Package ‘SherlockHolmes’

March 28, 2023

Version 1.0.1
Date 2023-03-28
Title Building a Concordance of Terms in a Series of Texts
Maintainer Barry Zeeberg <barryz2013@gmail.com>
Author Barry Zeeberg [aut, cre]
Depends R (>= 4.2.0)
LazyData true
Imports qpdf, stringr, dpseg, tableHTML, plotrix, zoo, stargazer,
 utils, graphics, grDevices, stats, textBoxPlacement,
 plot.matrix, devtools
Description Compute the frequency distribution of a search term in a series of texts. For example, Arthur Conan Doyle wrote a total of 60 Sherlock Holmes stories, comprised of 54 short stories and 4 longer novels. I wanted to test my own subjective impression that, in many of the stories, Sherlock Holmes’ popularity was used as bait to induce the reader to read a story that is essentially not primarily a Sherlock Holmes story. I used the term "Holmes" as a search pattern, since Watson would frequently address him by name, or use his name to describe something that he was doing. My hypothesis is that the frequency distribution of the search pattern "Holmes" is a good proxy for the degree to which a story is or is not truly a Sherlock Holmes story. The results are presented in a manuscript that is available as a vignette and online at <https://barryzee.github.io/Concordance/index.html>.
License GPL (>= 2)
Encoding UTF-8
VignetteBuilder knitr
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
RoxygenNote 7.2.3
Config/testthat/edition 3
NeedsCompilation no
Repository CRAN
Date/Publication 2023-03-28 14:40:06 UTC
Description

frequencies plotted in order of date (if the titles are given in order of date)

Usage

chronology(titles.vec, patterns, starts, freqs, chronDir, overlay = FALSE)
coChronology

Arguments
- **titles.vec**: character vector containing the titles of the stories
- **patterns**: vector of character string query patterns
- **starts**: integer vector of starting positions
- **freqs**: return value of frequency()
- **chronDir**: character string full path name for output directory
- **overlay**: Boolean if TRUE overlay the chronology for multiple search patterns

Value
returns no value, but has side effect generating graph

Examples
```r
freqDir<-tempdir()
chronDir<-sprintf("%s/chronology",freqDir)
dir.create(chronDir)
dir.create(sprintf("%s/plots",chronDir))
dir.create(sprintf("%s/archive",chronDir))
print(chronDir)
chr<-chronology(titles.vec,c("Holmes","Watson"),starts,freqs,chronDir)
```

Description
graphical indicator of search patterns within stories

Usage
cochronology(titles.vec, patterns, starts, freqs, chronDir)

Arguments
- **titles.vec**: character vector containing the titles of the stories
- **patterns**: vector of character string query patterns
- **starts**: integer vector of starting positions
- **freqs**: return value of frequency()
- **chronDir**: character string full path name for output directory

Value
returns an integer matrix whose rows are search patterns and columns are stories, value of 1 indicates the presence of the corresponding search pattern in the corresponding story
Examples

freqDir<-tempdir()
chronDir<-sprintf("%s/chronology",freqDir)
dir.create(chronDir)
dir.create(sprintf("%s/plots",chronDir))
dir.create(sprintf("%s/archive",chronDir))
print(chronDir)
coch<-coChronology(titles.vec,c("Holmes","Watson"),starts,freqs,chronDir)

Description

retrieve words that are close to occurrences of pattern

Usage

concordance(freqs, titles.vec, texts.vec, starts, window, odir)

Arguments

freqs return value of frequency()
titles.vec character vector containing the titles of the stories
texts.vec character vector of entire text
starts integer vector of starting positions
window integer number of lines to take before and after the pattern match
odir character string containing the full path name for the output directory

Value

returns no value but has side effect of generating graphs

Examples

con<-concordance(freqs,titles.vec[3],texts.vec,starts,window=2,odir=tempdir())
contingency

Description
compute chisq value for a 2 x 2 contingency table

Usage
contingency(inside, outside)

Arguments
- inside: numeric vector of raw counts
- outside: numeric vector of raw counts

Value
numeric vector of chisq.test() p.values

Examples
con<-contingency(inside=c(4,5), outside=c(20,7))

csp

Sherlock data sets

Description
Sherlock data sets

Usage
data(csp)

csw

Sherlock data sets

Description
Sherlock data sets

Usage
data(csw)
distributions

Description
compute distribution of ratio of number of occurrences of query string divided by total number of words

Usage
distributions(freqs, titles.vec, minl, P, odir)

Arguments
- **freqs**: return value of frequency()
- **titles.vec**: character vector containing the titles of the stories
- **minl**: is an integer param passed to dpseg::dpseg
- **P**: is a numeric param passed to dpseg::dpseg
- **odir**: character string containing the full path name for the output directory

Value
returns no value but has side effect of generating graphs

Examples
disc<-distributions(freqs,titles.vec[1],minl=100,P=0.00001,tempdir())

freqHist

Description
histogram of frequencies

Usage
freqHist(patterns, starts, titles.vec, freqs, histDir)
freqs

Arguments

- **patterns**: vector of character string query patterns
- **starts**: integer vector of starting positions
- **titles.vec**: character vector containing the titles of the stories
- **freqs**: return value of frequency()
- **histDir**: character string full path name for output directory

Value

returns no value, but has side effect generating histogram

Examples

fh<-freqHist(patterns,starts,titles.vec,freqs,histDir=tempdir())

<table>
<thead>
<tr>
<th>freqs</th>
<th>Sherlock data sets</th>
</tr>
</thead>
</table>

Description

Sherlock data sets

Usage

data(freqs)

<table>
<thead>
<tr>
<th>frequency</th>
<th>frequency</th>
</tr>
</thead>
</table>

Description

compute ratio of number of occurrences of query string divided by total number of words

Usage

frequency(texts.vec, starts, patterns)

Arguments

- **texts.vec**: character vector of entire text
- **starts**: integer vector of starting positions
- **patterns**: vector of character string query patterns
Value
a list whose components are sub-lists
 # indexed by the titles of the stories
 • start integer starting line in text
 • end integer ending line in text
 • wPerLine integer words per line
 • wordSum integer sum of wPerLine
 • patterns a sub-list
 – integer pPerLine integer patterns per line
 – patSum integer total of pPerLine
 – fraction numeric ratio of patSum/wordSum

Examples
fr<-frequency(texts.vec,starts,patterns)

grabFunctionParameters
 grabFunctionParameters

Description
retrieve capture all of the parameter names and values passed in

Usage
grabFunctionParameters()

Details
copied and pasted from https://stackoverflow.com/questions/66329835/using-r-how-to-get-all-parameters-passed-into-a-function-with-their-values

Value
a list whose components are the symbolic names of the function parameters, and their values.

inside Sherlock data sets

Description
Sherlock data sets

Usage
data(inside)
Description

frequencies plotted in order of story length

Usage

lengths(titles.vec, patterns, starts, freqs, lengthDir)

Arguments

titles.vec character vector containing the titles of the stories
patterns vector of character string query patterns
starts integer vector of starting positions
freqs return value of frequency()
lengthDir character string full path name for output directory

Value

returns no value, but has side effect generating graph

Examples

freqDir<-tempdir()
lengthDir<-sprintf("%s/length",freqDir)
dir.create(lengthDir)
print(lengthDir)
dir.create(sprintf("%s/plots",lengthDir))
dir.create(sprintf("%s/archive",lengthDir))
le<-lengths(titles.vec,patterns,starts,freqs,lengthDir)

mergeTables

mergeTables

Description

merge (inner join) the results in 2 tables generated from 2 vectors

Usage

mergeTables(tv, tw, cnv, cnw)
Arguments

tv first table
tw second table
cnv character name for column coming from v
cnw character name for column coming from w

Value

numeric matrix generated from merging tables from v and w

Examples

mt<-mergeTables(inside,outside,"in","out")[1:10,]

outside Sherlock data sets

Description

Sherlock data sets

Usage

data(outside)

patterns Sherlock data sets

Description

Sherlock data sets

Usage

data(patterns)
plot_dpseg2

Description

Alternative plot procedure for dpseg, special function provided personally by dpseg curator. I made a few custom tweaks including option to overlay multiple plots.

Usage

plot_dpseg2(
x, delog = FALSE, col, main, xlab, ylab, res = 10, vlines, overlay, textX, textY, textLabel, ylim
)

Arguments

x dpseg object to plot
delog Boolean use log scale if TRUE
col color
main character title of graph
xlab character label for x axis
ylab character label for y axis
res numeric resolution
vlines Boolean if FALSE suppress vertical lines in graph
overlay Boolean if TRUE this plot is an overlay of previous plot
textX numeric x position for text box
textY numeric y position for text box
textLabel character string to label the points in the graph
ylim numeric vector ylim for plot
retrieveLmStats

Value

returns no value but has side effect of producing a graph

Examples

```r
doctools::plot_dpseg2(segs, overlay = FALSE, xlab = "xaxis", ylab = "yaxis", vlines = FALSE, textX = 2000, textY = 20, textLabel = "label", ylim = c(0, 60))
```

```r
titles <- system.file("extdata/contents3.txt", package = "SherlockHolmes")
rt <- readTitles(titles)
```

Description

read and edit titles to remove blank lines and white space

Usage

```r
readTitles(titles)
```

Arguments

titles is a character string containing the full path name for a text file containing the titles of the stories in the same order that they appear in the texts file

Value

a character vector of titles

Examples

```r
titles <- system.file("extdata/contents3.txt", package = "SherlockHolmes")
rt <- readTitles(titles)
```

retrieveLmStats

Description

This function retrieves intercept, slope, r.squared, and adj.r.squared from lm()

Usage

```r
retrieveLmStats(x, y)
```
rolling

Arguments

 x is second argument to lm()
 y is first argument to lm()

Value

 returns a list containing the return value of lm, intercept, slope, r.squared, and adj.r.squared

Examples

 retr<-retrieveLmStats(1:10,runif(10,0,1))

Description

 compute rolling average of ratio of number of occurrences of query string divided by total number of words

Usage

 rolling(freqs, titles.vec, windowPct = 0.1, odir, verbose)

Arguments

 freqs return value of frequency()
 titles.vec character vector containing the titles of the stories
 windowPct a numeric control size of plot window
 odir character string containing the full path name for the output directory
 verbose Boolean if TRUE print informative or diagnostic messages to console

Value

 returns noo value, but has side effect of generating graphs

Examples

 rol<-rolling(freqs,titles.vec,windowPct=0.10,odir=tempdir(),verbose=FALSE)
Description

reformat seqs$segments as a legend to insert into segment plot

Usage

segments(segs)

Arguments

segs

return value of dpseg::dpseg()

Value

reformatted matrix suitable for printing

Examples

seg<-segments(segs)

Description

Sherlock data sets

Usage

data(segs)
Description

This function is the driver that organizes the computation of concordances in Sherlock Holmes stories.

Usage

```r
Sherlock(
  titles = "NONE",
  texts,
  patterns,
  toupper,
  odir,
  concord = FALSE,
  minl = 100,
  P = 1e-05,
  verbose = FALSE
)
```

Arguments

- `titles` is a character string containing the full path name for a text file containing the titles of the stories in the same order that they appear in the texts file. If `titles == "NONE"`, treat the entire book as one story.
- `texts` is a character string containing the full path name for a text file containing the full texts of all of the stories.
- `patterns` is a vector containing the search patterns.
- `toupper` is a Boolean TRUE if the titles should be converted to upper case.
- `odir` is a character string containing the full path name of the output directory.
- `concord` Boolean if TRUE invoke concordance()
- `minl` is an integer param passed to dpseg::dpseg
- `P` is a numeric param passed to dpseg::dpseg
- `verbose` Boolean if TRUE print informative or diagnostic messages to console

Value

returns no value but has side effect of driving the concordance computations
Examples

titles<-system.file("extdata/contents3.txt",package="SherlockHolmes")
texts<-system.file("extdata/processed_download3.txt",package="SherlockHolmes")
SH<-Sherlock(titles=titles,texts=texts,patterns=patterns[1],
toupper=TRUE,odir=tempdir(),concord=FALSE,minl=100,P=0.00001,
verbose=FALSE)

Description

where does each story start?

Usage

startLine(titles.vec, texts.vec, toupper)

Arguments

titles.vec is a character string containing the full path name for a text file containing the
titles of the stories in the same order that they appear in the texts file

texts.vec is a character string containing the full path name for a text file containing the
full texts of all of the stories

toupper is a Boolean TRUE if the titles should be converted to upper case

Details

each title in titles.vec must appear on a single line in titles.vec and texts.vec - a title cannot be split
across multiple lines. each title must only appear one time within titles.vec and texts.vec

Value

an integer vector of the starting lines of each story

Examples

sl<-startLine(titles.vec,texts.vec,toupper=TRUE)
starts

stars

Sherlock data sets

Description

Sherlock data sets

Usage

data(starts)

strSplitTab

strSplitTab

Description

use **strsplit** to parse words from text t, delete the empty string from the result, and compile into a sorted table of word frequencies

Usage

strSplitTab(t)

Arguments

| t | vector of character strings representing lines of the orginal text |

Value

a sorted table of raw word counts

Examples

sst<-strSplitTab(texts.vec)

texts

Sherlock data sets

Description

Sherlock data sets

Usage

data(texts)
<table>
<thead>
<tr>
<th>titles.vec</th>
<th>Sherlock data sets</th>
</tr>
</thead>
</table>

Description
Sherlock data sets

Usage
data(titles.vec)

<table>
<thead>
<tr>
<th>titles</th>
<th>Sherlock data sets</th>
</tr>
</thead>
</table>

Description
Sherlock data sets

Usage
data(titles)

<table>
<thead>
<tr>
<th>titles.vec</th>
<th>Sherlock data sets</th>
</tr>
</thead>
</table>

Description
Sherlock data sets

Usage
data(titles.vec)
Index

chronology, 2
coChronology, 3
concordance, 4
contingency, 5
csp, 5
csw, 5
distributions, 6
freqHist, 6
freqs, 7
frequency, 7
grabFunctionParameters, 8
inside, 8
lengths, 9
mergeTables, 9
outside, 10
patterns, 10
plot_dpseg2, 11
readTitles, 12
retrieveLmStats, 12
rolling, 13
segments, 14
segs, 14
Sherlock, 15
startLine, 16
starts, 17
strSplitTab, 17
texts, 17
texts.vec, 18
titles, 18
titles.vec, 18