, 14
convertToFactors, 4

ham, 5

plot, 6
plotNconjoint, 7
plotLSMEANS, 8

saveToDoc, 9
sensmixed, 3, 10, 13, 14
sensmixedControl, 11, 12
SensMixedUI, 3, 11, 13

TVbo, 14