Package ‘ShinyItemAnalysis’

May 8, 2023

Type Package
Title Test and Item Analysis via Shiny
Version 1.5.0
Date 2023-05-08
Description Package including functions and interactive shiny application for the psychometric analysis of educational tests, psychological assessments, health-related and other types of multi-item measurements, or ratings from multiple raters.
License GPL-3
URL http://www.ShinyItemAnalysis.org,
https://CRAN.R-project.org/package=ShinyItemAnalysis
BugReports https://github.com/patriciamar/ShinyItemAnalysis/issues
Depends R (>= 3.5.0)
Imports difR (>= 5.0), dplyr, ggplot2 (>= 3.4.0), lme4, magrittr, methods, mirt (>= 1.28), nnet, psych (>= 2.1.9), purrr, rlang, rstudioapi, tibble, tidyR
Suggests data.table, deltaPlotR, difNLR (>= 1.4.1), DT, gg dendro, gridExtra, knitr, latticeExtra, lm, plotly, rmarkdown, shiny (>= 1.5.0), shinyBS, shinydashboard, shinyjs, SIAmodules, stringr, testthat (>= 3.0.0), VGAM, xtable, yaml
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Config/testthat/edition 3
NeedsCompilation no
Author Patricia Martinkova [aut, cre],
Adela Hladka [aut],
Jan Netik [aut],
Ondrej Leder [ctb],
Jakub Houdek [ctb],
Lubomir Stepanek [ctb],
Tomas Jurica [ctb],
Jana Vorlickova [ctb]

Maintainer Patricia Martinkova <martinkova@cs.cas.cz>
Repository CRAN
Date/Publication 2023-05-08 10:00:06 UTC

R topics documented:

- ShinyItemAnalysis-package ... 3
- AIBS ... 5
- Anxiety ... 7
- AttitudesExpulsion ... 8
- BFI2 .. 10
- BlisClass-class ... 11
- CLoSeread6 ... 12
- coef.BlisClass-method .. 13
- CZmatura ... 14
- CZmaturaS ... 15
- dataMedical ... 16
- dataMedicalgraded .. 17
- dataMedicalkey .. 18
- dataMedicaltest ... 18
- DDplot ... 19
- DistractorAnalysis ... 22
- EPIA ... 24
- fa_parallel ... 25
- fit_blis .. 28
- gDiscrim .. 35
- get_orig_levels .. 37
- ggWrightMap .. 38
- GMAT .. 40
- HCI .. 41
- HCIdata .. 42
- HCIgrads ... 43
- HCIkey .. 44
- HCIlong ... 45
- HCIprepost ... 46
- HCItest .. 47
- HCItestretest ... 48
- HeightInventory .. 49
- ICCrestricted .. 51
- ItemAnalysis ... 53
- LearningToLearn .. 55
- MSATB ... 57
- MSclinical ... 58
- NIH ... 59
Description

The ShinyItemAnalysis package contains an interactive Shiny application for the psychometric analysis of educational tests, psychological assessments, health-related and other types of multi-item measurements, or ratings from multiple raters, which can be accessed using function `startShinyItemAnalysis()`. The shiny application covers a broad range of psychometric methods and offers data examples, model equations, parameter estimates, interpretation of results, together with a selected R code, and is therefore suitable for teaching psychometric concepts with R. It also allows the users to upload and analyze their own data and to automatically generate analysis reports in PDF or HTML.

Besides, the package provides its own functions for test and item analysis within classical test theory framework (e.g., functions `gDiscrim()`, `ItemAnalysis()`, `DistractorAnalysis()`), or `DDplot()`), using various regression models (e.g., `plotCumulative()`, `plotAdjacent()`, `plotMultinomial()`, or `plotDIFLogistic()`), and under IRT framework (e.g., `ggWrightMap()`, or `plotDIFirt()`).

Package also contains several demonstration datasets including the HCI dataset from the book by Martinkova and Hladka (2023), and from paper by Martinkova and Drabinova (2018).

Functions

- `startShinyItemAnalysis()`
- `DDplot()`
- `DistractorAnalysis()`
- `plotDistractorAnalysis()`
- `fa_parallel()`
ShinyItemAnalysis-package

- `gDiscrim()`
- `ggWrightMap()`
- `ICCrestricted()`
- `ItemAnalysis()`
- `blis()`
- `plotAdjacent()`, `plotCumulative()`, `plotMultinomial()`
- `plotDIFirt()`, `plotDIFLogistic()`
- `plot_corr()`
- `recode_nr()`

Datasets

- `AIBS()`
- `Anxiety()`
- `AttitudesExpulsion()`
- `BFI2()`
- `CLoSEread6()`
- `CZmatura()`
- `CZmaturaS()`
- `dataMedical()`
- `dataMedicalgraded()`
- `dataMedicalkey()`
- `dataMedicaltest()`
- `HCI()`
- `HCIdata()`
- `HCIgrads()`
- `HCIkey()`
- `HCIlong()`
- `HCIprepost()`
- `HCItest()`
- `HCItestretest()`
- `HeightInventory()`
- `LearningToLearn()`
- `MSATB()`
- `MSclinical()`
- `NIH()`
- `TestAnxietyCor()`
AIBS

Author(s)

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
Faculty of Education, Charles University
<martinkova@cs.cas.cz>

Adela Hladka (nee Drabinova)
Institute of Computer Science of the Czech Academy of Sciences

Jan Netik
Institute of Computer Science of the Czech Academy of Sciences

References

See Also

Useful links:

- http://www.ShinyItemAnalysis.org
- https://CRAN.R-project.org/package=ShinyItemAnalysis
- Report bugs at https://github.com/patriciamar/ShinyItemAnalysis/issues

AIBS grant peer review scoring dataset

Description

The AIBS dataset (Gallo, 2020) comes from the scientific peer review facilitated by the American Institute of Biological Sciences (AIBS) of biomedical applications from and intramural collaborative biomedical research program for 2014–2017. For each proposal, three assigned individual reviewers were asked to provide scores and commentary for the following application criteria: Innovation, Approach/Feasibility, Investigator, and Significance (Impact added as scored criterion in 2014). Each of these criteria is scored on a scale from 1.0 (best) to 5.0 (worst) with a 0.1 gradation, as well as an overall score (1.0–5.0 with a 0.1 gradation). Asynchronous discussion was allowed, although few scores changed post-discussion. The data includes reviewers’ self-reported expertise scores (1/2/3, 1 is high expertise) relative to each proposal reviewed, and reviewer / principal investigator demographics. A total of 72 applications ("Standard" or "Pilot") were reviewed in 3 review cycles. The success rate was 34–38 %. Application scores indicate where each application falls among all practically possible applications in comparison with the ideal standard of quality from a perfect application. The dataset was used by Erosheva et al. (2021a) to demonstrate issues of inter-rater reliability in case of restricted samples. For details, see Erosheva et al. (2021b).
Usage

AIBS

Format

AIBS is a data frame consisting of 216 observations on 25 variables. Data describes 72 proposals with 3 ratings each.

ID Proposal ID.
Year Year of the review.
PropType Proposal type; "Standard" or "Pilot".
PIID Anonymized ID of principal investigator (PI).
PIOrgType PI's organization type.
PIGender PI's gender membership; "1" females, "2" males.
PIRank PI's rank; "3" full professor, "1" assistant professor.
PIDegree PI's degree; "1" PhD, "2" MD, "3" PhD/MD.
Innovation Innovation score.
Approach Approach score.
Investig Investigator score.
Signif Significance score.
Impact Impact score.
Score Scientific merit (overall) score.
ScoreAvg Average of the three overall scores from three different reviewers.
ScoreAvgAdj Average of the three overall scores from three different reviewers, increased by multiple of 0.001 of the worst score.
ScoreRank Project rank calculated based on ScoreAvg.
ScoreRankAdj Project rank calculated based on ScoreAvgAdj.
RevID Reviewer's ID.
RevExp Reviewer's experience.
RevInst Reviewer's institution; "1" academia, "2" government.
RevGender Reviewer's gender; "1" females, "2" males.
RevRank Reviewer's rank; "3" full professor, "1" assistant professor.
RevDegree Reviewer's degree; "1" PhD, "2" MD, "3" PhD/MD.
RevCode Reviewer code ("A", "B", "C") in the original wide dataset.

Author(s)

Stephen Gallo
American Institute of Biological Sciences
Anxiety

References

See Also

ICCrestricted()

Anxiety | PROMIS Anxiety Scale Dataset

Description

The data contains responses from 766 people sampled from a general population to the PROMIS Anxiety scale (http://www.nihpromis.org) composed of 29 Likert-type questions with a common rating scale (1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Often, and 5 = Always).

Usage

Anxiety

Format

A data frame with 766 observations on the following 32 variables.

age 0 = younger than 65 and 1 = 65 and older
gender 0 = Male and 1 = Female
education 0 = some college or higher and 1 = high school or lower
R1 I felt fearful
R2 I felt frightened
R3 It scared me when I felt nervous
R4 I felt anxious
R5 I felt like I needed help for my anxiety
R6 I was concerned about my mental health
R7 I felt upset
R8 I had a racing or pounding heart
R9 I was anxious if my normal routine was disturbed
R10 I had sudden feelings of panic
AttitudesExpulsion

R11 I was easily startled
R12 I had trouble paying attention
R13 I avoided public places or activities
R14 I felt fidgety
R15 I felt something awful would happen
R16 I felt worried
R17 I felt terrified
R18 I worried about other people’s reactions to me
R19 I found it hard to focus on anything other than my anxiety
R20 My worries overwhelmed me
R21 I had twitching or trembling muscles
R22 I felt nervous
R23 I felt indecisive
R24 Many situations made me worry
R25 I had difficulty sleeping
R26 I had trouble relaxing
R27 I felt uneasy
R28 I felt tense
R29 I had difficulty calming down

score Total score.
zscore Standardized total score.

Source
Reexport from lordif package; http://www.nihpromis.org

References

Description
Dataset from Kolek et al. (2021) study investigating a video game’s effects on implicit and explicit attitudes towards depicted historical events in the short- and long-term. As an intervention tool, a serious game Czechoslovakia 38–89: Borderlands was utilized that deals with the expulsion of the Sudeten Germans from the former Czechoslovakia after the WWII. Data consists responses from 145 adults from two groups (experimental and control group) on number of multi-item measurements.
Usage

AttitudesExpulsion

Format

A data.frame with 145 rows and 239 variables:

ID anonymous identifier
Group C = control or E = experimental group
Gender factor, male or female
GenderF integer, 1 = female
Merkel effect of Merkel speech between the posttest and the delayed posttest, range 0–5, where 0 stands for no effect, 5 for very significant effect
Sudety factor, N = not originally from Czech Borderlands; Y = originally from Czech Borderlands
Education factor, V = university; S = high school; Z = elementary school
Education123 integer, same as above, but coded as 3= university; 2= high school; 1= elementary school, meaning higher the number, higher the education
*PANASpn total PANAS score of positive and negative affect scales
*PANASP total PANAS score of positive affect scale
*PANASN total PANAS score of negative affect scale
*Macro Macro attitude measurement
*Micro Micro attitude measurement
*IATeffect Single-Category Implicit association test score

Items beginning with an asterisk have following prefixes in the actual dataset:

pre pretest
post immediate posttest
del one month delayed posttest
Post_Pre difference between posttest_pretest
Del_Post difference between delayed posttest and posttest

Source

Description

BFI2 dataset (Hřebíčková et al., 2020) consists of responses of 1,733 respondents (1,003 females, 730 males) to Big Five Inventory 2 (BFI-2). It contains 60 ordinal items, vector of age, education, and vector of gender membership.

Usage

BFI2

Format

BFI2 is a data.frame consisting of 1,733 observations on 64 variables.

i1–i60 The BFI items, scored on Likert scale where 1 = Disagree strongly, 2 = Disagree a little, 3 = Neutral; no opinion, 4 = Agree a little, and 5 = Agree strongly. Some items were recoded so that all items are scored in the same direction, see Details.

Gender Gender membership, 0 = females, 1 = males.

Age Age in years.

Educ Education, 1 = Basic school, 2 = Secondary technical school, 3 = Secondary general school, 4 = Other secondary school, 5 = Tertiary professional school, 6 = Bachelor degree, 7 = Masters degree, 8 = PhD

Details

The items prefixed with i are item scores. Items are indicators of 5 latent personality factors/dimensions/domains, which are further broken down into so-called facets. The 5 personality domains are: N = Negative Emotionality, E = Extraversion, O = Open-Mindedness, C = Consciousness and A = Agreeability. These are further broken down into so-called facets, as shown in the following table:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Facet</th>
<th>Item numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Sociability (sch)</td>
<td>1, 16, 31, 46</td>
</tr>
<tr>
<td>E</td>
<td>Assertiveness (asr)</td>
<td>6, 21, 36, 51</td>
</tr>
<tr>
<td>E</td>
<td>Energy Level (enl)</td>
<td>11, 26, 41, 56</td>
</tr>
<tr>
<td>A</td>
<td>Compassion (cmp)</td>
<td>2, 17, 32, 47</td>
</tr>
<tr>
<td>A</td>
<td>Respectfulness (rsp)</td>
<td>7, 22, 37, 52</td>
</tr>
<tr>
<td>A</td>
<td>Trust (trs)</td>
<td>12, 27, 42, 57</td>
</tr>
<tr>
<td>C</td>
<td>Organization (org)</td>
<td>3, 18, 33, 48</td>
</tr>
<tr>
<td>C</td>
<td>Productiveness (prd)</td>
<td>8, 23, 38, 53</td>
</tr>
<tr>
<td>C</td>
<td>Responsibility (rsp)</td>
<td>13, 28, 43, 58</td>
</tr>
<tr>
<td>N</td>
<td>Anxiety (anx)</td>
<td>4, 19, 34, 49</td>
</tr>
<tr>
<td>N</td>
<td>Depression (dep)</td>
<td>9, 24, 39, 54</td>
</tr>
<tr>
<td>N</td>
<td>Emotional Volatility (emt)</td>
<td>14, 29, 44, 59</td>
</tr>
<tr>
<td>O</td>
<td>Intellectual Curiosity (int)</td>
<td>10, 25, 40, 55</td>
</tr>
</tbody>
</table>
In the original instrument, some items are inversely oriented, i.e., the higher score means the lower latent trait. This was the case of items number 3, 4, 5, 8, 9, 11, 12, 16, 17, 22, 23, 24, 25, 26, 28, 29, 30, 31, 36, 37, 42, 44, 45, 47, 48, 49, 50, 51, 55, and 58. These items have been recoded for you, i.e., displayed is value of 6 – original score.

In the sample code, alternative item names are provided. These item names can be used to decode the item domain, facet, item number, and whether it was recoded or not. For example, iCorg03r stands for recoded 3rd item (out of 60) from Consciousness domain and Organization facet.

Note

Thanks to Martina Hřebíčková for sharing this dataset.

References

Examples

colnames(BFI2)[1:60] <- c("iEscb01", "iAcmp02", "iCorg03r", "iNanx04r", "iOaes05r", "iEasr06", "iArsp07", "iCprd08r", "iNdep09r", "iOint10", "iEenl11r", "iAtrs12r", "iCrsp13", "iNemt14", "iOcrt15", "iEscb16r", "iAcmp17r", "iCorg18", "iNanx19", "iOaes20", "iEasr21", "iArsp22r", "iCprd23r", "iNdep24r", "iOint25r", "iEenl26", "iAtrs27", "iCrsp28r", "iNemt29", "iOcrt30r", "iEscb31r", "iAcmp32", "iCorg33", "iNanx34", "iOaes35", "iEasr36r", "iArsp37r", "iCprd38", "iNdep39", "iOint40", "iEenl41", "iAtrs42r", "iCrsp43", "iNemt44r", "iOcrt45r", "iEscb46", "iAcmp47r", "iCorg48r", "iNanx49r", "iOaes50r", "iEasr51r", "iArsp52", "iCprd53", "iNdep54", "iOint55r", "iEenl56", "iAtrs57", "iCrsp58r", "iNemt59", "iOcrt60")
Details
The purpose of the class is to have a custom coef method (see coef,BlisClass-method) dispatched and the original levels with correct response (as a key attribute) stored in the resulting fitted model.

Slots
orig_levels list of original levels with logical attribute key, which stores the information on which response (level) has been considered as correct. Note that levels not used in the original data are dropped.

See Also
Other BLIS/BLIRT related: coef,BlisClass-method, fit_blis(), get_orig_levels(), nominal_to_int(), obtain_nrm_def(), print.blis_coefs()

CLoSEread6
Czech Longitudinal Study in Education (CLoSE) - reading in 6th grade

Description
CLoSEread6 dataset consists of the dichotomously scored responses of 2,634 students (1,324 boys, 1,310 girls) on 19 multiple-choice items in a test of reading skills, version B, taken in the 6th grade. Item responses were dichotomized: 1 point was awarded only if the answer was fully correct and 0 if it was not (Greger, Straková, & Martinková, 2022; Martinková, Hladká, & Potužníková, 2020; Hladká, Martinková, & Magis, 2023)

Usage
CLoSEread6

Format
CLoSEread6 is a data.frame consisting of 2,634 observations on the 20 variables.

Q6B_1-Q6B_19 Dichotomously scored items of the test on reading skills.
gender Gender membership, "0" boys, "1" girls.

Source
References

coef,BlisClass-method
Get Coefficients from a fitted BLIS model

Description

Extracts item parameters from fitted BLIS model. For BLIRT parametrization, use IRTpars = TRUE in your function call. Contrary to `coef,SingleGroupClass-method`, response category labels can be displayed in the output using `labels = TRUE`. On top of that, as BLIS/BLIRT parametrizations utilize the information of correct response category, you can denote these in the output with `mark_correct = TRUE`.

Usage

```r
## S4 method for signature 'BlisClass'
coef(
  object,
  ...,
  CI = 0.95,
  printSE = FALSE,
  IRTpars = FALSE,
  simplify = FALSE,
  labels = FALSE,
  mark_correct = labels
)
```

Arguments

- `object`
 Object of class `BlisClass`, model fitted via `fit_blis()` or `blis()`.
- `...`
 Additional arguments. Not utilized at the moment.
- `CI`
 Numeric, a width of the confidence intervals.
- `printSE`
 Logical, print standard errors instead of CI? Defaults to FALSE.
- `IRTpars`
 Logical, convert slope intercept parameters into IRT parameters (i.e. BLIRT)? Defaults to FALSE.
simplify logical, return coefficients as a matrix, instead of list? Defaults to FALSE. Not implemented yet.

labels logical, if TRUE, show response labels (e.g. "A", "B", "C") instead of response numeric indices (e.g. 0, 1, 2). Defaults to FALSE.

mark_correct logical, mark the correct response with an asterisk symbol. Applicable only if labels is TRUE (in which case, mark_correct defaults to TRUE).

Value

List of item coefficients of S3 class blis_coefs, so the resulting output of coef() call is formatted to display only first 3 digits (you can opt for different rounding via the print.blis_coefs method, see the examples). Note that the list-object returned invisibly has the raw coefficients stored in it.

See Also

Other BLIS/BLIRT related: BlisClass-class, fit_blis(), get_orig_levels(), nominal_to_int(), obtain_nrm_def(), print.blis_coefs()

Examples

fitted_blis <- fit_blis(HCItest[, 1:20], HCIkey)

BLIS coefs
tblis_coefs <- coef(fitted_blis)

BLIRT coefs
tblis_coefs <- coef(fitted_blis, IRTpars = TRUE)

store raw coefs
blis_coefs <- coef(fitted_blis)

print coefs rounded to 2 digits
print(blis_coefs, digits = 2)

CZmatura dataset

Description

The CZmatura dataset comes from matura exam in mathematics. The exam was assigned in 2019 to students from Grade 13, at the end of their secondary education. Original data available from https://cermat.cz/.

Usage

CZmatura
Format

CZmatura is a data.frame consisting of 15,702 observations on 75 variables.

SchType School type code.
FirstAtt First attempt; "1" yes, "0" no.
SchTypeGY School type gymnasium; "1" yes, "0" no.
o1 – o26.2 Item answers.
b1 – b26 Scored item answers.
Total Total score, calculated as sum of item scores (0 - 50).
IRTscore Score estimated from GPCM/2PL model.
IRTscoreSE SE of score estimated from GPCM/2PL model.

See Also

CZmatura()
dataMedical

Dichotomous dataset of admission test to medical school

Description

The `dataMedical` dataset consists of the responses of 2,392 subjects (750 males, 1,633 females and 9 subjects without gender specification) to admission test to a medical school. It contains 100 items. A correct answer is coded as "1" and incorrect answer as "0". Missing answers were evaluated as incorrect, i.e. "0".

Usage

`dataMedical`

Format

A `dataMedical` is a `data.frame` consisting of 2,392 observations on the following 102 variables.

- **X** The first 100 columns represent dichotomously scored items of the test.
- **gender** Variable describing gender; values "0" and "1" refer to males and females.
- **StudySuccess** Criterion variable; value "1" means that student studies standardly, "0" otherwise (e.g., leaving or interrupting studies).

Source

References

See Also

`dataMedicaltest()`, `dataMedicalkey()`, `dataMedicalgraded()`
dataMedicalgraded

Graded dataset of admission test to medical school

Description

The `dataMedicalgraded` dataset consists of the responses of 2,392 subjects (750 males, 1,633 females and 9 subjects without gender specification) to multiple-choice admission test to a medical school. It contains 100 items. Each item is graded with 0 to 4 points. Maximum of 4 points were set if all correct answers and none of incorrect answers were selected.

Usage

`dataMedicalgraded`

Format

A `dataMedicalgraded` is a `data.frame` consisting of 2,392 observations on the following 102 variables.

- **X** The first 100 columns represent ordinal item scores of the test.
- **gender** Variable describing gender; values "0" and "1" refer to males and females.
- **StudySuccess** Criterion variable; value "1" means that student studies standardly, "0" otherwise (e.g., leaving or interrupting studies).

Source

References

See Also

`dataMedical()`, `dataMedicaltest()`, `dataMedicalkey()`
dataMedicalkey
Key of correct answers for dataset of admission test to medical school

Description

The `dataMedicalkey` is a vector of factors representing correct answers of `dataMedicaltest` dataset.

Usage

```r
dataMedicalkey
```

Format

A vector with 100 values representing correct answers to items of `dataMedicaltest` dataset. For more details see `dataMedicaltest()`.

Source

References

See Also

`dataMedical()`, `dataMedicaltest()`, `dataMedicalgraded()`

dataMedicaltest
Dataset of admission test to medical school

Description

The `dataMedicaltest` dataset consists of the responses of 2,392 subjects (750 males, 1,633 females and 9 subjects without gender specification) to multiple-choice admission test to a medical school. It contains 100 items, possible answers were A, B, C, D, while any combination of these can be correct.

Usage

```r
dataMedicaltest
```
A dataMedicaltest is a data.frame consisting of 2,392 observations on the following 102 variables.

X The first 100 columns represent items answers.

gender Variable describing gender; values "0" and "1" refer to males and females.

StudySuccess Criterion variable; value "1" means that student studies standardly, "0" otherwise (e.g., leaving or interrupting studies).

Source

References

See Also

`dataMedical()`, `dataMedicalkey()`, `dataMedicalgraded()`

Description

Plots difficulty and (generalized) discrimination or criterion validity for items of the multi-item measurement test using the ggplot2 package. Difficulty and discrimination/validity indices are plotted for each item, items are ordered by their difficulty.

Usage

```r
DDplot(
  Data,
  item.names,
  discrim = "ULI",
  k = 3,
  l = 1,
  u = 3,
  maxscore,
  minscore,
  bin = FALSE,
  cutscore,
)```
average.score = FALSE,
thr = 0.2,
criterion = "none",
val_type = "simple",
data
)

Arguments

Data    numeric: binary or ordinal data matrix or data.frame which rows represent examinee answers (1 correct, 0 incorrect, or ordinal item scores) and columns correspond to the items.

item.names character: the names of items. If not specified, the names of Data columns are used.

discrim character: type of discrimination index to be calculated. Possible values are "ULI" (default), "RIT", "RIR", and "none". See Details.

k numeric: number of groups to which data may be divided by the total score to estimate discrimination using discrim = "ULI". Default value is 3. See Details.

l numeric: lower group. Default value is 1. See Details.

u numeric: upper group. Default value is 3. See Details.

maxscore numeric: maximal scores of items. If single number is provided, the same maximal score is used for all items. If missing, vector of achieved maximal scores is calculated and used in calculations.

minscore numeric: minimal scores of items. If single number is provided, the same maximal score is used for all items. If missing, vector of achieved maximal scores is calculated and used in calculations.

bin logical: should the ordinal data be binarized? Default value is FALSE. In case that bin = TRUE, all values of Data equal or greater than cutscore are marked as 1 and all values lower than cutscore are marked as 0.

cutscore numeric: cut-score used to binarize Data. If numeric, the same cut-score is used for all items. If missing, vector of maximal scores is used in calculations.

average.score logical: should average score of the item be displayed instead of difficulty? Default value is FALSE. See Details.

thr numeric: value of discrimination threshold. Default value is 0.2. With thr = NULL, no horizontal line is displayed in the plot.

criterion numeric or logical vector: values of criterion. If supplied, discrim argument is ignored and item-criterion correlation (validity) is displayed instead. Default value is "none".

val_type character: criterion validity measure. Possible values are "simple" (correlation between item score and validity criterion; default) and "index" (item validity index calculated as \( \frac{\text{cor}(\text{item}, \text{criterion}) \times \sqrt{\frac{(N - 1)}{N} \times \text{var}(\text{item})}}{} \)), where N is number of respondents, see Allen & Yen, 1979, Ch. 6.4, for details). The argument is ignored if user does not supply any criterion.

data deprecated. Use argument Data instead.
Details

Discrimination is calculated using method specified in `discrim`. Default option "ULI" calculates difference in ratio of correct answers in upper and lower third of students. "RIT" index calculates correlation between item score and test total score. "RIR" index calculates correlation between item score and total score for the rest of the items. With option "none", only difficulty is displayed.

"ULI" index can be generalized using arguments k, l and u. Generalized ULI discrimination is then computed as follows: The function takes data on individuals, computes their total test score and then divides individuals into k groups. The lower and upper group are determined by l and u parameters, i.e. l-th and u-th group where the ordering is defined by increasing total score.

For ordinal data, difficulty is defined as a relative score:

\[
\frac{(\text{achieved} - \text{minimal})}{(\text{maximal} - \text{minimal})}
\]

Minimal score can be specified by `minscore`, maximal score can be specified by `maxscore`. Average score of items can be displayed with argument `average.score = TRUE`. Note that for binary data difficulty estimate is the same as average score of the item.

Note that all correlations are estimated using Pearson correlation coefficient.

Author(s)

Adela Hladka
Institute of Computer Science of the Czech Academy of Sciences
<hladka@cs.cas.cz>

Lubomir Stepanek
Charles University

Jana Vorlickova
Institute of Computer Science of the Czech Academy of Sciences

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

References


See Also

gDiscrim() for calculation of generalized ULI
ggplot2::ggplot() for general function to plot a "ggplot" object
Examples

# binary dataset
dataBin <- dataMedical[, 1:100]
# ordinal dataset
dataOrd <- dataMedicalgraded[, 1:100]

# DDplot of binary dataset
DDplot(dataBin)
## Not run:
# DDplot of binary dataset without threshold
DDplot(dataBin, thr = NULL)
# compared to DDplot using ordinal dataset and 'bin = TRUE'
DDplot(dataOrd, bin = TRUE)
# compared to binarized dataset using bin = TRUE and cut-score equal to 3
DDplot(dataOrd, bin = TRUE, cutscore = 3)

# DDplot of binary data using generalized ULI
# discrimination based on 5 groups, comparing 4th and 5th
# threshold lowered to 0.1
DDplot(dataBin, k = 5, l = 4, u = 5, thr = 0.1)

# DDplot of ordinal dataset using ULI
DDplot(dataOrd)
# DDplot of ordinal dataset using generalized ULI
# discrimination based on 5 groups, comparing 4th and 5th
# threshold lowered to 0.1
DDplot(dataOrd, k = 5, l = 4, u = 5, thr = 0.1)
# DDplot of ordinal dataset using RIT
DDplot(dataOrd, discrim = "RIT")
# DDplot of ordinal dataset using RIR
DDplot(dataOrd, discrim = "RIR")
# DDplot of ordinal dataset displaying only difficulty
DDplot(dataBin, discrim = "none")

# DDplot of ordinal dataset displaying difficulty estimates
DDplot(dataOrd)
# DDplot of ordinal dataset displaying average item scores
DDplot(dataOrd, average.score = TRUE)

# item difficulty / criterion validity plot for data with criterion
data(GMAT, package = "difNLR")
DDplot(GMAT[, 1:20], criterion = GMAT$criterion, val_type = "simple")

## End(Not run)

DistractorAnalysis

Distractor analysis

Description

Performs distractor analysis for each item and optional number of groups.
DistractorAnalysis

Usage

DistractorAnalysis(
  Data,
  key,
  item = "all",
  p.table = FALSE,
  num.groups = 3,
  criterion = NULL,
  crit.discrete = FALSE,
  cut.points,
  data,
  matching,
  match.discrete
)

Arguments

Data character: data matrix or data.frame with rows representing unscored item responses from a multiple-choice test and columns corresponding to the items.

key character: answer key for the items. The key must be a vector of the same length as ncol(Data). In case it is not provided, criterion needs to be specified.

item numeric or character: either character “all” to apply for all items (default), or a vector of item names (column names of Data), or item identifiers (integers specifying the column number).

p.table logical: should the function return the proportions? If FALSE (default), the counts are returned.

num.groups numeric: number of groups to which are the respondents split.

criterion numeric: numeric vector. If not provided, total score is calculated and distractor analysis is performed based on it.

crit.discrete logical: is criterion discrete? Default value is FALSE. See details.

cut.points numeric: numeric vector specifying cut points of criterion. See details.

data deprecated. Use argument Data instead.

matching deprecated. Use argument criterion instead.

match.discrete deprecated. Use argument crit.discrete instead.

Details

This function is an adapted version of the distractor.analysis() function from CTT package. In case that no criterion is provided, the scores are calculated using the item Data and key. The respondents are by default split into the num.groups-quantiles and the number (or proportion) of respondents in each quantile is reported with respect to their answers. In case that criterion is discrete (crit.discrete = TRUE), criterion is split based on its unique levels. Other cut points can be specified via cut.points argument.
Author(s)

Adela Hladka
Institute of Computer Science of the Czech Academy of Sciences
<hladka@cs.cas.cz>

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

Examples

```r
Data <- dataMedicaltest[, 1:100]
Databin <- dataMedical[, 1:100]
key <- dataMedicalkey

distractor analysis for all items
DistractorAnalysis(Data, key)

distractor analysis for item 1
DistractorAnalysis(Data, key, item = 1)
Not run:
distractor analysis with proportions
DistractorAnalysis(Data, key, p.table = TRUE)

distractor analysis for 6 groups
DistractorAnalysis(Data, key, num.group = 6)

distractor analysis using specified criterion
criterion <- round(rowSums(Databin), -1)
DistractorAnalysis(Data, key, criterion = criterion)

distractor analysis using discrete criterion
DistractorAnalysis(Data, key, criterion = criterion, crit.discrete = TRUE)

distractor analysis using groups specified by cut.points
DistractorAnalysis(Data, key, cut.points = seq(10, 96, 10))
End(Not run)
```

EPIA

The Eysenck Personality Inventory Impulsivity Subscale

Description

The data came from a published study and was kindly provided by Dr. Ferrando. A group of 1,033 undergraduate students were asked to check on a 112 mm line segment with two end points (almost
never, almost always) using their own judgement for the five items taken from the Spanish version of the EPI-A impulsivity subscale. The direct item score was the distance in mm of the check mark from the left end point (Ferrando, 2002).

**Usage**

EPIA

**Format**

A data frame with 1033 observations on the following 5 variables. The sixth variable is a total score (i.e. the sum of the items).

- **Item 1**: Longs for excitement
- **Item 2**: Does not stop and think things over before doing anything
- **Item 3**: Often shouts back when shouted at
- **Item 4**: Likes doing things in which he/she has to act quickly
- **Item 5**: Tends to do many things at the same time
- **score**: Total score for the aforementioned items

**Source**

Reexport from EstCRM package with added total scores.

**References**


---

**fa_parallel**

*Conduct Parallel Analysis*

**Description**

Computes the eigenvalues of the sample correlation matrix and the eigenvalues obtained from a random correlation matrix for which no factors/components are assumed. By default, the function utilizes a modified Horn’s (1965) method, which – instead of mean – uses 95th percentile of each item eigenvalues sampling distribution as a threshold to find the optimal number of factors/components.
fa_parallel

Usage

fa_parallel(
  Data,
  cor = "pearson",
  n_obs = NULL,
  method = "pca",
  threshold = "quantile",
  p = 0.95,
  n_iter = 20,
  plot = TRUE,
  show_kaiser = TRUE,
  fm = "minres",
  use = "pairwise",
  ...
)

Arguments

Data  data.frame or matrix, dataset (where rows are observations and columns items)
  or correlation matrix (recognized automatically).

cor  character, how to calculate the correlation matrix of the real data. Can be either
  pearson (default), tetrachoric or polychoric. Unambiguous abbreviations
  accepted.

n_obs  integer, in case you provided the correlation matrix directly as the input, you
  have to provide the number of observations in the original dataset.

method  character, either fa, pca, or both (the default). Which method to use for the
  eigenvalues simulation and computation.

threshold  character, whether to use traditionall Horn’s method or more recent
  and well-performing quantile one. Either mean or quantile (default). Can be abbrevi-
  ated.

p  numeric (0–1), probability for which the sample quantile is produced. Defaults
  to .95. Ignored if threshold = "mean".

n_iter  integer, number of iterations, i.e. the number of zero-factor multivariate normal
  distributions to sample. Defaults to 20.

plot  logical, if TRUE (the default), show the plot along with the function results. To
  create the plot from the resulting object afterwards, call plot().

show_kaiser  logical, whether to show Kaiser boundary in the plot (the default) or not.

fm  character, factoring method. See psych::fa() from the package psych::psych().

use  an optional character string giving a method for computing covariances in the
  presence of missing values. This must be (an abbreviation of) one of the strings
  "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs".

...  Arguments passed on to psych::polychoric

correct  Correction value to use to correct for continuity in the case of zero en-
  try cell for tetrachoric, polychoric, polybi, and mixed.cor. See the examples
  for the effect of correcting versus not correcting for continuity.
smooth  if TRUE and if the tetrachoric/polychoric matrix is not positive definite, then apply a simple smoothing algorithm using cor.smooth

global  When finding pairwise correlations, should we use the global values of the tau parameter (which is somewhat faster), or the local values (global=FALSE)? The local option is equivalent to the polycor solution, or to doing one correlation at a time. global=TRUE borrows information for one item pair from the other pairs using those item’s frequencies. This will make a difference in the presence of lots of missing data. With very small sample sizes with global=FALSE and correct=TRUE, the function will fail (for as yet under-determined reasons).

weight  A vector of length of the number of observations that specifies the weights to apply to each case. The NULL case is equivalent of weights of 1 for all cases.

progress  Show the progress bar (if not doing multicores)

ML  ML=FALSE do a quick two step procedure, ML=TRUE, do longer maximum likelihood — very slow! Deprecated

delete  Cases with no variance are deleted with a warning before proceeding.

max.cat  The maximum number of categories to bother with for polychoric.

Details

Horn proposed a solution to the problem of optimal factor number identification using an approach based on a Monte Carlo simulation.

First, several (20 by default) zero-factor p-variate normal distributions (where p is the number of columns) are obtained, and $p \times p$ correlation matrices are computed for them. Eigenvalues of each matrix is then calculated in order to get an eigenvalues sampling distribution for each simulated variable.

Traditionally, Horn obtains an average of each sampling distribution and these averages are used as a threshold which is compared with eigenvalues of the original, real data. However, usage of the mean was later disputed by Buja & Eyuboglu (1992), and 95th percentile of eigenvalues sampling distribution was suggested as a more accurate threshold. This, more recent method is used by default in the function.

Value

An object of class data.frame and sia_parallel. Can be plotted using plot().

Author(s)

Jan Netik
Institute of Computer Science of the Czech Academy of Sciences
<netik@cs.cas.cz>

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>
References

Examples
fa_parallel(TestAnxietyCor, n_obs = 335, method = "pca")

## Not run:
data("bfi", package = "psych")
items <- bfi[, 1:25]
fa_parallel(items)
fa_parallel(items, threshold = "mean") # traditional Horn's method
## End(Not run)

fit_blis

Fit Baseline-category Logit Intercept-Slope (BLIS) model on nominal data

Description
blis fits the IRT Nominal Response Model to data from multiple-choice tests, while accounting for the correct answer and treating this option as a baseline in this baseline-category logit model. The intercept-slope parametrization in BLIS can be converted to IRT (difficulty-discrimination) parametrization (BLIRT).

Usage
fit_blis(Data, key, ...)
blis(Data, key, ...)

Arguments
Data  data.frame or tibble with all columns being factors. Support for matrix is limited and behavior not guaranteed.
key   A single-column data.frame, (not matrix) tibble or - preferably - a factor vector of levels considered as correct responses.
...   Arguments passed on to mirt::mirt
SE    logical; estimate the standard errors by computing the parameter information matrix? See SE.type for the type of estimates available
covdata  a data.frame of data used for latent regression models
formula an R formula (or list of formulas) indicating how the latent traits can
be regressed using external covariates in covdata. If a named list of for-
mulas is supplied (where the names correspond to the latent trait names
in model) then specific regression effects can be estimated for each factor.
Supplying a single formula will estimate the regression parameters for all
latent traits by default
SE.type  type of estimation method to use for calculating the parameter infor-
mation matrix for computing standard errors and wald tests. Can be:
  • 'Richardson', 'forward', or 'central' for the numerical Richard-
son, forward difference, and central difference evaluation of observed
Hessian matrix
  • 'crossprod' and 'Louis' for standard error computations based on
the variance of the Fisher scores as well as Louis' (1982) exact computa-
tion of the observed information matrix. Note that Louis' estimates
can take a long time to obtain for large sample sizes and long tests
  • 'sandwich' for the sandwich covariance estimate based on the 'crossprod'
and 'Oakes' estimates (see Chalmers, 2018, for details)
  • 'sandwich.Louis' for the sandwich covariance estimate based on the
'crossprod' and 'Louis' estimates
  • 'Oakes' for Oakes' (1999) method using a central difference approxi-
mation (see Chalmers, 2018, for details)
  • 'SEM' for the supplemented EM (disables the accelerate option au-
tomatically; EM only)
  • 'Fisher' for the expected information, 'complete' for information
based on the complete-data Hessian used in EM algorithm
  • 'MHRM' and 'FMHRM' for stochastic approximations of observed infor-
mation matrix based on the Robbins-Monro filter or a fixed number of
MHRM draws without the RM filter. These are the only options sup-
ported when method = 'MHRM'
  • 'numerical' to obtain the numerical estimate from a call to optim
when method = 'BL'
Note that both the 'SEM' method becomes very sensitive if the ML solution
has not been reached with sufficient precision, and may be further sen-
sitive if the history of the EM cycles is not stable/sufficient for convergence
of the respective estimates. Increasing the number of iterations (increasing
NCYCLES and decreasing TOL, see below) will help to improve the accuracy,
and can be run in parallel if a mirtCluster object has been defined (this
will be used for Oakes' method as well). Additionally, inspecting the sym-
metry of the ACOV matrix for convergence issues by passing technical =
list(symmetric = FALSE) can be helpful to determine if a sufficient solu-
tion has been reached
method a character object specifying the estimation algorithm to be used. The
default is 'EM', for the standard EM algorithm with fixed quadrature, 'QMCEM'
for quasi-Monte Carlo EM estimation, or 'MCEM' for Monte Carlo EM esti-
mation. The option 'MHRM' may also be passed to use the MH-RM al-
gorithm, 'SEM' for the Stochastic EM algorithm (first two stages of the
MH-RM stage using an optimizer other than a single Newton-Raphson iteration), and 'BL' for the Bock and Lieberman approach (generally not recommended for longer tests).

The 'EM' is generally effective with 1-3 factors, but methods such as the 'QMC', 'MCEM', 'SEM', or 'MHRM' should be used when the dimensions are 3 or more. Note that when the optimizer is stochastic the associated SE.type is automatically changed to SE.type = 'MHRM' by default to avoid the use of quadrature.

optimizer a character indicating which numerical optimizer to use. By default, the EM algorithm will use the 'BFGS' when there are no upper and lower bounds box-constraints and 'nlminb' when there are. Other options include the Newton-Raphson ('NR'), which can be more efficient than the 'BFGS' but not as stable for more complex IRT models (such as the nominal or nested logit models) and the related 'NR1' which is also the Newton-Raphson but consists of only 1 update that has been coupled with RM Hessian (only applicable when the MH-RM algorithm is used). The MH-RM algorithm uses the 'NR1' by default, though currently the 'BFGS', 'L-BFGS-B', and 'NR' are also supported with this method (with fewer iterations by default) to emulate stochastic EM updates. As well, the 'Nelder-Mead' and 'SANN' estimators are available, but their routine use generally is not required or recommended.

Additionally, estimation subroutines from the Rsolnp and nloptr packages are available by passing the arguments 'solnp' and 'nloptr', respectively. This should be used in conjunction with the solnp_args and nloptr_args specified below. If equality constraints were specified in the model definition only the parameter with the lowest parnum in the pars = 'values' data.frame is used in the estimation vector passed to the objective function, and group hyper-parameters are omitted. Equality an inequality functions should be of the form function(p, optim_args), where optim_args is a list of internally parameters that largely can be ignored when defining constraints (though use of browser() here may be helpful).

dentype type of density form to use for the latent trait parameters. Current options include

- 'Gaussian' (default) assumes a multivariate Gaussian distribution with an associated mean vector and variance-covariance matrix
- 'empiricalhist' or 'EH' estimates latent distribution using an empirical histogram described by Bock and Aitkin (1981). Only applicable for unidimensional models estimated with the EM algorithm. For this option, the number of cycles, TOL, and quadpts are adjusted accommodate for less precision during estimation (namely: TOL = 3e-5, NCYCLES = 2000, quadpts = 121)
- 'empiricalhist_Woods' or 'EHW' estimates latent distribution using an empirical histogram described by Bock and Aitkin (1981), with the same specifications as in dentype = 'empiricalhist', but with the extrapolation-interpolation method described by Woods (2007). NOTE: to improve stability in the presence of extreme response styles (i.e., all highest or lowest in each item) the technical option zeroExtreme = TRUE may be required to down-weight the contribution of these prob-
lematic patterns

- 'Davidian-#' estimates semi-parametric Davidian curves described by Woods and Lin (2009), where the # placeholder represents the number of Davidian parameters to estimate (e.g., 'Davidian-6' will estimate 6 smoothing parameters). By default, the number of quadpts is increased to 121, and this method is only applicable for unidimensional models estimated with the EM algorithm

constrain a list of user declared equality constraints. To see how to define the parameters correctly use pars = 'values' initially to see how the parameters are labeled. To constrain parameters to be equal create a list with separate concatenated vectors signifying which parameters to constrain. For example, to set parameters 1 and 5 equal, and also set parameters 2, 6, and 10 equal use constrain = list(c(1, 5), c(2, 6, 10)). Constraints can also be specified using the mirt.model syntax (recommended)

calcNull logical; calculate the Null model for additional fit statistics (e.g., TLI)? Only applicable if the data contains no NA's and the data is not overly sparse

draws the number of Monte Carlo draws to estimate the log-likelihood for the MH-RM algorithm. Default is 5000

survey.weights a optional numeric vector of survey weights to apply for each case in the data (EM estimation only). If not specified, all cases are weighted equally (the standard IRT approach). The sum of the survey.weights must equal the total sample size for proper weighting to be applied

quadpts number of quadrature points per dimension (must be larger than 2). By default the number of quadrature uses the following scheme: switch(as.character(nfact), '1'=61, '2'=31, '3'=15, '4'=9, '5'=7, 3). However, if the method input is set to 'QMCEM' and this argument is left blank then the default number of quasi-Monte Carlo integration nodes will be set to 5000 in total

TOL convergence threshold for EM or MH-RM; defaults are .0001 and .001. If SE.type = 'SEM' and this value is not specified, the default is set to 1e-5. To evaluate the model using only the starting values pass TOL = NaN, and to evaluate the starting values without the log-likelihood pass TOL = NA

gpcm_mats a list of matrices specifying how the scoring coefficients in the (generalized) partial credit model should be constructed. If omitted, the standard gpcm format will be used (i.e., seq(0, k, by = 1) for each trait). This input should be used if traits should be scored different for each category (e.g., matrix(c(0:3, 1,0,0,0), 4, 2) for a two-dimensional model where the first trait is scored like a gpcm, but the second trait is only positively indicated when the first category is selected). Can be used when itemtypes are 'gpcm' or 'Rasch', but only when the respective element in gpcm_mats is not NULL

grsm.block an optional numeric vector indicating where the blocking should occur when using the grsm, NA represents items that do not belong to the grsm block (other items that may be estimated in the test data). For example, to specify two blocks of 3 with a 2PL item for the last item: grsm.block = c(rep(1, 3), rep(2, 3), NA). If NULL the all items are assumed to be within the same group and therefore have the same number of item categories
**fit_blis**

`rsm.block` same as `grsm.block`, but for `rsm` blocks

`monopoly.k` a vector of values (or a single value to repeated for each item) which indicate the degree of the monotone polynomial fitted, where the monotone polynomial corresponds to `monopoly.k * 2 + 1` (e.g., `monopoly.k = 2` fits a 5th degree polynomial). Default is `monopoly.k = 1`, which fits a 3rd degree polynomial.

`large` a logical indicating whether unique response patterns should be obtained prior to performing the estimation so as to avoid repeating computations on identical patterns. The default `TRUE` provides the correct degrees of freedom for the model since all unique patterns are tallied (typically only affects goodness of fit statistics such as $G^2$, but also will influence nested model comparison methods such as `anova(mod1, mod2)`), while `FALSE` will use the number of rows in `data` as a placeholder for the total degrees of freedom. As such, model objects should only be compared if all flags were set to `TRUE` or all were set to `FALSE`.

Alternatively, if the collapse table of frequencies is desired for the purpose of saving computations (i.e., only computing the collapsed frequencies for the data on-the-fly) then a character vector can be passed with the argument `large = 'return'` to return a list of all the desired table information used by `mirt`. This list object can then be reused by passing it back into the `large` argument to avoid re-tallying the data again (again, useful when the dataset are very large and computing the tabulated data is computationally burdensome). This strategy is shown below:

**Compute organized data** e.g., `internaldat <- mirt(Science, 1, large = 'return')`

**Pass the organized data to all estimation functions** e.g., `mod <- mirt(Science, 1, large = internaldat)`

`GenRandomPars` logical; generate random starting values prior to optimization instead of using the fixed internal starting values?

`accelerate` a character vector indicating the type of acceleration to use. Default is `'Ramsay'`, but may also be `'squarem'` for the SQUAREM procedure (specifically, the gSqS3 approach) described in Varadhan and Roldan (2008). To disable the acceleration, pass `'none'`

`verbose` logical; print observed- (EM) or complete-data (MHRM) log-likelihood after each iteration cycle? Default is `TRUE`

`solnp_args` a list of arguments to be passed to the `solnp::solnp()` function for equality constraints, inequality constraints, etc.

`nloptr_args` a list of arguments to be passed to the `nloptr::nloptr()` function for equality constraints, inequality constraints, etc.

`spline_args` a named list of lists containing information to be passed to the `bs` (default) and `ns` for each spline itemtype. Each element must refer to the name of the itemtype with the spline, while the internal list names refer to the arguments which are passed. For example, if item 2 were called `read2`, and item 5 were called `read5`, both of which were of itemtype `spline` but item 5 should use the `ns` form, then a modified list for each input might be of the form:

`spline_args = list(read2 = list(degree = 4), read5 = list(fun = 'ns', knots = c(-2, 2)))`
This code input changes the `bs()` splines function to have a degree = 4 input, while the second element changes to the `ns()` function with knots set a `c(-2, 2)` control a list passed to the respective optimizers (i.e., `optim()`, `nlminb()`, etc). Additional arguments have been included for the 'NR' optimizer: 'tol' for the convergence tolerance in the M-step (default is `TOL/1000`), while the default number of iterations for the Newton-Raphson optimizer is 50 (modified with the 'maxit' control input)

technical a list containing lower level technical parameters for estimation. May be:

- **NCYCLES** maximum number of EM or MH-RM cycles; defaults are 500 and 2000
- **MAXQUAD** maximum number of quadratures, which you can increase if you have more than 4GB or RAM on your PC; default 20000
- **theta_lim** range of integration grid for each dimension; default is `c(-6, 6)`
- **set.seed** seed number used during estimation. Default is 12345
- **SEtol** standard error tolerance criteria for the S-EM and MHRM computation of the information matrix. Default is 1e-3
- **symmetric** logical; force S-EM/Oakes information matrix estimates to be symmetric? Default is TRUE so that computation of standard errors are more stable. Setting this to FALSE can help to detect solutions that have not reached the ML estimate
- **SEM_window** ratio of values used to define the S-EM window based on the observed likelihood differences across EM iterations. The default is `c(0, 1 - SEtol)`, which provides nearly the very full S-EM window (i.e., nearly all EM cycles used). To use the a smaller SEM window change the window to to something like `c(.9, .999)` to start at a point farther into the EM history
- **warn** logical; include warning messages during estimation? Default is TRUE
- **message** logical; include general messages during estimation? Default is TRUE
- **customK** a numeric vector used to explicitly declare the number of response categories for each item. This should only be used when constructing mirt model for reasons other than parameter estimation (such as to obtain factor scores), and requires that the input data all have 0 as the lowest category. The format is the same as the `extract.mirt(mod, 'K')` slot in all converged models
- **customPriorFun** a custom function used to determine the normalized density for integration in the EM algorithm. Must be of the form `function(Theta, Etable){...}`, and return a numeric vector with the same length as number of rows in `Theta`. The `Etable` input contains the aggregated table generated from the current E-step computations. For proper integration, the returned vector should sum to 1 (i.e., normalized). Note that if using the `Etable` it will be NULL on the first call, therefore the prior will have to deal with this issue accordingly
zeroExtreme  logical; assign extreme response patterns a survey weight of 0 (formally equivalent to removing these data vectors during estimation)? When `dentype = 'EHW'`, where Woods’ extrapolation is utilized, this option may be required if the extrapolation causes expected densities to tend towards positive or negative infinity. The default is FALSE.

customTheta  a custom Theta grid, in matrix form, used for integration. If not defined, the grid is determined internally based on the number of quadpts.

delta  the deviation term used in numerical estimates when computing the ACOV matrix with the 'forward' or 'central' numerical approaches, as well as Oakes’ method with the Richardson extrapolation. Default is 1e-5.

parallel  logical; use the parallel cluster defined by `mirtCluster`? Default is TRUE.

storeEMhistory  logical; store the iteration history when using the EM algorithm? Default is FALSE. When TRUE, use `extract.mirt` to extract.

internal_constraints  logical; include the internal constraints when using certain IRT models (e.g., ‘grsm’ itemtype). Disable this if you want to use special optimizers such as the solnp. Default is TRUE.

gain  a vector of two values specifying the numerator and exponent values for the RM gain function \((val1/cycle)^val2\). Default is \(c(0.10, 0.75)\).

BURNIN  number of burn in cycles (stage 1) in MH-RM; default is 150.

SEMCYCLES  number of SEM cycles (stage 2) in MH-RM; default is 100.

MHDRAWS  number of Metropolis-Hasting draws to use in the MH-RM at each iteration; default is 5.

MHcand  a vector of values used to tune the MH sampler. Larger values will cause the acceptance ratio to decrease. One value is required for each group in unconditional item factor analysis (`mixedmirt()` requires additional values for random effect). If null, these values are determined internally, attempting to tune the acceptance of the draws to be between .1 and .4.

MHRM_SE_draws  number of fixed draws to use when `SE=TRUE` and `SE.type = 'FMHRM'` and the maximum number of draws when `SE.type = 'MHHRM'`. Default is 2000.

MCEM_draws  a function used to determine the number of quadrature points to draw for the 'MCEM' method. Must include one argument which indicates the iteration number of the EM cycle. Default is `function(cycles) 500 + (cycles - 1)*2`, which starts the number of draws at 500 and increases by 2 after each full EM iteration.

info_if_converged  logical; compute the information matrix when using the MH-RM algorithm only if the model converged within a suitable number of iterations? Default is TRUE.

logLik_if_converged  logical; compute the observed log-likelihood when using the MH-RM algorithm only if the model converged within a suitable number of iterations? Default is TRUE.
**keep_vcov_PD** logical; attempt to keep the variance-covariance matrix of the latent traits positive definite during estimation in the EM algorithm? This generally improves the convergence properties when the traits are highly correlated. Default is TRUE.

**Details**

For the details on `coef` method dispatched for fitted BLIS model, see `coef,BlisClass-method`. To get more on the class, see `BlisClass`.

**Value**

Fitted model of class `BlisClass` (extending standard `mirt`'s `SingleGroupClass`).

**Author(s)**

Jan Netik  
Institute of Computer Science of the Czech Academy of Sciences  
<netik@cs.cas.cz>

Patricia Martinkova  
Institute of Computer Science of the Czech Academy of Sciences  
<martinkova@cs.cas.cz>

**See Also**

Other BLIS/BLIRT related: `BlisClass-class, coef,BlisClass-method, get_orig_levels(), nominal_to_int(), obtain_nrm_def(), print.blis_coefs()`

**Examples**

```r
fitted_blis <- fit_blis(HCItest[, 1:20], HCIkey, SE = TRUE)
coef(fitted_blis)
coef(fitted_blis)$'Item 12'`
coef(fitted_blis, IRTpars = TRUE)
coef(fitted_blis, IRTpars = TRUE, CI = 0.90) # 90% CI instead of 95% CI
coef(fitted_blis, IRTpars = TRUE, printSE = TRUE) # SE instead of CI
```

---

**gDiscrim**  
*Compute generalized item discrimination*

**Description**

Generalized version of discrimination index ULI. The function enumerates the ability of an item to distinguish between individuals from upper (U) vs. lower (L) ability groups, i.e. between respondents with high vs. low overall score on the test. Number of groups, as well as upper and lower groups can be specified by user. You can also manually supply the maximal and minimal scores when the theoretical range of item score is known. Note that if the *observed* item range is zero NaN is returned.
Usage

\texttt{gDiscrim(Data, k = 3, l = 1, u = 3, maxscore, minscore, x, \ldots)}

Arguments

- **Data**: matrix or data.frame of items to be examined. Rows represent respondents, columns represent items.
- **k**: numeric: number of groups to which may be Data divided by the total score. Default value is 3. See Details.
- **l**: numeric: lower group. Default value is 1. See Details.
- **u**: numeric: upper group. Default value is 3. See Details.
- **maxscore**: numeric: maximal score in ordinal items. If missing, vector of obtained maximal scores is imputed. See Details.
- **minscore**: numeric: minimal score in ordinal items. If missing, vector of obtained minimal scores is imputed. See Details.
- **x**: deprecated. Use argument Data instead.
- **\ldots**: Arguments passed on to \texttt{base::findInterval}
  - **rightmost.closed**: logical; if true, the rightmost interval, vec[N-1] .. vec[N] is treated as closed, see below.
  - **all.inside**: logical; if true, the returned indices are coerced into 1, \ldots, N-1, i.e., 0 is mapped to 1 and N to N-1.
  - **left.open**: logical; if true all the intervals are open at left and closed at right; in the formulas below, \leq should be swapped with < (and > with \geq), and rightmost.closed means 'leftmost is closed'. This may be useful, e.g., in survival analysis computations.

Details

The function computes total test scores for all respondents and then divides the respondents into \( k \) groups. The lower and upper groups are determined by \( l \) and \( u \) parameters, i.e., \( l \)-th and \( u \)-th group where the ordering is defined by increasing total score.

In ordinal items, difficulty is calculated as difference of average score divided by range (maximal possible score \texttt{maxscore} minus minimal possible score \texttt{minscore} for given item).

Discrimination is calculated as difference in difficulty between upper and lower group.

Note

\texttt{gDiscrim} is used by \texttt{DDplot()} function.

Author(s)

Adela Hladka
Institute of Computer Science of the Czech Academy of Sciences
<hladka@cs.cas.cz>
get_orig_levels

Lubomir Stepanek
Institute of Computer Science of the Czech Academy of Sciences

Jana Vorlickova
Institute of Computer Science of the Czech Academy of Sciences

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

Jan Netik
Institute of Computer Science of the Czech Academy of Sciences
<netik@cs.cas.cz>

References


See Also

DDplot()

Examples

# binary dataset
dataBin <- dataMedical[, 1:100]
# ordinal dataset
dataOrd <- dataMedicalgraded[, 1:100]

# ULI for the first 5 items of binary dataset
# compare to psychometric::discrim(dataBin)
gDiscrim(dataBin)[1:5]
# generalized ULI using 5 groups, compare 4th and 5th for binary dataset
# gDiscrim(dataBin, k = 5, l = 4, u = 5)[1:5]

# ULI for first 5 items for ordinal dataset
gDiscrim(dataOrd)[1:5]
# generalized ULI using 5 groups, compare 4th and 5th for binary dataset
gDiscrim(dataOrd, k = 5, l = 4, u = 5)[1:5]
# maximum (4) and minimum (0) score are same for all items
# gDiscrim(dataOrd, k = 5, l = 4, u = 5, maxscore = 4, minscore = 0)[1:5]

---

**get_orig_levels**

Get Original Levels from a Fitted BLIS model

**Description**

Just a simple accessor to original levels and correct key stored in fitted BLIS model.
Usage

get_orig_levels(object)

Arguments

object  
object of class BlisClass, model fitted via fit_blis() or blis().

Value

list of the original levels and correct key. Key is stored as an attribute key for every individual item.

See Also

Other BLIS/BLIRT related: BlisClass-class, coef,BlisClass-method, fit_blis(), nominal_to_int(), obtain_nrm_def(), print.blis.coefs()

Examples

fit <- fit_blis(HCItest[, 1:20], HCIkey)
get_orig_levels(fit)

---

ggWrightMap  
Plot person-item map (Wright map) using ggplot2

Description

This function allows to generate Wright map (also called person-item map) using ggplot() function from the ggplot2 package. Wright map is used to jointly display histogram of abilities (or other measured trait) and item difficulty parameters. Function takes pre-estimated parameter estimates, such as those obtained from an IRT model.

Usage

ggWrightMap(
  theta,
  b,
  binwidth = 0.5,
  color = "blue",
  size = 15,
  item.names,
  ylab.theta = "Respondent latent trait",
  ylab.b = "Item difficulty",
  rel_widths = c(1, 1)
)
Arguments

theta    numeric: vector of ability estimates.
b        numeric: vector of difficulty estimates.
binwidth numeric: the width of the bins of histogram.
color    character: color of histogram.
size     text size in pts.
item.names names of items to be displayed.
ylab.theta character: description of y-axis for the histogram.
ylab.b    character: description of y-axis for the plot of difficulty estimates.
rel_widths numeric: vector of length 2 specifying ratio of "facet's" widths.

Author(s)

Adela Hladka
Institute of Computer Science of the Czech Academy of Sciences
<hladka@cs.cas.cz>

Jan Netik
Institute of Computer Science of the Czech Academy of Sciences
<netik@cs.cas.cz>

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

References


Examples

library(mirt)

# fit Rasch model with the mirt package
fit <- mirt(HCI[, 1:20], model = 1, itemtype = "Rasch")
# factor scores
theta <- as.vector(fscores(fit))
# difficulty estimates using IRT parametrization
b <- coef(fit, simplify = TRUE, IRTpars = TRUE)$items[, "b"]

# Wright map
ggWrightMap(theta, b)

# Wright map with modified item names
item.names <- paste("Item", 1:20)
ggWrightMap(theta, b, item.names = item.names)

# Wright map with modified descriptions of y-axis and relative widths of plots
ggWrightMap(theta, b,
Description

The GMAT is a generated dataset based on parameters from Graduate Management Admission Test (GMAT, Kingston et al., 1985). First two items were considered to function differently in uniform and non-uniform way respectively. The dataset represents responses of 2,000 subjects to multiple-choice test of 20 items. A correct answer is coded as 1 and incorrect answer as 0. The column group represents group membership, where 0 indicates reference group and 1 indicates focal group. Groups are the same size (i.e. 1,000 per group). The distributions of total scores (sum of correct answers) are the same for both reference and focal group (Martinkova et al., 2017). The column criterion represents generated continuous variable which is intended to be predicted by test.

Usage

GMAT

Format

A GMAT data frame consists of 2,000 observations on the following 22 variables:

- **Item1-Item20** dichotomously scored items of the test
- **group** group membership vector, "0" reference group, "1" focal group
- **criterion** continuous criterion intended to be predicted by test

Author(s)

Adela Hladka (nee Drabinova)
Institute of Computer Science of the Czech Academy of Sciences
Faculty of Mathematics and Physics, Charles University
<hladka@cs.cas.cz>

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

Source

Reexport from difNLR package.
References


---

**HCI**

*Homeostasis Concept Inventory dichotomous dataset*

**Description**

HCI dataset consists of the dichotomously scored responses of 651 students (405 males, 246 females) to Homeostasis Concept Inventory (HCI) multiple-choice test. It contains 20 items, vector of gender membership and identificator whether students plan to major in life sciences.

**Usage**

HCI

**Format**

HCI is a data.frame consisting of 651 observations on the 22 variables.

Item1-Item20  Dichotomously scored items of the HCI test.

gender  Gender membership, "0" males, "1" females.

major  Identificator whether student plans to major in the life sciences.

total  Total score

**Author(s)**

Jenny L. McFarland  
Biology Department, Edmonds Community College

**References**

See Also

- HCItest for HCI multiple-choice dataset
- HCIkey for key of correct answers for HCI
- HCIdata for HCI full dataset
- HCIlong for HCI in a long format
- HCIgrads for HCI dataset of graduate students
- HCIprepost for HCI pretest and posttest scores
- HCItestretest for HCI test-retest dataset

---

### Description

*HCIData* dataset consists of the responses of 669 students (405 males, 246 females, 18 without gender specification) to Homeostasis Concept Inventory (HCI) multiple-choice test. It contains answers to 20 multiple-choice items, scored items, total score, gender membership, identifier whether students plan to major in science, study year, minority membership, identifier whether English is the student's first language, and type of school.

### Usage

*HCIdata*

### Format

*HCIdata* is a data.frame consisting of 669 observations on the 47 variables.

- **A1-A20** Multiple-choice items of the HCI test.
- **QR1-QR20** Scored items of the HCI test, "0" incorrect, "1" correct.
- **total** Total test score.
- **gender** Gender membership, "M" males, "F" females, "none" undisclosed.
- **major** Identifier whether students plans to major in the life sciences.
- **yearc5** Study year.
- **minority** Minority membership, "maj" majority, "min" Black/Hispanic minority, "none" undisclosed.
- **EnglishF** Identifier whether English is the student's first language.
- **typeS** Course type, "allied" allied health, "majors" physiology courses for science majors, "mixed majors" courses for non-majors.
- **typeSCH** Type of school, "AC" associate's college, "BCAS" baccalaureate college: arts and sciences focus, "R1" research university, "MCU" master's college and university.
**Author(s)**

Jenny L. McFarland  
Biology Department, Edmonds Community College

**References**


**See Also**

- HCI for HCI dichotomous dataset  
- HCItest for HCI multiple-choice dataset  
- HCItkey for key of correct answers for HCI  
- HCIIlong for HCI in a long format  
- HCIIgrads for HCI dataset of graduate students  
- HCIIprepost for HCI pretest and posttest scores  
- HCIItestretest for HCI test-retest dataset

---

**HCIgrads**  
*Homeostasis concept inventory dataset of graduate students*

**Description**

HCIgrads dataset consists of the responses of 10 graduate students to Homeostasis Concept Inventory (HCI) multiple-choice test. It contains answers to 20 multiple-choice items, scored items, and total test score.

**Usage**

HCIgrads

**Format**

HCIgrads is a data.frame consisting of 10 observations on the 42 variables.

- **A1-A20** Multiple-choice items of the HCI test.  
- **QR1-QR20** Scored items of the HCI test, "0" incorrect, "1" correct.  
- total Total test score.

**Author(s)**

Jenny L. McFarland  
Biology Department, Edmonds Community College
References


See Also

- HCI for HCI dichotomous dataset
- HCltest for HCI multiple-choice dataset
- HClkey for key of correct answers for HCI
- HClData for HCI full dataset
- HClLong for HCI in a long format
- HCIPrepost for HCI pretest and posttest scores
- HClTestretest for HCI test-retest dataset

---

###HCIkey

**Key of correct answers for homeostasis concept inventory dataset**

**Description**

The `HCIkey` is a vector of factors representing correct answers of `HCltest` dataset.

**Usage**

```r
HCIkey
```

**Format**

A nominal vector with 20 values representing correct answers to items of `HCltest` dataset. For more details see `HCltest()`.

**Author(s)**

Jenny L. McFarland
Biology Department, Edmonds Community College

**References**

**See Also**

- `HCI` for HCI dichotomous dataset
- `HCItest` for HCI multiple-choice dataset
- `HCIdata` for HCI full dataset
- `HCIlong` for HCI in a long format
- `HCIgrads` for HCI dataset of graduate students
- `HCIprepost` for HCI pretest and posttest scores
- `HCItestretest` for HCI test-retest dataset

---

**HCIlong**

*Homeostasis Concept Inventory in a long format*

**Description**

`HCIlong` dataset consists of the dichotomously scored responses of 651 students (405 males, 246 females) to Homeostasis Concept Inventory (HCI) multiple-choice test. It contains 20 items (*in a long format*), vector of gender membership and identificator whether students plan to major in life sciences.

**Usage**

- `HCIlong`

**Format**

`HCIlong` is a `data.frame` consisting of 13,020 rows and 5 variables.

- **id**: Row number of the original observation in a wide format.
- **item**: Name of the item the rating is for.
- **rating**: Response to the item.
- **gender**: Gender membership, "0" males, "1" females.
- **major**: Identificator whether student plans to major in the life sciences.
- **total**: Total score
- **zscore**: Standardized total score (Z-score)

**Author(s)**

Jenny L. McFarland  
Biology Department, Edmonds Community College

**References**

See Also

- **HCI** for HCl dichotomous dataset (in a wide format)
- **HCltest** for HCl multiple-choice dataset
- **HClkey** for key of correct answers for HCl
- **HCldata** for HCl full dataset
- **HClgrads** for HCl dataset of graduate students
- **HClprepost** for HCl pretest and posttest scores
- **HCltestretest** for HCl test-retest dataset

---

**HClprepost**

*Homeostasis concept inventory pretest and posttest scores*

---

**Description**

HClprepost dataset consists of the pretest and posttest score of 16 students to Homeostasis Concept Inventory (HCl). Between the pre-test and post-test, the students received instruction on homeostasis within a physiology course.

**Usage**

HClprepost

**Format**

HClprepost is a data.frame consisting of 16 observations on the 2 variables.

- **id** Anonymized respondent ID.
- **score.pre** Pretest score.
- **score.post** Posttest score.

**Author(s)**

Jenny L. McFarland
Biology Department, Edmonds Community College

**References**

**See Also**

- `HCI` for HCI dichotomous dataset
- `HCItest` for HCI multiple-choice dataset
- `HCIkey` for key of correct answers for HCI
- `HCIdata` for HCI full dataset
- `HCIlong` for HCI in a long format
- `HCIgrads` for HCI dataset of graduate students
- `HCItestretest` for HCI test-retest dataset

---

**HCItest**

*Homeostasis concept inventory multiple-choice dataset*

**Description**

`HCItest` dataset consists of the responses of 651 students (405 males, 246 females) to Homeostasis Concept Inventory (HCI) multiple-choice test. It contains 20 items, vector of gender membership and identifier whether students plan to major in life sciences.

**Usage**

`HCItest`

**Format**

`HCItest` is a `data.frame` consisting of 651 observations on the 22 variables.

- **Item1-Item20**  Multiple-choice items of the HCI test.
- **gender**  Gender membership, "0" males, "1" females.
- **major**  Identifier whether student plans to major in the life sciences.

**Author(s)**

Jenny L. McFarland

Biology Department, Edmonds Community College

**References**

See Also

HCI for HCI dichotomous dataset
HCIkey for key of correct answers for HCI
HCIdata for HCI full dataset
HCIlong for HCI in a long format
HCIgrads for HCI dataset of graduate students
HCIPrepost for HCI pretest and posttest scores
HCItestretest for HCI test-retest dataset

Description

HCItestretest dataset consists of the responses of 45 students to Homeostasis Concept Inventory (HCI). It contains answers to 20 multiple-choice items, scored items, identifier of test/retest, total score, gender membership and identifier whether students plan to major in life sciences. The data are organized so that each pair of subsequent rows belongs to one student. Students took no courses on homeostasis between the test and retest.

Usage

HCItestretest

Format

HCItestretest is a data.frame consisting of 90 observations on the 44 variables.

A1-A20 Multiple-choice items of the HCI test.
QR1-QR20 Scored items of the HCI test, "0" incorrect, "1" correct.
test Identifier of test vs retest, "test" test, "retest" retest after.
total Total test score.
gender Gender membership, "M" male, "F" female.
major Identifier whether student plans to major in the life sciences.

Author(s)

Jenny L. McFarland
Biology Department, Edmonds Community College

References

**HeightInventory**

**See Also**
- HCI for HCI dichotomous dataset
- HCItest for HCI multiple-choice dataset
- HCkey for key of correct answers for HCI
- HCIData for HCI full dataset
- HCIdl for HCI in a long format
- HCIgrads for HCI dataset of graduate students
- HCIprepost for HCI pretest and posttest scores

---

**HeightInventory**

*Height inventory dataset*

**Description**

*HeightInventory* dataset consists of the responses of 4,885 respondents (1479 males, 3406 females) to a Height Inventory (Rečka, 2018). It contains 26 ordinal items of self-perceived height rated on a scale "1" strongly disagree, "2" disagree, "3" agree, "4" strongly agree, vector of self-reported heights (in centimeters), and vector of gender membership. Total score is included as the last variable, total score is NA for respondents who missed any item.

**Usage**

*HeightInventory*

**Format**

*HeightInventory* is a data.frame consisting of 4,885 observations on the 28 variables. First 26 variables are responses on scale "1" strongly disagree, "2" disagree, "3" agree, "4" strongly agree. Items 14 - 26 were reverse-coded, so that all items are scored in the same direction. Names of these items start with "R-". Original item number and English wording is provided below.

**ShortTrousers** 1. A lot of trousers are too short for me.
**TallerThanM** 2. I am taller than men of my age.
**TallerThanF** 3. I am taller than women of my age.
**HeightForBasketball** 4. I have an appropriate height for playing basketball or volleyball.
**AskMeToReach** 5. Other people sometimes ask me to reach something for them.
**CommentsTall** 6. I am used to hearing comments about how tall I am.
**ConcertObstructs** 7. At concerts, my stature usually obstructs other people’s views.
**ShortBed** 8. Ordinary beds are too short for me.
**TopShelfEasy** 9. I can easily take wares from top shelves at a store.
**CrowdViewComf** 10. In a crowd of people, I still have a comfortable view.
**ShortBlanket** 11. Blankets and bedspreads rarely cover me completely.
BendToHug 12. When I want to hug someone, I usually need to bend over.

CarefulHead 13. I must often be careful to avoid bumping my head against a doorjamb or a low ceiling.

R-SmallerThanM 14. I am smaller than men of my age. (reversed)

R-StoolNeeded 15. I often need a stool to reach something other people could reach without one. (reversed)

R-PlayDwarf 16. I could play a dwarf. (reversed)

R-SmallerThanW 17. I am smaller than women of my age. (reversed)

R-NoticeSmall 18. One of the first things people notice about me is how small I am. (reversed)

R-OnTipToes 19. I often need to stand on the tip of my toes to get a better view. (reversed)

R-ClothChildSize 20. When I buy clothes, children’s sizes often fit me well. (reversed)

R-BusLegsEnoughSpace 21. I have enough room for my legs when traveling by bus. (reversed)

R-FasterWalk 22. I often need to walk faster than I’m used to in order to keep pace with taller people. (reversed)

R-AgeUnderestim 23. Because of my smaller stature, people underestimate my age. (reversed)

R-WishLowerChair 24. It would be more comfortable for me if chairs were made lower. (reversed)

R-UpwardLook 25. When talking to other adults, I have to look upwards if I want to meet their eyes. (reversed)

R-MirrorTooHigh 26. Some mirrors are placed so high up that I have to crane my neck to use them. (reversed)

gender Gender membership, ”M” males, ”F” females.

HeightCM Self-reported height in centimeters.

total Total score.

Note

Thanks to Karel Rečka and Hynek Cígler for sharing this dataset.

References

### Description

Function estimating reliability with intra-class correlation for the complete or for the range-restricted sample.

### Usage

```r
ICCrestricted(
 Data,
 case,
 var,
 rank = NULL,
 dir = "top",
 sel = 1,
 nsim = 100,
 ci = 0.95,
 seed = NULL
)
```

### Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>matrix or data.frame which includes variables describing ID of ratees (specified in case), ratings (specified in var), and (optionally) rank of ratees (specified in rank).</td>
</tr>
<tr>
<td>case</td>
<td>character: name of the variable in Data with ID of the ratee (subject or object being evaluated, such as a respondent, proposal, patient, applicant etc.)</td>
</tr>
<tr>
<td>var</td>
<td>character: name of the variable in Data with the ratings/scores.</td>
</tr>
<tr>
<td>rank</td>
<td>numeric: vector of ranks of ratees. If not provided, rank of ratee is calculated based on average rating based on var variable.</td>
</tr>
<tr>
<td>dir</td>
<td>character: direction of range-restriction, available options are &quot;top&quot; (default) or &quot;bottom&quot;. Can be an unambiguous abbreviation (i.e., &quot;t&quot; or &quot;b&quot;).</td>
</tr>
<tr>
<td>sel</td>
<td>numeric: selected number (given &gt; 1) or percentage (given &lt;= 1) of ratees. Default value is 1 (complete dataset).</td>
</tr>
<tr>
<td>nsim</td>
<td>numeric: number of simulations for bootstrap confidence interval. Default value is 100.</td>
</tr>
<tr>
<td>ci</td>
<td>numeric: confidence interval. Default value is 0.95.</td>
</tr>
<tr>
<td>seed</td>
<td>seed for simulations. Default value is NULL, random seed. See <code>lme4::bootMer()</code> for more detail.</td>
</tr>
</tbody>
</table>
Value

A `data.frame` with the following columns:

- `n_sel`: number of ratees selected/subsetted.
- `prop_sel`: proportion of ratees selected.
- `dir`: direction of range-restriction. NA if range is effectively not restricted (100% used).
- `VarID`: variance due to ratee, "true variance", between-group variance.
- `VarResid`: residual variance.
- `VarTotal`: total variance.
- `ICC1`: single-rater inter-rater reliability.
- `ICC1_LCI`: lower bound of the confidence interval for ICC1.
- `ICC1_UCI`: upper bound of the confidence interval for ICC1.
- `ICC3`: multiple-rater inter-rater reliability.
- `ICC3_LCI`: lower bound of the confidence interval for ICC3.
- `ICC3_UCI`: upper bound of the confidence interval for ICC3.

Author(s)

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

Jan Netik
Institute of Computer Science of the Czech Academy of Sciences
<netik@cs.cas.cz>

References


Examples

```r
ICC for the whole sample
ICCrestricted(Data = AIBS, case = "ID", var = "Score", rank = "ScoreRankAdj")

ICC for the range-restricted sample considering 80% of top ratees
ICCrestricted(
 Data = AIBS, case = "ID", var = "Score", rank = "ScoreRankAdj",
 sel = 0.8
)
```
ItemAnalysis

**Description**
Computes various traditional item analysis indices including difficulty, discrimination and item validity. For ordinal items, the function returns scaled values for some of the indices. See the details below.

**Usage**
```r
ItemAnalysis(
 Data,
 minscore = NULL,
 maxscore = NULL,
 cutscore = NULL,
 criterion = NULL,
 k = NULL,
 l = NULL,
 u = NULL,
 bin = "deprecated"
)
```

**Arguments**
- **Data**: *matrix or data.frame* of items to be examined. Rows represent respondents, columns represent items.
- **minsorce, maxscore**: *integer*, theoretical minimal/maximal score. If not provided, these are computed on observed data. Automatically recycled to the number of columns of the data.
- **cutscore**: *integer* If provided, the input data are binarized accordingly. Automatically recycled to the number of columns of the data.
- **criterion**: *vector of criterion values.*
- **k, l, u**: Arguments passed on to `gDiscrim()`. Provide these if you want to compute generalized upper-lower index along with a standard ULI (using k = 3, l = 1, u = 3), which is provided by default.
- **bin**: *deprecated*, use `cutscore` instead. See the **Details**.

**Details**
For calculation of generalized ULI index, it is possible to specify a custom number of groups k, and which two groups l and u are to be compared.

In ordinal items, difficulty is calculated as difference of average score divided by range (maximal possible score maxscore minus minimal possible score minscore).

If `cutscore` is provided, item analysis is conducted on binarized data; values greater or equal to cut-score are set to 1, other values are set to 0. Both the `minsorce` and `maxscore` arguments are then ignored and set to 0 and 1, respectively.
Value

A data.frame with following columns:

**Difficulty**  average score of the item divided by its range.
**Mean**  average item score.
**SD**  standard deviation of the item score.
**Cut.score**  cut-score specified in cutscore.
**obs.min**  observed minimal score.
**Min.score**  minimal score specified in minscore; if not provided, observed minimal score.
**obs.max**  observed maximal score.
**Max.score**  maximal score specified in maxscore; if not provided, observed maximal score.
**Prop.max.score**  proportion of maximal scores.
**RIT**  item-total correlation (correlation between item score and overall test score).
**RIR**  item-rest correlation (correlation between item score and overall test score without the given item).
**ULI**  upper-lower index using the standard parameters (3 groups, comparing 1st and 3rd).
**Corr.criterion**  correlation between item score and criterion criterion.
**gULI**  generalized ULI. NA when the arguments k, 1, and u were not provided.
**Alpha.drop**  Cronbach's alpha without given item.
**Index.rel**  Gulliksen's (1950) item reliability index.
**Index.val**  Gulliksen's (1950) item validity index.
**Perc.miss**  Percentage of missed responses on the particular item.
**Perc.nr**  Percentage of respondents that did not reached the item nor the subsequent ones, see recode_nr() for further details.

Author(s)

Patricia Martinkova  
Institute of Computer Science of the Czech Academy of Sciences  
<martinkova@cs.cas.cz>

Jan Netik  
Institute of Computer Science of the Czech Academy of Sciences  
<netik@cs.cas.cz>

Jana Vorlickova  
Institute of Computer Science of the Czech Academy of Sciences

Adela Hladka  
Institute of Computer Science of the Czech Academy of Sciences  
<hladka@cs.cas.cz>
LearningToLearn

References


See Also

DDplot(), gDiscrim(), recode_nr()

Examples

## Not run:
# binary dataset
dataBin <- dataMedical[, 1:100]
# ordinal dataset
dataOrd <- dataMedicalgraded[, 1:100]
# study success is the same for both data sets
StudySuccess <- dataMedical[, 102]

# item analysis for binary data
head(ItemAnalysis(dataBin))
# item analysis for binary data using also study success
head(ItemAnalysis(dataBin, criterion = StudySuccess))

# item analysis for binary data
head(ItemAnalysis(dataOrd))
# item analysis for binary data using also study success
head(ItemAnalysis(dataOrd, criterion = StudySuccess))
# including also item analysis for binarized data
head(ItemAnalysis(dataOrd, criterion = StudySuccess, k = 5, l = 4, u = 5,
                   maxscore = 4, minscore = 0, cutscore = 4))

## End(Not run)

LearningToLearn

Dichotomous dataset of learning to learn test

Description

LearningToLearn is a real longitudinal dataset used in Martinkova et al (2020) study, demonstrating differential item functioning in change (DIF-C) on Learning to Learn (LtL) test. Among other variables, it primarily contains binary-coded responses of 782 subjects to (mostly) multiple-choice test consisting of 41 items within 7 subscales (see Format for details). Each respondent was tested.
twice in total – the first time in Grade 6 and the second time in Grade 9. Most importantly, school track (variable `track_01` or `track`) is available, with 391 students attending basic school (BS) and 391 pursuing selective academic school (AS). This dataset was created using propensity score matching algorithm to achieve similar characteristics in both tracks (see References for details). To further simplify the work with `LtL` dataset, we provide computed total scores as well as 7 subscores, both for Grade 6 and Grade 9. The dataset also includes `change` variables for each item (see Format for details) for more detailed DIF-C analysis using multinomial regression model.

Usage

`LearningToLearn`

Format

A `LearningToLearn` data frame consists of 782 observations on the following 141 variables:

- `track_01` Dichotomously scored school track, where "1" denotes the selective academic school one.
- `track` School track, where "AS" represents the selective academic school track, and "BS" stands for basic school track.
- `score_6 & score_9` Total test score value obtained by summing all 41 items of LtL, the number denotes the Grade which the respondent was taking at the time of testing.
- `score_6_subtest1–score_6_subtest7` Scores of respective cognitive subtest (1–7) of LtL in Grade 6.
- `score_9_subtest1–score_9_subtest7` Scores of respective cognitive subtest (1–7) of LtL in Grade 9.
- `Item1A_6–Item7F_6` Dichotomously coded 41 individual items obtained at Grade 6, "1" represents the correct answer to the particular item.
- `Item1A_9–Item7F_9` Dichotomously coded 41 individual items obtained at Grade 9, "1" represents the correct answer to the particular item.
- `Item1A_changes–Item7F_changes` Change patterns with those possible values:
  - a student responded correctly in neither Grade 6 nor in Grade 9 (did not improve, "00")
  - a student responded correctly in Grade 6 but not in Grade 9 (deteriorated, "10")
  - a student did not respond correctly in Grade 6 but responded correctly in Grade 9 (improved, "01"), and
  - a student responded correctly in both grades (did not deteriorate, "11")

Source

**MSATB**

Dichotomous dataset of Medical School Admission Test in Biology.

**Description**

The MSATB dataset consists of the responses of 1,407 subjects (484 males, 923 females) to admission test to medical school in the Czech republic. It contains 20 selected items from original test while first item was previously detected as differently functioning (Vlckova, 2014). A correct answer is coded as 1 and incorrect answer as 0. The column gender represents gender of students, where 0 indicates males (reference group) and 1 indicates females (focal group).

**Usage**

MSATB

**Format**

A MSATB data frame consists of 1,407 observations on the following 21 variables:

- **Item** dichotomously scored items of the test
- **gender** gender of respondents, "0" males, "1" females

**Author(s)**

Adela Hladka (nee Drabinova)
Institute of Computer Science of the Czech Academy of Sciences
Faculty of Mathematics and Physics, Charles University
<hladka@cs.cas.cz>

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

**Source**

Reexport from difNLR package.

**References**


Description

The MSclinical dataset contains clinical measures on multiple sclerosis patients.

Usage

MSclinical

Format

MSclinical is a data.frame consisting of 17 observations on 13 variables.

LCLA  Low-Contrast Letter Acuity test.
MI    Motricity Index.
MAS   Modified Ashworth Scale.
BBS   Berg Balance Scale.
T     Tremor.
DD    Dysdiadochokinesia.
DM    Dysmetria.
PRs   Postural reactions.
KH    Knee Hyperextension.
NHPT  Nine-Hole Peg Test.
T25FW Timed 25-Foot Walk.
PASAT3 3-minute version of the Paced Auditory Serial Addition Test.
EDSS  Kurtzke Expanded Disability Status Scale.

References

**Description**

The NIH dataset (Erosheva et al., 2020a) was sampled from a full set of 54,740 R01 applications submitted by black and white principal investigators (PIs) and reviewed by Center for Scientific Review (CSR) of the National Institutes of Health (NIH) during council years 2014–2016. It contains the original random sample of white applicants as generated by Erosheva et al. (2020b) and a sample of 46 black applicants generated to obtain the same ratio of white and black applicants as in the original sample (for details, see Erosheva et al., 2021a). The dataset was used by Erosheva et al. (2021b) to demonstrate issues of inter-rater reliability in case of restricted samples.

The available variables include preliminary criterion scores on Significance, Investigator, Innovation, Approach, Environment and a preliminary Overall Impact Score. Each of these criteria and the overall score is scored on an integer scale from 1 (best) to 9 (worst). Besides the preliminary criteria and Overall Impact Scores, the data include applicant race, the structural covariates (PI ID, application ID, reviewer ID, administering institute, IRG, and SRG), the matching variables – gender, ethnicity (Hispanic/Latino or not), career stage, type of academic degree, institution prestige (as reflected by the NIH funding bin), area of science (as reflected by the IRG handling the application), application type (new or renewal) and status (amended or not) – as well as the final overall score. In addition, the file includes a study group ID variable that refers to the Matched and Random subsets used in the original study.

**Usage**

**Format**

NIH is a data.frame consisting of 5802 observations on 27 variables.

- **ID** Proposal ID.
- **Score** Preliminary Overall Impact score (1-9 integer scale, 1 best).
- **Significance, Investigator, Innovation, Approach, Environment** Preliminary Criterion Scores (1-9 integer scale, 1 best).
- **PIRace** Principal investigator's self-identified race; "White" or "Black".
- **PIID** Anonymized ID of principal investigator (PI).
- **PIGender** PI's gender membership; "Male" or "Female".
- **PIEthn** PI's ethnicity; "Hispanic/Latino" or "Non-Hispanic".
- **PICareerStage** PI's career stage; "ESI" Early Stage Investigator, "Experienced" Experienced Investigator, or "Non-ES NI" Non-Early Stage New Investigator.
- **PIDegree** PI's degree; "PhD", "MD", "MD/PhD", or "Others".
- **PIInst** Lead PI's institution's FY 2014 total institution NIH funding; 5 bins with 1 being most-funded.
**GroupID**  Group ID.

**RevID**  Reviewer’s ID.

**IRG**  IRG (Integrated Research Group) id.

**AdminOrg**  Administering Organization id.

**SRG**  SRG (Scientific Research Group) id.

**PropType**  Application type, "New" or "Renewal".

**Ammend**  Ammend. Logical.

**ScoreAvg**  Average of the three overall scores from different reviewers.

**ScoreAvgAdj**  Average of the three overall scores from different reviewers, increased by multiple of 0.001 of the worst score.

**ScoreRank**  Project rank calculated based on ScoreAvg.

**ScoreRankAdj**  Project rank calculated based on ScoreAvgAdj.

**ScoreFinalChar**  Final Overall Impact score (1-9 integer scale, 1 best; "ND" refers to "not discussed")

**ScoreFinal**  Final Overall Impact score (1-9 integer scale, 1 best).

**References**


**See Also**

ICCrestricted()
Usage

nominal_to_int(Data, key)

Arguments

Data  
data.frame or tibble with all columns being factors. Support for matrix is limited and behavior not guaranteed.

key  
A single-column data.frame, (not matrix) tibble or - preferably - a factor vector of levels considered as correct responses.

Details

Fitting a nominal model using \texttt{mirt::mirt()} package requires the dataset to consist only of integers, arbitrarily representing the response categories. You can convert your dataset to integers on your own in that case.

On the other hand, BLIS model (and thus also the BLIRT parametrization) further requires the information of correct item response category. On top of that, the same information is leveraged when fitting a \texttt{mirt} model that conserves the "directionality" of estimated latent ability (using a model definition from \texttt{obtain_nrm_def()}). In these cases, you are recommended to use \texttt{nominal_to_int()} (note that \texttt{fit_blis()} and \texttt{blis()} does this internally). Note also that fitted BLIS model (of class \texttt{BlisClass}) stores the original levels with correct answer key in its \texttt{orig_levels} slot, accessible by a user via \texttt{get_orig_levels()}.

Value

List of original levels with logical attribute \texttt{key}, which stores the information on which response (level) is considered correct. \textit{Note that levels not used in the original data are dropped.}

See Also

Other BLIS/BLIRT related: \texttt{BlisClass-class}, \texttt{coef}, \texttt{BlisClass-method}, \texttt{fit_blis()}, \texttt{get_orig_levels()}, \texttt{obtain_nrm_def()}, \texttt{print.blis_coefs()}

\begin{verbatim}
obtain_nrm_def

Obtain model definition for mirt's nominal model taking in account the key of correct answers

\end{verbatim}

Description

Standard mirt model with \texttt{itemtype = "nominal"} puts the identification constrains on the item response category slopes such as \( ak_0 = 0 \) and \( ak_{(K-1)} = (K-1) \), freely estimating the rest.

While nominal item responses are unordered by definition, it is often the case that one of the item response categories is correct and the respondents endorsing this category "naturally" possess a higher latent ability. Use this function to obtain model definition where the correct response category \( k_c \) for item \( i \) with \( K \) possible response categories translates to constrains \( ak_{k_c} = (K - 1) \) and \( ak_{k_{d1}} = 0 \), with \( k_{d1} \) being the first incorrect response category (i.e. the first distractor).
obtain_nrm_def(data_with_key, ...)

Arguments

- `data_with_key`: The output of `nominal_to_int()`.
- `...`: Arguments passed onto `mirt::mirt()`. No practical use for now.

Value

A `data.frame` with the starting values, parameter numbers, estimation constraints etc. Pass it as `pars` argument of `mirt::mirt()`.

Examples

```r
library(mirt)

convert nominal data to integers and the original labels with correct answers
data_with_key <- nominal_to_int(HCItest[, 1:20], HCIkey)

build model definition for {mirt} using the returned list from above
nrm_def <- obtain_nrm_def(data_with_key)

fit the nominal model using the obtained model definition in `pars` argument
fit <- mirt(data_with_key$Data, 1, "nominal", pars = nrm_def)
```

plot.sia_parallel

Plot Method for Parallel Analysis Output

Description

You can call this method to plot an existing object resulting from `fa_parallell()` function, which behaves as a standard `data.frame`, but can be automatically recognized and processed with a dedicated plot method. Also, you can post-hoc disable the Kaiser boundaries shown by default.

Usage

```r
S3 method for class 'sia_parallel'
plot(x, y, ...)
```
Arguments

x object of class sia_parallel to plot.
y ignored
...
additional argument:
show_kaiser logical, whether to show horizontal lines denoting Kaiser boundaries (eigenvalue 0 and/or 1 for FA and/or PCA, respectively). Defaults to TRUE.

Examples

## Not run:
fa_parallel_result <- BFI2[, 1:60] %>% fa_parallel(plot = FALSE) # without plot
fa_parallel_result %>% plot() # generate plot from "fitted" object
fa_parallel_result %>% plot(show_kaiser = FALSE) # hide Kaiser boundaries

## End(Not run)

plotAdjacent

Plot category probabilities of adjacent category logit model

Description

Function for plotting category probabilities function estimated by vglm() function from the VGAM package using the ggplot2 package.

Usage

plotAdjacent(x, matching.name = "matching")

Arguments

x object of class vglm
matching.name character: name of matching criterion used for estimation in x.

Value

An object of class ggplot and/or gg.

Author(s)

Tomas Jurica
Institute of Computer Science of the Czech Academy of Sciences

Adela Hladka
Institute of Computer Science of the Czech Academy of Sciences
<hladka@cs.cas.cz>
plotCumulative

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

See Also
VGAM::vglm()

Examples

# loading packages
library(VGAM)

# loading data
data(Science, package = "mirt")

# total score calculation
score <- rowSums(Science)
Science[, 1] <- factor(Science[, 1], levels = sort(unique(Science[, 1])), ordered = TRUE)

# adjacent category logit model for item 1
fit <- vglm(Science[, 1] ~ score, family = acat(reverse = FALSE, parallel = TRUE))
# coefficients for item 1
coef(fit)

plotAdjacent(fit, matching.name = "Total score")

plotCumulative 
Plot cumulative and category probabilities of cumulative logit model

Description

Function for plotting cumulative and category probabilities function estimated by vglm() function from the VGAM package using the ggplot2 package.

Usage
plotCumulative(x, type = "cumulative", matching.name = "matching")

Arguments

x object of class vglm
type character: type of plot to be displayed. Options are "cumulative" (default) for cumulative probabilities and "category" for category probabilities.
matching.name character: name of matching criterion used for estimation in x.

Value
An object of class ggplot and/or gg.
plotDIFirt

Author(s)

Tomas Jurica
Institute of Computer Science of the Czech Academy of Sciences

Adela Hladka
Institute of Computer Science of the Czech Academy of Sciences
<hladka@cs.cas.cz>

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

See Also

VGAM::vglm()

Examples

# loading packages
library(VGAM)

# loading data
data(Science, package = "mirt")

# total score calculation
score <- rowSums(Science)
Science[, 1] <- factor(Science[, 1], levels = sort(unique(Science[, 1])), ordered = TRUE)

# cumulative logit model for item 1
fit <- vglm(Science[, 1] ~ score, family = cumulative(reverse = TRUE, parallel = TRUE))
# coefficients for item 1
coef(fit)

plotCumulative(fit, type = "cumulative", matching.name = "Total score")
plotCumulative(fit, type = "category", matching.name = "Total score")

plotDIFirt

Plot item characteristic curve of DIF IRT model

Description

Plots characteristic curve of IRT model.
Usage

plotDIFirt(
  parameters,
  test = "Lord",
  item = "all",
  item.name,
  same.scale = FALSE
)

Arguments

parameters numeric: data matrix or data frame. See Details.

test character: type of statistic to be shown. See Details.

item either character ("all"), or numeric vector, or single number corresponding to
column indicators. See Details.

item.name character: the name of item.

same.scale logical: are the item parameters on the same scale? (default is "FALSE"). See Details.

Details

This function plots characteristic curve of DIF IRT model.

The parameters matrix has a number of rows equal to twice the number of items in the data set.
The first J rows refer to the item parameter estimates in the reference group, while the last J ones
correspond to the same items in the focal group. The number of columns depends on the selected
IRT model: 2 for the 1PL model, 5 for the 2PL model, 6 for the constrained 3PL model and 9 for
the unconstrained 3PL model. The columns of irtParam() have to follow the same structure as the
output of itemParEst(), difLord() or difRaju() command from the difR package.

Two possible type of test statistics can be visualized - "Lord" gives only characteristic curves,
"Raju" also highlights area between these curves.

For default option "all", all characteristic curves are plotted.

Author(s)

Adela Hladka
Institute of Computer Science of the Czech Academy of Sciences
<hladka@cs.cas.cz>

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

See Also

difR::itemParEst(), difR::difLord(), difR::difRaju()
### Examples

```r
loading libraries
library(difR)
library(ltm)

loading data based on GMAT2
data(GMAT2, package = "difNLR")

Estimation of 2PL IRT model and Lord's statistic
by difR package
fitLord <- difLord(GMAT2, group = 21, focal.name = 1, model = "2PL")
plot of item 1 and Lord's statistic
plotDIFirt(fitLord$itemParInit, item = 1)

Estimation of 2PL IRT model and Raju's statistic
by difR package
fitRaju <- difRaju(GMAT2, group = 21, focal.name = 1, model = "2PL")
plot of item 1 and Lord's statistic
plotDIFirt(fitRaju$itemParInit, test = "Raju", item = 1)
```

### plotDIFLogistic

*Function for characteristic curve of 2PL logistic DIF model*

#### Description

Plots characteristic curve of 2PL logistic DIF model

#### Usage

```r
plotDIFLogistic(x, item = 1, item.name, group.names = c("Reference", "Focal"), Data, group, match, draw.empirical = TRUE)
```

#### Arguments

- `x`: an object of "Logistic" class. See Details.
- `item`: numeric: number of item to be plotted
- `item.name`: character: the name of item to be used as title of plot.
- `group.names`: character: names of reference and focal group.
- `Data`: numeric: the data matrix. See Details.
- `group`: numeric: the vector of group membership. See Details.
- `match`: character or numeric: specifies observed score used for matching. Can be either "score", or numeric vector of the same length as number of observations in Data. See Details.
- `draw.empirical`: logical: whether empirical probabilities should be calculated and plotted. Default value is TRUE.
plotDIFLogistic

Details

This function plots characteristic curves of 2PL logistic DIF model fitted by `difLogistic()` function from `difR` package using `ggplot2`.

Data and group are used to calculate empirical probabilities for reference and focal group. match should be the same as in `x$match`. In case that an observed score is used as a matching variable instead of the total score or the standardized score, match needs to be a numeric vector of the same the same length as the number of observations in Data.

Author(s)

Adela Hladka
Institute of Computer Science of the Czech Academy of Sciences
<hladka@cs.cas.cz>

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

See Also

difR::difLogistic(), ggplot2::ggplot()

Examples

```r
loading libraries
library(difR)

loading data based on GMAT
data(GMAT, package = "difNLR")
Data <- GMAT[, 1:20]
group <- GMAT[, 21]

DIF detection using difLogistic() function
x <- difLogistic(Data, group, focal.name = 1)
Characteristic curve by logistic regression model
plotDIFLogistic(x, item = 1, Data = Data, group = group)

Using name of column as item identifier
plotDIFLogistic(x, item = "Item1", Data = Data, group = group)

Renaming reference and focal group
plotDIFLogistic(x, item = 1, group.names = c("Group 1", "Group 2"), Data = Data, group = group)

Not plotting empirical probabilities
plotDIFLogistic(x, item = 1, draw.empirical = FALSE)
```
plotDistractorAnalysis

Plot item distractor analysis

Description

Plots graphical representation of item distractor analysis with proportions and optional number of groups.

Usage

plotDistractorAnalysis(
  Data,
  key,
  num.groups = 3,
  item = 1,
  item.name,
  multiple.answers = TRUE,
  criterion = NULL,
  crit.discrete = FALSE,
  cut.points,
  data,
  matching,
  match.discrete
)

Arguments

Data character: data matrix or data.frame with rows representing unscored item response from a multiple-choice test and columns corresponding to the items.

key character: answer key for the items. The key must be a vector of the same length as ncol(Data). In case it is not provided, criterion needs to be specified.

num.groups numeric: number of groups to which are the respondents splitted.

item numeric: the number of the item to be plotted.

item.name character: the name of the item.

multiple.answers logical: should be all combinations plotted (default) or should be answers splitted into distractors. See Details.

criterion numeric: numeric vector. If not provided, total score is calculated and distractor analysis is performed based on it.

crit.discrete logical: is criterion discrete? Default value is FALSE.

cut.points numeric: numeric vector specifying cut points of criterion.

data deprecated. Use argument Data instead.

matching deprecated. Use argument criterion instead.

match.discrete deprecated. Use argument crit.discrete instead.
Details

This function is a graphical representation of the `DistractorAnalysis()` function. In case that no criterion is provided, the scores are calculated using the item `Data` and `key`. The respondents are by default split into the `num.groups`-quantiles and the proportions of respondents in each quantile are displayed with respect to their answers. In case that criterion is discrete (crit.discrete = TRUE), criterion is split based on its unique levels. Other cut points can be specified via `cut.points` argument.

If `multiple.answers = TRUE` (default) all reported combinations of answers are plotted. If `multiple.answers = FALSE` all combinations are split into distractors and only these are then plotted with correct combination.

Author(s)

Adela Hladka  
Institute of Computer Science of the Czech Academy of Sciences  
<hladka@cs.cas.cz>

Patricia Martinkova  
Institute of Computer Science of the Czech Academy of Sciences  
<martinkova@cs.cas.cz>

See Also

`DistractorAnalysis()`

Examples

```R
Data <- dataMedicaltest[, 1:100]
DataBin <- dataMedical[, 1:100]
key <- dataMedicalkey

distractor plot for items 48, 57 and 32 displaying distractors only
correct answer B does not function well:
plotDistractorAnalysis(Data, key, item = 48, multiple.answers = FALSE)

all options function well, thus the whole item discriminates well:
plotDistractorAnalysis(Data, key, item = 57, multiple.answers = FALSE)

functions well, thus the whole item discriminates well:
plotDistractorAnalysis(Data, key, item = 32, multiple.answers = FALSE)

Not run:
distractor plot for items 48, 57 and 32 displaying all combinations
plotDistractorAnalysis(Data, key, item = c(48, 57, 32))

distractor plot for item 57 with all combinations and 6 groups
plotDistractorAnalysis(Data, key, item = 57, num.group = 6)

distractor plot for item 57 using specified criterion and key option
criterion <- round(rowSums(DataBin), -1)
plotDistractorAnalysis(Data, key, item = 57, criterion = criterion)
```
plotMultinomial

# distractor plot for item 57 using specified criterion without key option
plotDistractorAnalysis(Data, item = 57, criterion = criterion)

# distractor plot for item 57 using discrete criterion
plotDistractorAnalysis(Data, key, item = 57, criterion = criterion, 
crit.discrete = TRUE)

# distractor plot for item 57 using groups specified by cut.points
plotDistractorAnalysis(Data, key, item = 57, cut.points = seq(10, 96, 10))

## End(Not run)

---

plotMultinomial  
Plot category probabilities of multinomial model

Description
Plot category probabilities functions estimated by multinom() from the nnet package using the ggplot2 package.

Usage
plotMultinomial(x, matching, matching.name = "matching")

Arguments
- x: object of class multinom
- matching: numeric: vector of matching criterion used for estimation in x.
- matching.name: character: name of matching criterion used for estimation in x.

Value
An object of class ggplot and/or gg.

Author(s)
Adela Hladka
Institute of Computer Science of the Czech Academy of Sciences
<hladka@cs.cas.cz>

Tomas Jurica
Institute of Computer Science of the Czech Academy of Sciences

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>
plot_corr

Compute and plot an item correlation matrix

Description

Computes and visualizes an item correlation matrix (also known as a heatmap), offering several correlation "types" and optional clustering (with possible cluster outlining). The function relies on ggplot2() package, providing a high customisability using "the grammar of graphics" (see the examples below).

Usage

plot_corr(
  Data,
  cor = c("polychoric", "tetrachoric", "pearson", "spearman", "none"),
  clust_method = "none",
  n_clust = 0L,
  shape = c("circle", "square"),
  labels = FALSE,
  labels_size = 3,
  line_size = 0.5,
  line_col = "black",
  line_alpha = 1,
  fill = NA,
  fill_alpha = NA,
  ...
)

See Also

nnet::multinom()

Examples

# loading data
data(GMAT, GMATtest, GMATkey, package = "difNLR")

matching <- scale(rowSums(GMAT[, 1:20])) # Z-score

# multinomial model for item 1
fit <- nnet::multinom(relevel(GMATtest[, 1], ref = paste(GMATkey[1])) ~ matching)

# plotting category probabilities
plotMultinomial(fit, matching, matching.name = "Z-score")
plot_corr

Arguments

Data  matrix, data.frame or tibble: either a data.frame with scored items (as columns, one observation per row), or a correlation matrix.

cor  character: correlation "type" used to correlation matrix computation; available options are polychoric, tetrachoric, pearson, spearman, or none (in case you provide the correlation matrix as Data).

clust_method  character: optional clustering method, available options are: ward.D, ward.D2, single, complete, average (= UPGMA), mcquitty (= WPGMA), median (= WPGMC), centroid (= UPGMC) or none (clustering disabled). See hclust() for a detailed description of available options.

n_clust  integer: the number of clusters you want to be outlined. When set to zero (the default), no cluster are outlined, but items still do get sorted according to clust_method (if not set to none).

shape  character: tile appearance; either circle (default) to map the correlation coefficient to circle size and color, or square to draw square-shaped tiles with only shade denoting the coefficient magnitude. You can use an unambiguous abbreviation of the two.

labels  logical: when TRUE, the correlation coefficients are plotted onto tiles.

labels_size  numeric: label size in points (pts).

line_size  numeric: cluster outline width.

line_col  character: color of the outline, either a HEX code (e.g. "#123456"), or one of R’s standard colors (see the colors()).

line_alpha  numeric 0-1: the opacity of the outline.

fill  character: the color used to fill the outlined clusters.

fill_alpha  numeric 0–1: the opacity of the fill color.

...  Arguments passed on to psych::polychoric

correct  Correction value to use to correct for continuity in the case of zero entry cell for tetrachoric, polychoric, polybi, and mixed.cor. See the examples for the effect of correcting versus not correcting for continuity.

smooth  if TRUE and if the tetrachoric/polychoric matrix is not positive definite, then apply a simple smoothing algorithm using cor.smooth

global  When finding pairwise correlations, should we use the global values of the tau parameter (which is somewhat faster), or the local values (global=FALSE)? The local option is equivalent to the polycor solution, or to doing one correlation at a time. global=TRUE borrows information for one item pair from the other pairs using those item’s frequencies. This will make a difference in the presence of lots of missing data. With very small sample sizes with global=FALSE and correct=TRUE, the function will fail (for as yet undetermined reasons.

weight  A vector of length of the number of observations that specifies the weights to apply to each case. The NULL case is equivalent of weights of 1 for all cases.

std.err  std.err=FALSE does not report the standard errors (faster) deprecated
plot_corr

progress Show the progress bar (if not doing multicore)
ML ML=FALSE do a quick two step procedure, ML=TRUE, do longer maximum likelihood — very slow! Deprecated
delete Cases with no variance are deleted with a warning before proceeding.
max.cat The maximum number of categories to bother with for polychoric.

Details

Correlation heatmap displays selected type of correlations between items. The color of tiles indicates how much and in which way the items are correlated — red color means positive correlation and blue color means negative correlation. Correlation heatmap can be reordered using hierarchical clustering method specified with clust_method argument. When the desired number of clusters (argument n_clust) is not zero and some clustering is demanded, the rectangles outlining the found clusters are drawn.

Value

An object of class ggplot and/or gg.

Author(s)

Jan Netik
Institute of Computer Science of the Czech Academy of Sciences
<netik@cs.cas.cz>
Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

Examples

# use first 20 columns from HCI dataset (the remainder are not items)
HCI <- HCI[, 1:20]

# use Pearson product-moment correlation coefficient for matrix computation
plot_corr(HCI, cor = "pearson")

## Not run:
# use tetrachoric correlation and reorder the resulting heatmap
# using Ward's method
HCI %>% plot_corr(cor = "tetrachoric", clust_method = "ward.D")

# outline 3 Ward's clusters with bold yellow line and add labels
HCI %>%
  plot_corr(
    n_clust = 3, clust_method = "ward.D2", line_col = "yellow",
    line_size = 1.5, labels = TRUE
  )

# add title and position the legend below the plot
library(ggplot2)
print.blis_coefs

Print method for BLIS coefficients

Description

Print method for BLIS coefficients

Usage

## S3 method for class 'blis_coefs'
print(x, digits = 3, ...)

Arguments

x  
result of coef().
digits  
integer, number of digits to show in the output. Note that printed object are still an original list, which does not round any value (it is returned invisibly).
...
Additional arguments passed on to print().

See Also

Other BLIS/BLIRT related: BlisClass-class, coef, BlisClass-method, fit_blis(), get_orig_levels(), nominal_to_int(), obtain_nrm_def()
recode_nr

Recognize and recode not-reached responses

Description

recode_nr() function recognizes and recodes not-reached responses, i.e., missing responses to items such that all subsequent items are missed as well by the respondent.

Usage

recode_nr(Data, nr_code = 99, df)

Arguments

Data matrix or data.frame: object to be recoded, must include only items columns and no additional information
nr_code single character, integer or numeric: specifying how should be recognized not-reached responses coded (default is 99)
df deprecated. Use argument Data instead.

Value

A data.frame object.

Author(s)

Jan Netik
Institute of Computer Science of the Czech Academy of Sciences
<netik@cs.cas.cz>
Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>

See Also

ItemAnalysis()

Examples

HCImissed <- HCI[, 1:20]

# simulate skipped (missed) and not-reached items in HCI dataset
set.seed(4211)
for (i in 1:150) {
  # not-reached (minimum at 10th item, maximum at 20th)
  HCImissed[sample(1:nrow(HCImissed), 1), seq(sample(10:20, 1), 20)] <- NA
# missed with random location
HCImissed[sample(1:nrow(HCImissed), 1), sample(1:20, 1)] <- NA

summary(HCImissed)

HCImissedNR <- recode_nr(HCImissed, nr_code = 99)
head(HCImissedNR)
summary(HCImissedNR)

---

**startShinyItemAnalysis**

*Start ShinyItemAnalysis application*

**Description**

An interactive shiny application to run test and item analysis. By default, the function runs the application as a background process ("Jobs" tab in the "RStudio" IDE). User is then free to use the R Console for other work and to try the sample R code examples. You can still run the app the usual way in the console by specifying background = FALSE.

**Usage**

```r
code
startShinyItemAnalysis(background = TRUE, ...)
run_app(background = TRUE, ...)
```

**Arguments**

- `background` *logical*, should the application be run as a background process (in the 'RStudio')?
- `...` Arguments passed on to `utils::install.packages`
  - `lib` character vector giving the library directories where to install the packages. Recycled as needed. If missing, defaults to the first element of `.libPaths()`.
  - `repos` character vector, the base URL(s) of the repositories to use, e.g., the URL of a CRAN mirror such as "https://cloud.r-project.org". For more details on supported URL schemes see `url`. Can be NULL to install from local files, directories or URLs: this will be inferred by extension from `pkgs` if of length one.
  - `contriburl` URL(s) of the contrib sections of the repositories. Use this argument if your repository mirror is incomplete, e.g., because you mirrored only the 'contrib' section, or only have binary packages. Overrides argument `repos`. Incompatible with `type = "both"`.
  - `method` download method, see `download.file`. Unused if a non-NULL available is supplied.
available a matrix as returned by available.packages listing packages available at the repositories, or NULL when the function makes an internal call to available.packages. Incompatible with type = "both".

destdir directory where downloaded packages are stored. If it is NULL (the default) a subdirectory downloaded_packages of the session temporary directory will be used (and the files will be deleted at the end of the session).

dependencies logical indicating whether to also install uninstalled packages which these packages depend on/link to/import/suggest (and so on recursively). Not used if repos = NULL. Can also be a character vector, a subset of c("Depends", "Imports", "LinkingTo", "Suggests", "Enhances"). Only supported if lib is of length one (or missing), so it is unambiguous where to install the dependent packages. If this is not the case it is ignored, with a warning.

The default, NA, means c("Depends", "Imports", "LinkingTo").
TRUE means to use c("Depends", "Imports", "LinkingTo", "Suggests") for pkgs and c("Depends", "Imports", "LinkingTo") for added dependencies: this installs all the packages needed to run pkgs, their examples, tests and vignettes (if the package author specified them correctly).

In all of these, "LinkingTo" is omitted for binary packages.

type character, indicating the type of package to download and install. Will be "source" except on Windows and some macOS builds: see the section on ‘Binary packages’ for those.

configure.args (Used only for source installs.) A character vector or a named list. If a character vector with no names is supplied, the elements are concatenated into a single string (separated by a space) and used as the value for the ‘--configure-args’ flag in the call to R CMD INSTALL. If the character vector has names these are assumed to identify values for ‘--configure-args’ for individual packages. This allows one to specify settings for an entire collection of packages which will be used if any of those packages are to be installed. (These settings can therefore be re-used and act as default settings.)

A named list can be used also to the same effect, and that allows multi-element character strings for each package which are concatenated to a single string to be used as the value for ‘--configure-args’.

configure.vars (Used only for source installs.) Analogous to configure.args for flag ‘--configure-vars’, which is used to set environment variables for the configure run.

clean a logical value indicating whether to add the ‘--clean’ flag to the call to R CMD INSTALL. This is sometimes used to perform additional operations at the end of the package installation in addition to removing intermediate files.

Ncpus the number of parallel processes to use for a parallel install of more than one source package. Values greater than one are supported if the make command specified by Sys.getenv("MAKE", "make") accepts argument -k -j Ncpus.

verbose a logical indicating if some “progress report” should be given.

INSTALL_opts an optional character vector of additional option(s) to be passed
to R CMD INSTALL for a source package install. E.g., c("--html", "--no-multiarch", "--no-test-load").
Can also be a named list of character vectors to be used as additional options, with names the respective package names.
quiet logical: if true, reduce the amount of output. This is not passed to available.packages() in case that is called, on purpose.
keep_outputs a logical: if true, keep the outputs from installing source packages in the current working directory, with the names of the output files the package names with `.out` appended. Alternatively, a character string giving the directory in which to save the outputs. Ignored when installing from local files.

Value

No return value. Called for side effects.

Author(s)

Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
<martinkova@cs.cas.cz>
Adela Hladka
Institute of Computer Science of the Czech Academy of Sciences
<hladka@cs.cas.cz>
Jan Netik
Institute of Computer Science of the Czech Academy of Sciences
<netik@cs.cas.cz>

Examples

```r
Not run:
startShinyItemAnalysis()
startShinyItemAnalysis(background = FALSE)
End(Not run)
```

TestAnxietyCor  Correlation matrix for the test anxiety dataset

Description

The TestAnxietyCor dataset contains between-item correlations for 20 items of the Test Anxiety dataset.

Usage

TestAnxietyCor
Format

TestAnxietyCor is a data.frame consisting of between-item correlations for 20 items.

i1  Lack of confidence during tests.
i2  Uneasy, upset feeling.
i3  Thinking about grades.
i4  Freeze up.
i5  Thinking about getting through school.
i6  The harder I work, the more confused I get.
i7  Thoughts interfere with concentration.
i8  Jittery when taking tests.
i9  Even when prepared, get nervous.
i10 Uneasy before getting the test back.
i11 Tense during test.
i12 Exams bother me.
i13 Tense/ stomach upset.
i14 Defeat myself during tests.
i15 Panicky during tests.
i16 Worry before important tests.
i17 Think about failing.
i18 Heart beating fast during tests.
i19 Can’t stop worrying.
i20 Nervous during test, forget facts.

References


theme_app

Complete theme for ShinyItemAnalysis graphics

Description

This complete theme is based on theme_bw and it was modified for purposes of ShinyItemAnalysis.

Usage

theme_app(base_size = 15, base_family = "")
Arguments

- `base_size` base font size
- `base_family` base font family

See Also

`ggplot2::theme()`

Examples

```r
library(ggplot2)
data(GMAT, package = "difNLR")
data <- GMAT[, 1:20]
total score calculation
df <- data.frame(score = apply(data, 1, sum))
histogram
g <- ggplot(df, aes(score)) +
 geom_histogram(binwidth = 1) +
 xlab("Total score") +
 ylab("Number of respondents")

g
g + theme_app()
```
Index

* BLIS/BLIRT related
  BlisClass-class, 11
  coef,BlisClass-method, 13
  fit_blis, 28
  get_orig_levels, 37
  nominal_to_int, 60
  obtain_nrm_def, 61
  print.blis_coefs, 75

* datasets
  AIBS, 5
  Anxiety, 7
  AttitudesExpulsion, 8
  BFI2, 10
  CLoSeread6, 12
  CZmatura, 14
  CZmaturaS, 15
  dataMedical, 16
  dataMedicalgraded, 17
  dataMedicalkey, 18
  dataMedicaltest, 18
  EPA, 24
  GMAT, 40
  HCI, 41
  HCIdata, 42
  HCIgrads, 43
  HClkey, 44
  HCllong, 45
  HClprepost, 46
  HCltest, 47
  HCltestretest, 48
  HeightInventory, 49
  LearningToLearn, 55
  MSATB, 57
  MScclinical, 58
  NIH, 59
  TestAnxietyCor, 79
  .libPaths, 77

AIBS, 5
AIBS(), 4

Anxiety, 7
Anxiety(), 4
AttitudesExpulsion, 8
AttitudesExpulsion(), 4
available.packages, 78, 79

base::findInterval, 36
BFI2, 10
BFI2(), 4
blis(fit_blis), 28
blis(), 4, 61
BlisClass, 11, 13, 35, 38, 61
BlisClass-class, 11
bs, 32

CLoSeread6, 12
CLoSeread6(), 4
coeff,BlisClass-method, 12, 13, 35
coeff,SingleGroupClass-method, 13
colors(), 73
CZmatura, 14
CZmatura(), 4, 15
CZmaturaS, 15
CZmaturaS(), 4, 15

dataMedical, 16
dataMedical(), 4, 17–19
dataMedicalgraded, 17
dataMedicalgraded(), 4, 16, 18, 19
dataMedicalkey, 18
dataMedicalkey(), 4, 16, 17, 19
dataMedicaltest, 18
dataMedicaltest(), 4, 16–18
DDplot, 19
DDplot(), 3, 36, 37, 55
difR::difLogistic(), 68
difR::difLord(), 66
difR::difRaju(), 66
difR::itemParEst(), 66
DistractorAnalysis, 22
INDEX

53
3
70
77
24
34
25
3
61, 62, 75
61
26
28
12, 14, 28, 38, 61, 62, 75
31
28
29, 62
4
4
4
57
4
58
4
59
4
72
12, 14, 35, 38, 60, 62, 75
61
61
62
65
67
69
71
12, 14, 35, 38, 61, 61, 75
61
29
62
72
26
26
76
77
4
4
4
51
54, 55
77
3
3
3
77
3
3
3
77
TestAnxietyCor, 79
TestAnxietyCor(), 4
theme_app, 80

url, 77
utils::install.packages, 77

VGAM::vglm(), 64, 65

wald, 29