Package ‘Sieve’

October 19, 2023

Type Package
Title Nonparametric Estimation by the Method of Sieves
Version 2.1
Date 2023-10-19
Author Tianyu Zhang
Maintainer Tianyu Zhang <tianyuz3@andrew.cmu.edu>
Description Performs multivariate nonparametric regression/classification by the method of sieves (using orthogonal basis). The method is suitable for moderate high-dimensional features (dimension < 100). The l1-penalized sieve estimator, a nonparametric generalization of Lasso, is adaptive to the feature dimension with provable theoretical guarantees. We also include a nonparametric stochastic gradient descent estimator, Sieve-SGD, for online or large scale batch problems. Details of the methods can be found in: <arXiv:2206.02994> <arXiv:2104.00846><arXiv:2310.12140>.
License GPL-2
Imports Rcpp, combinat, glmnet, methods, MASS
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.2.3
Encoding UTF-8
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-10-19 14:10:02 UTC

R topics documented:

Sieve-package ... 2
clean_up_result ... 3
create_index_matrix ... 4
GenSamples ... 5
sieve.sgd.predict .. 6
sieve.sgd.preprocess ... 7
sieve.sgd.solver .. 9
Sieve-package

Nonparametric Estimation by the Method of Sieves

Description

Performs multivariate nonparametric regression/classification by the method of sieves (using orthogonal basis). The method is suitable for moderate high-dimensional features (dimension < 100). The 11-penalized sieve estimator, a nonparametric generalization of Lasso, is adaptive to the feature dimension with provable theoretical guarantees. We also include a nonparametric stochastic gradient descent estimator, Sieve-SGD, for online or large scale batch problems. Details of the methods can be found in: <arXiv:2206.02994> <arXiv:2104.00846><arXiv:2310.12140>.

Details

The DESCRIPTION file:

- Package: Sieve
- Type: Package
- Title: Nonparametric Estimation by the Method of Sieves
- Version: 2.1
- Date: 2023-10-19
- Author: Tianyu Zhang
- Maintainer: Tianyu Zhang <tianyuz3@andrew.cmu.edu>
- Description: Performs multivariate nonparametric regression/classification by the method of sieves (using orthogonal basis)
- License: GPL-2
- Imports: Rcpp, combinat, glmnet, methods, MASS
- LinkingTo: Rcpp, RcppArmadillo
- RoxygenNote: 7.2.3
- Encoding: UTF-8

Index of help topics:

- GenSamples: Generate some simulation/testing samples with nonlinear truth.
- Sieve-package: Nonparametric Estimation by the Method of Sieves
- clean_up_result: Clean up the fitted model
- create_index_matrix: Create the index matrix for multivariate regression
- sieve.sgd.predict: Sieve-SGD makes prediction with new predictors.
- sieve.sgd.preprocess: Preprocess the original data for sieve-SGD
sieve.sgd.solver Fit sieve-SGD estimators, using progressive validation for hyperparameter tuning.
sieve_predict Predict the outcome of interest for new samples
sieve_preprocess Preprocess the original data for sieve estimation.
sieve_solver Calculate the coefficients for the basis functions

~ An overview of how to use the ~ ~ package, including the most ~ ~ important functions ~

Author(s)
Tianyu Zhang
Maintainer: Tianyu Zhang <tianyuz3@andrew.cmu.edu>

References
Tianyu Zhang and Noah Simon (2022) <arXiv:2206.02994>

Examples

xdim <- 5
basisN <- 1000
type <- 'cosine'

#non-linear additive truth. Half of the features are truly associated with the outcome
TrainData <- GenSamples(s.size = 300, xdim = xdim,
 frho = 'additive', frho.para = xdim/2)

#noise-free testing samples
TestData <- GenSamples(s.size = 1e3, xdim = xdim, noise.para = 0,
 frho = 'additive', frho.para = xdim/2)

sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],
 basisN = basisN, type = type, interaction_order = 2)
sieve.model <- sieve_solver(sieve.model, TrainData$Y, l1 = TRUE)
sieve_model_prediction <- sieve_predict(testX = TestData[,2:(xdim+1)],
 testY = TestData$Y, sieve.model)

Description

Clean up the fitted model
```r
create_index_matrix

Usage

create_index_matrix(xdim, basisN = NULL, maxj = NULL, interaction_order = 5)

Arguments

xdim    a number. It specifies the predictors’ dimension.
basisN  a number. The number of basis function to use.
maxj    a number. We use this to specify the largest row product in the index list.
interaction_order  a number. The maximum order of interaction. 1 means additive model, 2 means including pairwise interaction terms, etc.

Value

a matrix. The first column is the product of the indices, the rest columns are the index vectors for constructing multivariate basis functions.
```
GenSamples

Generate some simulation/testing samples with nonlinear truth.

Description

This function is used in several examples in the package.

Usage

GenSamples(
 s.size,
 xdim = 1,
 x.dis = "uniform",
 x.para = NULL,
 frho = "linear",
 frho.para = 100,
 y.type = "continuous",
 noise.dis = "normal",
 noise.para = 0.5
)

Arguments

s.size a number. Sample size.
xdim a number. Dimension of the feature vectors X.
x.dis a string. It specifies the distribution of feature X. The default is uniform distribution over xdim-dimensional unit cube.
x.para extra parameter to specify the feature distribution.
frho a string. It specifies the true regression/log odds functions used to generate the data set. The default is a linear function.
frho.para extra parameter to specify the true underlying regression/log odds function.
y.type a string. Default is y.type = 'continuous', meaning the outcome is numerical and the problem is regression. Set it to y.type = 'binary' for binary outcome.
noise.dis a string. For the distribution of the noise variable (under regression problem settings). Default is Gaussian distribution.
noise.para a number. It specifies the magnitude of the noise in regression settings.

Value

a data.frame. The variable Y is the outcome (either continuous or binary). Each of the rest of the variables corresponds to one dimension of the feature vector.
Examples

```r
dim <- 1 # 1 dimensional feature
# generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
# generate some noise-free testing samples
TestData <- GenSamples(s.size = 1000, xdim = xdim, noise.para = 0)
```

`sieve.sgd.predict`

Sieve-SGD makes prediction with new predictors.

Description

Sieve-SGD makes prediction with new predictors.

Usage

```r
sieve.sgd.predict(sieve.model, X)
```

Arguments

- `sieve.model`: a list initiated using `sieve.sgd.preprocess` and `sieve.sgd.solver`. Check the documentation of `sieve.sgd.preprocess` for more information.
- `X`: a data frame containing prediction features/independent variables.

Value

`sieve.sgd.predict` will update the given `sieve.model` input list.

Inf.list

In each entry of the list `inf.list`, the array `prdy` is the predicted outcome under the given hyperparameter combination.

Examples

```r
frho.para <- xdim <- 1 ## predictor dimension
frho <- 'additive' ### truth is a sum of absolute functions
type <- 'cosine' ### use cosine functions as the basis functions
# generate training data
TrainData <- GenSamples(s.size = 1e3, xdim = xdim,
    frho.para = frho.para,
    frho = frho, noise.para = 0.1)
# preprocess the model
sieve.model <- sieve.sgd.preprocess(X = TrainData[,2:(xdim+1)],
    type = type,
    s = c(1, 2),
    r0 = c(0.5, 2, 4),
    J = c(1, 4, 8))
## train the model
sieve.model <- sieve.sgd.solver(sieve.model = sieve.model,
```
sieve.sgd.preprocess

X = TrainData[,2:(xdim+1)],
Y = TrainData[,1])

##generate new data
NewData <- GenSamples(s.size = 5e2, xdim = xdim,
frho.para = frho.para,
frho = frho, noise.para = 0.1)
sieve.model <- sieve.sgd.predict(sieve.model, X = NewData[,2:(xdim+1)])
plot(NewData[,2:(xdim+1)], sieve.model$best_model$prdy)

sieve.sgd.preprocess

Preprocess the original data for sieve-SGD estimation.

Description

Preprocess the original data for sieve-SGD estimation.

Usage

sieve.sgd.preprocess(
 X,
 s = c(2),
 r0 = c(2),
 J = c(1),
 type = c("cosine"),
 interaction_order = c(3),
 omega = c(0.51),
 norm_feature = TRUE,
 norm_para = NULL,
 lower_q = 0.005,
 upper_q = 0.995
)

Arguments

X a data frame containing prediction features/ independent variables. The (i,j)-th element is the j-th dimension of the i-th sample’s feature vector. So the number of rows equals to the sample size and the number of columns equals to the feature/covariate dimension. If the complete data set is large, this can be a representative subset of it (ideally have more than 1000 samples).

s numerical array. Smoothness parameter, a smaller s corresponds to a more flexible model. Default is 2. The elements of this array should take values greater than 0.5. The larger s is, the smoother we are assuming the truth to be.

r0 numerical array. Initial learning rate/step size, don’t set it too large. The step size at each iteration will be r0*(sample size)^(-1/(2s+1)), which is slowly decaying.

J numerical array. Initial number of basis functions, a larger J corresponds to a more flexible estimator. The number of basis functions at each iteration will be J*(sample size)^(-1/(2s+1)), which is slowly increasing. We recommend use
sieve.sgd.preprocess

J that is at least the dimension of predictor, i.e. the column number of the X matrix.

type

a string. It specifies what kind of basis functions are used. The default is (aperiodic) cosine basis functions ('cosine'), which is enough for generic usage.

interaction_order

a number. It also controls the model complexity. 1 means fitting an additive model, 2 means fitting a model allows, 3 means interaction terms between 3 dimensions of the feature, etc. The default is 3. For large sample size, lower dimension problems, try a larger value (but need to be smaller than the dimension of original features); for smaller sample size and higher dimensional problems, try set it to a smaller value (1 or 2).

omega

the rate of dimension-reduction parameter. Default is 0.51, usually do not need to change.

norm_feature

a logical variable. Default is TRUE. It means sieve_preprocess will rescale the each dimension of features to 0 and 1. Only set to FALSE when user already manually rescale them between 0 and 1.

norm_para

a matrix. It specifies how the features are normalized. For training data, use the default value NULL.

lower_q

lower quantile used in normalization. Default is 0.01 (1% quantile).

upper_q

upper quantile used in normalization. Default is 0.99 (99% quantile).

Value

A list containing the necessary information for next step model fitting. Typically, the list is used as the main input of sieve.sgd.solver.

s.size.sofar

a number. Number of samples has been processed so far.

type

a string. The type of basis function.

hyper.para.list

a list of hyperparameters.

index.matrix

a matrix. Identifies the multivariate basis functions used in fitting.

index.row.prod

the index product for each basis function. It is used in calculating basis function specific learning rates.

inf.list

a list storing the fitted results. It has a length of "number of unique combinations of the hyperparameters". The component of inf.list is itself a list, it has a hyper.para.index domain to specify its corresponding hyperparameters (need to be used together with hyper.para.list). Its rolling.cv domain is the progressive validation statistics for hyperparameter tuning; beta.f is the regression coefficients for the first length(beta.f) basis functions, the rest of the basis have 0 coefficients.

norm_para

a matrix. It records how each dimension of the feature/predictor is rescaled, which is useful when rescaling the testing sample's predictors.
Examples

```r
xdim <- 1  # 1 dimensional feature
# generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
sieve.model <- sieve.sgd.preprocess(X = TrainData[,2:(xdim+1)])
```

Description

Fit sieve-SGD estimators, using progressive validation for hyperparameter tuning.

Usage

```r
sieve.sgd.solver(sieve.model, X, Y, cv_weight_rate = 1)
```

Arguments

- `sieve.model`: a list initiated using `sieve.sgd.preprocess`. Check the documentation of `sieve.sgd.preprocess` for more information.
- `X`: a data frame containing prediction features/independent variables.
- `Y`: training outcome.
- `cv_weight_rate`: this governs the divergence rate of rolling validation statistics. Default is set to be 1 and in general does not need to be changed.

Value

A list. It contains the fitted regression coefficients and progressive validation statistics for each hyperparameter combination.

- `s.size.sofar`: a number. Number of samples has been processed so far.
- `type`: a string. The type of basis function.
- `hyper.para.list`: a list of hyperparameters.
- `index.matrix`: a matrix. Identifies the multivariate basis functions used in fitting.
- `index.row.prod`: the index product for each basis function. It is used in calculating basis function-specific learning rates.
- `inf.list`: a list storing the fitted results. It has a length of "number of unique combinations of the hyperparameters". The component of `inf.list` is itself a list, it has a `hyper.para.index` domain to specify its corresponding hyperparameters (need to be used together with `hyper.para.list`). Its `rolling.cv` domain is the progressive validation statistics for hyperparameter tuning; `beta.f` is the regression coefficients for the first length(`beta.f`) basis functions, the rest of the basis have 0 coefficients.
- `norm_para`: a matrix. It records how each dimension of the feature/predictor is rescaled, which is useful when rescaling the testing sample’s predictors.
Examples

```r
frho.para <- xdim <- 1  ##predictor dimension
frho <- 'additive'  ##truth is a sum of absolute functions
type <- 'cosine'  ##use cosine functions as the basis functions
#generate training data
TrainData <- GenSamples(s.size = 1e3, xdim = xdim,
                        frho.para = frho.para,
                        frho = frho, noise.para = 0.1)
#preprocess the model
sieve.model <- sieve.sgd.preprocess(X = TrainData[,2:(xdim+1)],
                        type = type,
                        s = c(1,2),
                        r0 = c(0.5, 2, 4),
                        J = c(1, 4, 8))

##train the model
sieve.model <- sieve.sgd.solver(sieve.model = sieve.model,
                              X = TrainData[,2:(xdim+1)],
                              Y = TrainData[,1])
```

##sieve-SGD can do multiple passes over the data, just like other SGD methods.
##usually a second pass can still improve the prediction accuracy
##watch out overfitting when performing multiple passes!
sieve.model <- sieve.sgd.solver(sieve.model = sieve.model,
 X = TrainData[,2:(xdim+1)],
 Y = TrainData[,1])
```

sieve_predict  Predict the outcome of interest for new samples

Description

Use the fitted sieve regression model from sieve_solver. It also returns the testing mean-squared errors.

Usage

```r
sieve_predict(model, testX, testY = NULL)
```

Arguments

- **model**: a list. Use the fitted model from sieve_solver.
- **testX**: a data frame. Dimension equals to test sample size x feature dimension. Should be of a similar format as the training feature provided to sieve_preprocess.
- **testY**: a vector. The outcome of testing samples (if known). Default is NULL. For regression problems, the algorithm also returns the testing mean-squared errors.
sieve_preprocess

Value

- predictY: a matrix. Dimension is test sample size (# of rows) x number of penalty hyperparameter lambda (# of columns). For regression problem, that is, when family = "gaussian", each entry is the estimated conditional mean (or predictor of outcome Y). For classification problems (family = "binomial"), each entry is the predicted probability of having Y = 1 (which class is defined as "class 1" depends on the training data labeling).

- MSE: For regression problem, when testY is provided, the algorithm also calculates the mean-squared errors using testing data. Each entry of MSE corresponds to one value of penalization hyperparameter lambda.

Examples

```r
1 dimensional feature
xdim <- 1
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
use 50 cosine basis functions
type <- 'cosine'
basisN <- 50
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],
 basisN = basisN, type = type)
sieve.fit <- sieve_solver(model = sieve.model, Y = TrainData$Y)

1000 testing samples
TestData <- GenSamples(s.size = 1000, xdim = xdim)
sieve.prediction <- sieve_predict(model = sieve.fit,
 testX = TestData[,2:(xdim+1)],
 testY = TestData$Y)

if the outcome is binary,
need to solve a nonparametric logistic regression problem
xdim <- 1
TrainData <- GenSamples(s.size = 1e3, xdim = xdim, y.type = 'binary', frho = 'nonlinear_binary')
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],
 basisN = basisN, type = type)
sieve.fit <- sieve_solver(model = sieve.model, Y = TrainData$Y,
 family = 'binomial')

the predicted value is conditional probability (of taking class 1).
TrainData <- GenSamples(s.size = 1e3, xdim = xdim, y.type = 'binary', frho = 'nonlinear_binary')
sieve.prediction <- sieve_predict(model = sieve.fit,
 testX = TestData[,2:(xdim+1)])
```

---

**sieve_preprocess**  
Preprocess the original data for sieve estimation.

**Description**

Generate the design matrix for the downstream lasso-type penalized model fitting.
sieve_preprocess

Usage

sieve_preprocess(
  X,
  basisN = NULL,
  maxj = NULL,
  type = "cosine",
  interaction_order = 3,
  index_matrix = NULL,
  norm_feature = TRUE,
  norm_para = NULL
)

Arguments

X  a data frame containing original features. The (i,j)-th element is the j-th dimension of the i-th sample’s feature vector. So the number of rows equals to the sample size and the number of columns equals to the feature dimension.

basisN number of sieve basis function. It is in general larger than the dimension of the original feature. Default is 50*dimension of original feature. A larger value has a smaller approximation error but it is harder to estimate. The computational time/memory requirement should scale linearly to basisN.

maxj a number. the maximum index product of the basis function. A larger value means more basisN. If basisN is already specified, do not need to provide value for this argument.

type a string. It specifies what kind of basis functions are used. The default is (aperiodic) cosine basis functions, which is suitable for most purpose.

interaction_order a number. It also controls the model complexity. 1 means fitting an additive model, 2 means fitting a model allows 3 means interaction terms between 3 dimensions of the feature, etc. The default is 3. For large sample size, lower dimension problems, try a larger value (but need to be smaller than the dimension of original features); for smaller sample size and higher dimensional problems, try set it to a smaller value (1 or 2).

index_matrix a matrix. provide a pre-generated index matrix. The default is NULL, meaning sieve_preprocess will generate one for the user.

norm_feature a logical variable. Default is TRUE. It means sieve_preprocess will rescale the each dimension of features to 0 and 1. Only set to FALSE when user already manually rescale them between 0 and 1.

norm_para a matrix. It specifies how the features are normalized. For training data, use the default value NULL.

Value

A list containing the necessary information for next step model fitting. Typically, the list is used as the main input of Sieve::sieve_solver.
Phi a matrix. This is the design matrix directly used by the next step model fitting. The \((i,j)\)-th element of this matrix is the evaluation of i-th sample’s feature at the j-th basis function. The dimension of this matrix is sample size x basisN.

X a matrix. This is the rescaled original feature/predictor matrix.

type a string. The type of basis function.

index_matrix a matrix. It specifies what are the product basis functions used when constructing the design matrix Phi. It has a dimension basisN x dimension of original features. There are at most interaction_order many non-1 elements in each row.

basisN a number. Number of sieve basis functions.

norm_para a matrix. It records how each dimension of the feature/predictor is rescaled, which is useful when rescaling the testing sample’s predictors.

Examples

```r
xdim <- 1 # 1 dimensional feature
generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
use 50 cosine basis functions
type <- 'cosine'
basisN <- 50
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],
 basisN = basisN, type = type)
sieve.model$Phi # Phi is the design matrix

xdim <- 5 # 1 dimensional feature
generate 1000 training samples
only the first two dimensions are truly associated with the outcome
TrainData <- GenSamples(s.size = 1000, xdim = xdim,
 frho = 'additive', frho.para = 2)
use 1000 basis functions
each of them is a product of univariate cosine functions.
type <- 'cosine'
basisN <- 1000
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],
 basisN = basisN, type = type)
sieve.model$Phi # Phi is the design matrix

fit a nonparametric additive model by setting interaction_order = 1
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],
 basisN = basisN, type = type,
 interaction_order = 1)
sieve.model$index_matrix # for each row, there is at most one entry >= 2.
this means there are no basis functions varying in more than 2-dimensions
that is, we are fitting additive models without interaction between features.
```
sieve_solver

Calculate the coefficients for the basis functions

Description

This is the main function that performs sieve estimation. It calculate the coefficients by solving a penalized lasso type problem.

Usage

sieve_solver(
  model,
  Y,
  l1 = TRUE,
  family = "gaussian",
  lambda = NULL,
  nlambda = 100
)

Arguments

model
  a list. Typically, it is the output of Sieve::sieve_preprocess.

Y
  a vector. The outcome variable. The length of Y equals to the training sample size, which should also match the row number of X in model.

l1
  a logical variable. TRUE means calculating the coefficients by solving a l1-penalized empirical risk minimization problem. FALSE means solving a least-square problem. Default is TRUE.

family
  a string. 'gaussian', mean-squared-error regression problem.

lambda
  same as the lambda of glmnet::glmnet.

nlambda
  a number. Number of penalization hyperparameter used when solving the lasso-type problem. Default is 100.

Value

a list. In addition to the preprocessing information, it also has the fitted value.

Phi
  a matrix. This is the design matrix directly used by the next step model fitting. The (i,j)-th element of this matrix is the evaluation of i-th sample’s feature at the j-th basis function. The dimension of this matrix is sample size x basisN.

X
  a matrix. This is the rescaled original feature/predictor matrix.

beta_hat
  a matrix. Dimension is basisN x nlambda. The j-th column corresponds to the fitted regression coefficients using the j-th hyperparameter in lambda.

type
  a string. The type of basis function.
**index_matrix**  
A matrix. It specifies what are the product basis functions used when constructing the design matrix $\Phi$. It has a dimension basisN x dimension of original features. There are at most interaction_order many non-1 elements in each row.

**basisN**  
a number. Number of sieve basis functions.

**norm_para**  
a matrix. It records how each dimension of the feature/predictor is rescaled, which is useful when rescaling the testing sample’s predictors.

**lambda**  
a vector. It records the penalization hyperparameter used when solving the lasso problems. Default has a length of 100, meaning the algorithm tried 100 different penalization hyperparameters.

**family**  
a string. 'gaussian', continuous numerical outcome, regression problem; 'binomial', binary outcome, classification problem.

### Examples

```r
xdim <- 1 #1 dimensional feature
#generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
#use 50 cosine basis functions
type <- 'cosine'
basisN <- 50
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],
 basisN = basisN, type = type)
sieve.fit<- sieve_solver(model = sieve.model, Y = TrainData$Y)

if the outcome is binary,
need to solve a nonparametric logistic regression problem
xdim <- 1
TrainData <- GenSamples(s.size = 1e3, xdim = xdim, y.type = 'binary', frho = 'nonlinear_binary')
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],
 basisN = basisN, type = type)
sieve.fit<- sieve_solver(model = sieve.model, Y = TrainData$Y,
 family = 'binomial')
```

Index

* sieve estimation; estimation using orthogonal series
  Sieve-package, 2

clean_up_result, 3
create_index_matrix, 4

GenSamples, 5

Sieve (Sieve-package), 2
Sieve-package, 2
sieve.sgd.predict, 6
sieve.sgd.preprocess, 7
sieve.sgd.solver, 9
sieve_predict, 10
sieve_preprocess, 11
sieve_solver, 14