Package ‘ShapleyOutlier’

February 20, 2023

Type Package
Title Multivariate Outlier Explanations using Shapley Values and Mahalanobis Distances
Version 0.1.1
Depends R (>= 4.0.0)
Maintainer Marcus Mayrhofer <marcus.mayrhofer@tuwien.ac.at>
Description Based on Shapley values to explain multivariate outlyingness and to detect and impute cellwise outliers.
License GPL-3
Imports dplyr, Rdpack, stats, tibble, tidyr, robustbase, forcats, egg, ggplot2, gridExtra, RColorBrewer, magrittr
Suggests grDevices, cellWise, robustHD, knitr, MASS, rmarkdown
RdMacros Rdpack
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
VignetteBuilder knitr
Repository CRAN
NeedsCompilation no
Author Marcus Mayrhofer [aut, cre],
Peter Filzmoser [aut]
Date/Publication 2023-02-20 10:30:02 UTC

R topics documented:

MOE ... 2
new_shapley .. 4
new_shapley_algorithm .. 5
Detecting cellwise outliers using Shapley values based on local outlyingness.

Description

The MOE function indicates outlying cells for a data vector with p entries or data matrix with $n \times p$ entries containing only numeric entries x for a given center μ and covariance matrix Σ using the Shapley value. It is a more sophisticated alternative to the SCD algorithm, which uses the information of the regular cells to derive an alternative reference point (Mayrhofer and Filzmoser 2022).

Usage

```r
MOE(
  x,
  mu,
  Sigma,
  Sigma_inv = NULL,
  step_size = 0.1,
  min_deviation = 0,
  max_step = NULL,
  local = TRUE,
  max_iter = 1000,
  q = 0.99,
  check_outlyingness = FALSE,
  check = TRUE,
  cells = NULL,
  method = "cellMCD"
)
```
Arguments

x Data vector with \(p \) entries or data matrix with \(n \times p \) entries containing only numeric entries.

mu Either NULL (default) or mean vector of \(x \). If NULL, method is used for parameter estimation.

Sigma Either NULL (default) or covariance matrix \(p \times p \) of \(x \). If NULL, method is used for parameter estimation.

Sigma_inv Either NULL (default) or Sigma’s inverse \(p \times p \) matrix. If NULL, the inverse of Sigma is computed using \(\text{solve}(\text{Sigma}) \).

step_size Numeric. Step size for the imputation of outlying cells, with \(\text{step_size} \in [0, 1] \). Defaults to 0.1.

min_deviation Numeric. Detection threshold, with \(\text{min_deviation} \in [0, 1] \). Defaults to 0.2

max_step Either NULL (default) or an integer. The maximum number of steps in each iteration. If NULL, \(\text{max_step} = p \).

local Logical. If TRUE (default), the non-central Chi-Squared distribution is used to determine the cutoff value based on \(\mu_{\text{tilde}} \).

max_iter Integer. The maximum number of iterations.

q Numeric. The quantile of the Chi-squared distribution for detection and imputation of outliers. Defaults to 0.99.

check_outlyingness Logical. If TRUE (default), the outlyingness is rechecked after applying \(\text{min_deviation} \).

check Logical. If TRUE (default), inputs are checked before running the function and an error message is returned if one of the inputs is not as expected.

cells Either NULL (default) or a vector/matrix of the same dimension as \(x \), indicating the outlying cells. The matrix must contain only zeros and ones, or TRUE/FALSE.

method Either "cellMCD" (default) or "MCD". Specifies the method used for parameter estimation if mu and/or Sigma are not provided.

Value

A list of class shapley_algorithm (new_shapley_algorithm) containing the following:

x A \(p \)-dimensional vector (or a \(n \times p \) matrix) containing the imputed data.

phi A \(p \)-dimensional vector (or a \(n \times p \) matrix) containing the Shapley values (outlyingness-scores) of \(x \); see shapley.

mu_tilde A \(p \)-dimensional vector (or a \(n \times p \) matrix) containing the alternative reference points based on the regular cells of the original observations.

x_original A \(p \)-dimensional vector (or a \(n \times p \) matrix) containing the original data.

x_original The non-centrality parameters for the Chi-Squared distribution

x_history A list with \(n \) elements, each containing the path of how the original data vector was modified.

phi_history A list with \(n \) elements, each containing the Shapley values corresponding to x_history.
mu_tilde_history
A list with n elements, each containing the alternative reference points corresponding to $x_{history}$.

S_history
A list with n elements, each containing the indices of the outlying cells in each iteration.

References

Examples
```r
p <- 5
mu <- rep(0,p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
Sigma_inv <- solve(Sigma)
x <- c(0,1,2,2.3,2.5)
MOE_x <- MOE(x = x, mu = mu, Sigma = Sigma)
plot(MOE_x)

library(MASS)
set.seed(1)
n <- 100; p <- 10
mu <- rep(0,p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
X <- mvrnorm(n, mu, Sigma)
X[sample(1:(n*p), 100, FALSE)] <- rep(c(-5,5),50)
MOE_X <- MOE(X, mu, Sigma)
plot(MOE_X, subset = 20)
```

Description
This function creates an object of class shapley that is returned by the shapley function.

Usage
```r
new_shapley(phi = numeric(), mu_tilde = NULL, non_centrality = NULL)
```

Arguments

phi
A p-dimensional vector (or a $n \times p$ matrix) containing the Shapley values (outlyingness-scores) of a p-dimensional data vector (or a $n \times p$ data matrix).

mu_tilde
Optional. A p-dimensional vector (or a $n \times p$ matrix) containing the alternative reference points based on the regular cells of the original observations.

non_centrality
Optional. The non-centrality parameters for the Chi-Squared distribution, which are given by mahlanobis(mu_tilde, mu, Sigma).
new_shapley_algorithm

Value

Named list of class shapley, containing the input parameters.

new_shapley_algorithm
Class constructor for class shapley_algorithm.

Description

This function creates an object of class shapley_algorithm that is returned by the SCD and MOE functions.

Usage

```r
new_shapley_algorithm(
  x = numeric(),
  phi = numeric(),
  x_original = numeric(),
  mu_tilde = NULL,
  non_centrality = NULL,
  x_history = NULL,
  phi_history = NULL,
  mu_tilde_history = NULL,
  S_history = NULL
)
```

Arguments

- **x**
 A p-dimensional vector (or a $n \times p$ matrix) containing the imputed data.

- **phi**
 A p-dimensional vector (or a $n \times p$ matrix) containing the Shapley values (outlyingness-scores) of a p-dimensional data vector (or a $n \times p$ data matrix).

- **x_original**
 A p-dimensional vector (or a $n \times p$ matrix) containing the original data.

- **mu_tilde**
 Optional. A p-dimensional vector (or a $n \times p$ matrix) containing the alternative reference points based on the regular cells of the original observations.

- **non_centrality**
 Optional. The non-centrality parameters for the Chi-Squared distribution, which are given by `mahlanobis(mu_tilde, mu, Sigma)`.

- **x_history**
 Optional. A list with n elements, each containing the path of how the original data vector was modified.

- **phi_history**
 Optional. A list with n elements, each containing the Shapley values corresponding to `x_history`.

- **mu_tilde_history**
 Optional. A list with n elements, each containing the alternative reference points corresponding to `x_history`.

- **S_history**
 Optional. A list with n elements, each containing the indices of the outlying cells in each iteration.
new_shapley_interaction

Class constructor for class shapley_interaction.

Description

This function creates an object of class shapley_interaction that is returned by the shapley_interaction function.

Usage

new_shapley_interaction(PHI = numeric())

Arguments

PHI

A $p \times p$ matrix containing the decomposition of the squared Mahalanobis distance of a p-dimensional numeric vector into outlyingness scores for pairs of variables.

Value

Matrix of class shapley_interaction, containing input matrix PHI.

plot.shapley

Barplot of Shapley values

Description

Barplot of Shapley values

Usage

S3 method for class 'shapley'
plot(
 x,
 subset = NULL,
 chi2.q = 0.99,
 abbrev.var = 3,
 abbrev.obs = 10,
 sort.var = FALSE,
 sort.obs = FALSE,
 plot_md = TRUE,
Arguments

x A list of class shapley.
subset Either an integer, "chi2", or NULL (default) to select which rows of \(\phi \) should be displayed. If NULL, all \(n \) rows are displayed, for a single integer the subset rows with the highest Mahalanobis distance are displayed, for an integer vector the subset selected rows are displayed, and for "chi2" all outlying rows are displayed (Mahalanobis distance greater than \(\sqrt{qchisq(chi2.q, p)} \)).

chi2.q Quantile, only used if subset == "chi2".
abbrev.var Integer. If abbrev.var > 0, column names are abbreviated using abbreviate with minlenght = abbrev.var.
abbrev.obs Integer. If abbrev.obs > 0, row names are abbreviated using abbreviate with minlenght = abbrev.obs.
sort.var Logical. If TRUE (default), variables are sorted according to the distance
sort.obs Logical. If TRUE (default), observations are sorted according to their Mahalanobis distance.
plot_md Logical. If TRUE (default), the Mahalanobis distance will be included in the plot.
md_squared Logical. If TRUE (default), the squared Mahalanobis distance is plotted otherwise the (not-squared) Mahalanobis distance.
rotate_x Logical. If TRUE (default), the x-axis labels are rotated.

... Optional arguments passed to methods.

Value

Returns a barplot that displays the Shapley values (shapley) for each observation and optionally (plot_md = TRUE) includes the squared Mahalanobis distance (black bar) and the corresponding (non-)central chi-square quantile (dotted line).

Examples

library(MASS)
set.seed(1)
n <- 100; p <- 10
mu <- rep(0,p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
X <- mvrnorm(n, mu, Sigma)
X_clean <- X
X[sample(1:(n*p), 100, FALSE)] <- rep(c(-5,5),50)
call_shapley <- shapley(X, mu, Sigma)
plot(call_shapley, subset = 1:20)
plot(call_shapley, subset = 5, rotate_x = FALSE)
plot(call_shapley, subset = 5, md_squared = FALSE, rotate_x = FALSE)
plot.shapley_algorithm

Description

Barplot and tileplot of Shapley values.

Usage

S3 method for class 'shapley_algorithm'
plot(
 x,
 type = "both",
 subset = NULL,
 abbrev.var = FALSE,
 abbrev.obs = FALSE,
 sort.var = FALSE,
 sort.obs = FALSE,
 n_digits = 2,
 rotate_x = TRUE,
 continuous_rowname = FALSE,
 ...
)

Arguments

x A list of class shapley_algorithm.

type Either "both" (default), "bar", or "cell". If "both" (default) a barplot and a tileplot are created, otherwise only the selected plot is created.

subset Either an integer, "chi2", or NULL (default) to select which rows of phi should be displayed. If NULL, all n rows are displayed, for a single integer the subset rows with the highest Mahalanobis distance are displayed, for an integer vector the subset selected rows are displayed, and for "chi2" all outlying rows are displayed (Mahalanobis distance greater than \sqrt{qchisq(chi2, q, p)}).

abbrev.var Integer. If abbrev.var > 0, column names are abbreviated using abbreviate with minlenght = abrev.var.

abbrev.obs Integer. If abbrev.obs > 0, row names are abbreviated using abbreviate with minlenght = abrev.obs.

sort.var Logical. If TRUE (default), variables are sorted according to the distance

sort.obs Logical. If TRUE (default), observations are sorted according to their Mahalanobis distance.

n_digits Integer. If n_digits > 0, the original values of the variables are given in each cell with n_digits decimals places.
plot.shapley_interaction

rotate_x Logical. If TRUE (default), the x-axis labels are rotated.
continuous_rowname
 Logical. If TRUE, the rownames are converted to a numeric vector.
... Arguments passed on to plot.shapely.

Value

Returns plots for a list of class shapley_algorithm. If type is "bar", a barplot is generated. It displays the Shapley values (shapley) for each observation and optionally (plot_md = TRUE) includes the squared Mahalanobis distance (black bar) and the corresponding (non-)central chi-square quantile (dotted line). If type is "cell" a tileplot is generated. It displays each cells of the dataset and shows the original value from the observations, color coding indicates whether those values were higher (red) or lower (blue) than the imputed values, and the color intensity is based on the magnitude of the Shapley value. If type is "both", the barplot and the tileplot are generated.

Examples

library(MASS)
set.seed(1)
n <- 100; p <- 10
mu <- rep(0, p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
X <- mvrnorm(n, mu, Sigma)
X[sample(1:(n*p), 100, FALSE)] <- rep(c(-5, 5), 50)
MOE_X <- MOE(X, mu, Sigma)
plot(MOE_X, subset = 20, n_digits = 0)
print.shapley

Arguments

- **x**: A $p \times p$ matrix containing the Shapley interaction indices (shapley_interaction) of a single observation.
- **abbrev**: Integer. If abbrev.var > 0, variable names are abbreviated using abbreviate with minlenght = abbrev.
- **title**: Character. Title of the plot.
- **legend**: Logical. If TRUE (default), a legend is plotted.
- **text.size**: Integer. Size of the text in the plot

Value

Returns a figure consisting of two panels. The upper panel shows the Shapley values, and the lower panel the Shapley interaction indices.

Examples

```r
p <- 5
mu <- rep(0, p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
Sigma_inv <- solve(Sigma)
x <- c(0,1,2,2.3,2.5)
PHI <- shapley_interaction(x, mu, Sigma)
plot(PHI)
```

print.shapley: Print function for class shapley.

Description

Print function for class shapley.

Usage

```r
## S3 method for class 'shapley'
print(x, ...)
```

Arguments

- **x**: List of class shapley.
- **...**: Optional arguments passed to methods.

Value

Prints the list entries of x that are not NULL.
print.shapley_algorithm

Print function for class shapley_algorithm.

Description

Print function for class shapley_algorithm.

Usage

```r
## S3 method for class 'shapley_algorithm'
print(x, ...)
```

Arguments

- `x` : List of class shapley_algorithm.
- `...` : Optional arguments passed to methods.

Value

Prints the imputed data and the Shapley values.

print.shapley_interaction

Print function for class shapley_interaction.

Description

Print function for class shapley_interaction.

Usage

```r
## S3 method for class 'shapley_interaction'
print(x, ...)
```

Arguments

- `x` : Matrix of class shapley_interaction.
- `...` : Optional arguments passed to methods.

Value

Prints the Shapley interaction indices.
Detecting cellwise outliers using Shapley values.

Description

The SCD function indicates outlying cells for a data vector with \(p \) entries or data matrix with \(n \times p \) entries containing only numeric entries \(x \) for a given center \(\mu \) and covariance matrix \(\Sigma \) using the Shapley value (Mayrhofer and Filzmoser 2022).

Usage

```r
SCD(
  x,
  mu,
  Sigma,
  Sigma_inv = NULL,
  step_size = 0.1,
  min_deviation = 0,
  max_step = NULL,
  max_iter = 1000,
  q = 0.99,
  method = "cellMCD",
  check = TRUE,
  cells = NULL
)
```

Arguments

- **x**: Data vector with \(p \) entries or data matrix with \(n \times p \) entries containing only numeric entries.
- **mu**: Either NULL (default) or mean vector of \(x \). If NULL, method is used for parameter estimation.
- **Sigma**: Either NULL (default) or covariance matrix \(p \times p \) of \(x \). If NULL, method is used for parameter estimation.
- **Sigma_inv**: Either NULL (default) or Sigma’s inverse \(p \times p \) matrix. If NULL, the inverse of Sigma is computed using `solve(Sigma)`.
- **step_size**: Numeric. Step size for the imputation of outlying cells, with \(\text{step}_\text{size} \in [0, 1] \). Defaults to 0.1.
- **min_deviation**: Numeric. Detection threshold, with \(\text{min}_\text{deviation} \in [0, 1] \). Defaults to 0.2.
- **max_step**: Either NULL (default) or an integer. The maximum number of steps in each iteration. If NULL, \(\text{max}_\text{step} = p \).
- **max_iter**: Integer. The maximum number of iterations.
- **q**: Numeric. The quantile of the Chi-squared distribution for detection and imputation of outliers. Defaults to 0.99.
method

Either "cellMCD" (default) or "MCD". Specifies the method used for parameter estimation if \(\mu \) and/or \(\Sigma \) are not provided.

cells

Either NULL (default) or a vector/matrix of the same dimension as \(x \), indicating the outlying cells. The matrix must contain only zeros and ones, or TRUE/FALSE.

check

Logical. If TRUE (default), inputs are checked before running the function and an error message is returned if one of the inputs is not as expected.

Value

A list of class shapley_algorithm (new_shapley_algorithm) containing the following:

- **x**
 A \(p \)-dimensional vector (or a \(n \times p \) matrix) containing the imputed data.

- **phi**
 A \(p \)-dimensional vector (or a \(n \times p \) matrix) containing the Shapley values (outlyingness-scores) of \(x \); see shapley.

- **x_original**
 A \(p \)-dimensional vector (or a \(n \times p \) matrix) containing the original data.

- **x_history**
 The path of how the original data vector was modified.

- **phi_history**
 The Shapley values corresponding to \(x_history \).

- **S_history**
 The indices of the outlying cells in each iteration.

References

Examples

```r
p <- 5
mu <- rep(0,p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
Sigma_inv <- solve(Sigma)
x <- c(0,1,2,2.3,2.5)
SCD_x <- SCD(x = x, mu = mu, Sigma = Sigma)
plot(SCD_x)

library(MASS)
set.seed(1)
n <- 100; p <- 10
mu <- rep(0,p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
X <- mvrnorm(n, mu, Sigma)
X[sample(1:(n*p), 100, FALSE)] <- rep(c(-5,5),50)
SCD_X <- SCD(X, mu, Sigma)
plot(SCD_X, subset = 20)
```
Description

The `shapley` function computes a p-dimensional vector containing the decomposition of the squared Mahalanobis distance of x (with respect to μ and Σ) into outlyingness contributions of the individual variables (Mayrhofer and Filzmoser 2022). The value of the j-th coordinate of this vector represents the average marginal contribution of the j-th variable to the squared Mahalanobis distance of the individual observation x.

If `cells` is provided, Shapley values of x are computed with respect to a local reference point, that is based on a cellwise prediction of each coordinate, using the information of the regular cells of x, see (Mayrhofer and Filzmoser 2022).

If x is a $n \times p$ matrix, a $n \times p$ matrix is returned, containing the decomposition for each row.

Usage

```r
shapley(
  x, 
  mu = NULL, 
  Sigma = NULL, 
  inverted = FALSE, 
  method = "cellMCD", 
  check = TRUE, 
  cells = NULL
)
```

Arguments

- **x**
 - Data vector with p entries or data matrix with $n \times p$ entries containing only numeric entries.
- **mu**
 - Either `NULL` (default) or mean vector of x. If `NULL`, `method` is used for parameter estimation.
- **Sigma**
 - Either `NULL` (default) or covariance matrix $p \times p$ of x. If `NULL`, `method` is used for parameter estimation.
- **inverted**
 - Logical. If `TRUE`, Σ is supposed to contain the inverse of the covariance matrix.
- **method**
 - Either "cellMCD" (default) or "MCD". Specifies the method used for parameter estimation if `mu` and/or `Sigma` are not provided.
- **check**
 - Logical. If `TRUE` (default), inputs are checked before running the function and an error message is returned if one of the inputs is not as expected.
- **cells**
 - Either `NULL` (default) or a vector/matrix of the same dimension as x, indicating the outlying cells. The matrix must contain only zeros and ones, or `TRUE/FALSE`.
Value

phi A p-dimensional vector (or a $n \times p$ matrix) containing the Shapley values (outlyingness-scores) of x.

mu_tilde A p-dimensional vector (or a $n \times p$ matrix) containing the alternative reference points based on the regular cells of the original observations.

non_centrality The non-centrality parameters for the Chi-Squared distribution, given by $\text{mahalanobis}(\mu_{\text{tilde}}, \mu, \Sigma)$

References

Examples

```
# Without outlying cells as input in the 'cells' argument#
# Single observation
p <- 5
mu <- rep(0,p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
Sigma_inv <- solve(Sigma)
x <- c(0,1,2,2.3,2.5)
shapley(x, mu, Sigma)
phi <- shapley(x, mu, Sigma_inv, inverted = TRUE)
plot(phi)

# Multiple observations
library(MASS)
set.seed(1)
n <- 100; p <- 10
mu <- rep(0,p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
X <- mvrnorm(n, mu, Sigma)
X_clean <- X
X[sample(1:(n*p), 100, FALSE)] <- rep(c(-5,5),50)
call_shapley <- shapley(X, mu, Sigma)
plot(call_shapley, subset = 20)
```

```
## Giving outlying cells as input in the 'cells' argument
# Single observation
p <- 5
mu <- rep(0,p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
Sigma_inv <- solve(Sigma)
x <- c(0,1,2,2.3,2.5)
call_shapley <- shapley(x, mu, Sigma_inv, inverted = TRUE, method = "cellMCD", check = TRUE, cells = c(1,1,0,0,0))
plot(call_shapley)
```

Multiple observations
library(MASS)
set.seed(1)
n <- 100; p <- 10
mu <- rep(0, p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
X <- mvrnorm(n, mu, Sigma)
X_clean <- X
X[sample(1:(n*p), 100, FALSE)] <- rep(c(-5, 5), 50)
call_shapley <- shapley(X, mu, Sigma, cells = (X_clean - X)!=0)
plot(call_shapley, subset = 20)

shapley_interaction

Decomposition of squared Mahalanobis distance using Shapley interaction indices.

Description

The shapley_interaction function computes a $p \times p$ matrix containing pairwise outlyingness scores based on Shapley interaction indices. It decomposes the squared Mahalanobis distance of x (with respect to μ and Σ) into outlyingness contributions of pairs of variables (Mayrhofer and Filzmoser 2022).

Usage

shapley_interaction(x, mu, Sigma, inverted = FALSE)

Arguments

x	Data vector with p entries containing only numeric entries.
mu | Either NULL (default) or mean vector of x. If NULL, method is used for parameter estimation.
Sigma | Either NULL (default) or covariance matrix $p \times p$ of x. If NULL, method is used for parameter estimation.
inverted | Logical. If TRUE, Σ is supposed to contain the inverse of the covariance matrix.

Value

A $p \times p$ matrix containing the decomposition of the squared Mahalanobis distance of x into outlyingness scores for pairs of variables with respect to μ and Σ.

References

Examples

```r
p <- 5
mu <- rep(0, p)
Sigma <- matrix(0.9, p, p); diag(Sigma) = 1
Sigma_inv <- solve(Sigma)
x <- c(0, 1, 2, 3, 2.5)
shapley_interaction(x, mu, Sigma)
PHI <- shapley_interaction(x, mu, Sigma_inv, inverted = TRUE)
plot(PHI)
```

Description

Monthly data from the weather station Hohe Warte since April 1872 - Vienna (Stadt Wien 2022).

Usage

```r
WeatherVienna
```

Format

A data frame with 1,804 rows and 25 columns:

- `year` Year
- `month` Month
- `t` Daily mean air temperature in °C, \((t7 \text{ mean} + t19 \text{ mean} + t\text{max} \text{ mean} + t\text{min} \text{ mean})/4\); before 1971: \((t7 \text{ mean} + t14 \text{ mean} + 2 \times t21 \text{ mean})\)
- `t_max` Absolute maximum air temperature in °C
- `t_min` Absolute air temperature minimum in °C
- `avg_t_max` Mean daily maximum air temperature in °C
- `avg_t_min` Mean daily minimum air temperature in °C
- `num_frost` Number of frost days (days with a temperature maximum \(t\text{min} < 0.0\ °C\))
- `num_ice` Number of ice days (days with a temperature maximum \(t\text{max} < 0.0\ °C\))
- `num_summer` Number of summer days (days with a temperature maximum \(t\text{max} >= 25.0\ °C\))
- `num_heat` Number of hot days (days with a temperature maximum \(t\text{max} >= 30.0\ °C\))
- `p` Daily mean air pressure in hPa (mean of all measurements at 7 a.m., 2 p.m., 7 p.m. CET; before 1971 9 p.m. instead of 7 p.m.)
- `p_max` Maximum air pressure in hPa (maximum of all measurements 7 am, 2 pm, 7 pm CET; before 1971 9 pm instead of 7 pm)
- `p_min` Minimum air pressure in hPa (minimum of all measurements 7 am, 2 pm, 7 pm CET; before 1971 9 pm instead of 7 pm)
sun_h Monthly total sunshine duration in hours
num_clear Number of clear days (daily mean cloudiness < 20/100)
num_cloud Number of cloudy days (daily mean cloudiness > 80/100)
rel_hum Daily mean relative humidity in percent \((2 \times \text{RH7 mean} + \text{RH14 mean} + \text{RH19 mean})/4;\)
\quad before 1971 9 p.m. instead of 7 p.m.)
rel_hum_max Relative humidity maximum in percent
rel_hum_min Relative humidity minimum in percent
wind_v Monthly average wind speed in km/h
num_wind_v60 Number of days with wind peaks \(\geq 60\) km/h
wind_v_max Maximum wind speed in km/h
precp_sum Monthly total precipitation in mm
num_precp_01 Number of days with precipitation \(\geq 0.1\) mm

Source

The data were downloaded from https://www.data.gv.at/katalog/dataset/wetter-seit-1872-hohe-warte-wien in September 2022.

References

Examples

data("WeatherVienna")
summary(WeatherVienna)
Index

* datasets
 - WeatherVienna, 17

MOE, 2, 5
new_shapley, 4
new_shapley_algorithm, 3, 5, 13
new_shapley_interaction, 6
plot.shapley, 6, 9
plot.shapley_algorithm, 8
plot.shapley_interaction, 9
print.shapley, 10
print.shapley_algorithm, 11
print.shapley_interaction, 11

SCD, 2, 5, 12
shapley, 3, 4, 7, 9, 13, 14
shapley_interaction, 6, 10, 16

WeatherVienna, 17